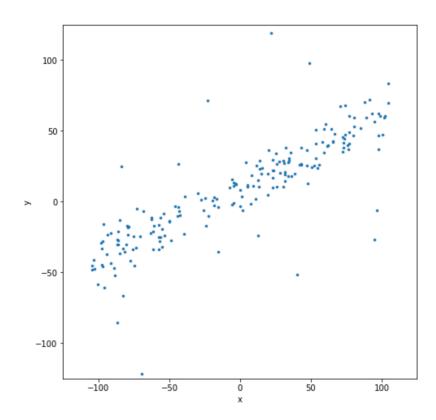
PRINCIPAL COMPONENTS ANALYSIS (PCA)

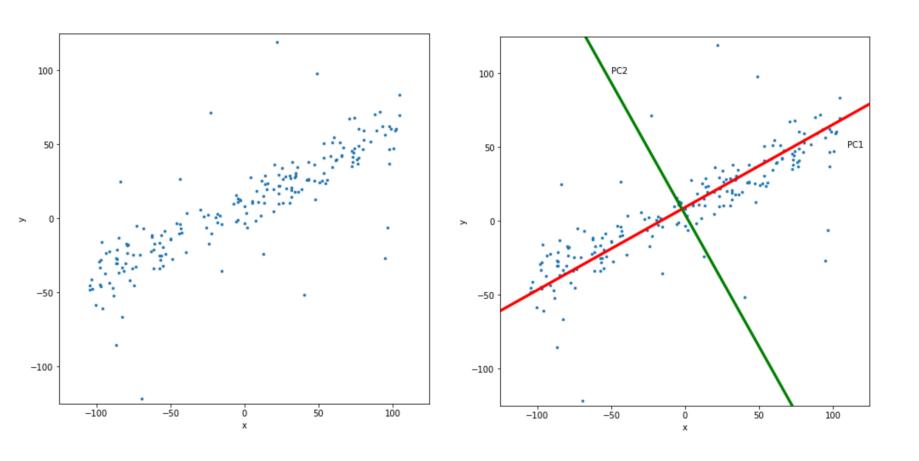
- Principal components analysis is a technique to compress data (reduce dimensionality) and is useful in classification.
- Goal is to find fewer basis vectors (called principal components) to represent the data.
- Most of the data variance (correlation between the original variables) is retained in the new dimensions.
- The principal components (new variables) are uncorrelated.

PCA - GEOMETRIC VIEW



n observations in 2D space,

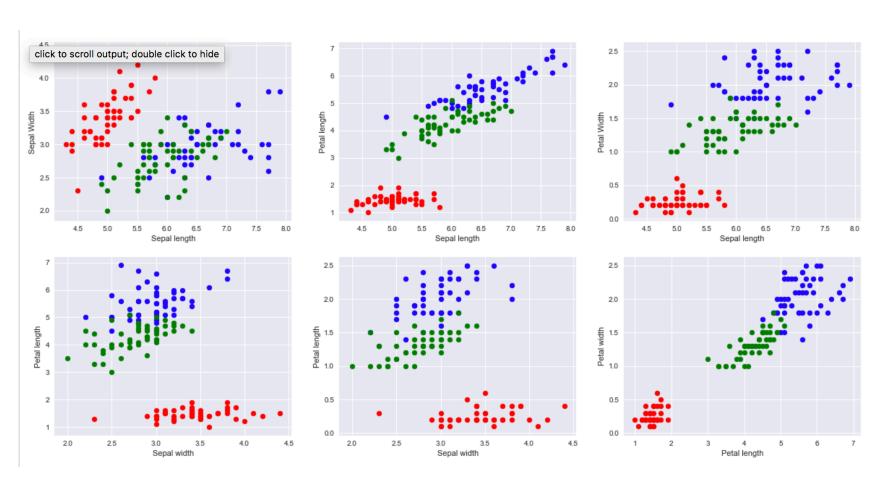
PRINCIPAL COMPONENTS ANALYSIS - GEOMETRIC VIEW



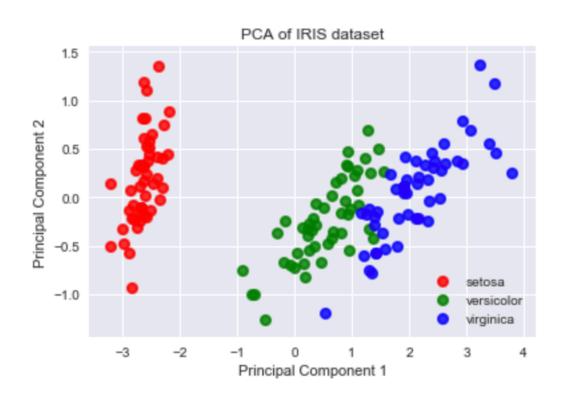
PCA - INTRODUCTION

	sepal_length	sepal_width	petal_length	petal_width	species
8	4.4	2.9	1.4	0.2	setosa
52	6.9	3.1	4.9	1.5	versicolor
35	5.0	3.2	1.2	0.2	setosa
127	6.1	3.0	4.9	1.8	virginica
96	5.7	2.9	4.2	1.3	versicolor

PCA - INTRODUCTION



PCA - INTRODUCTION

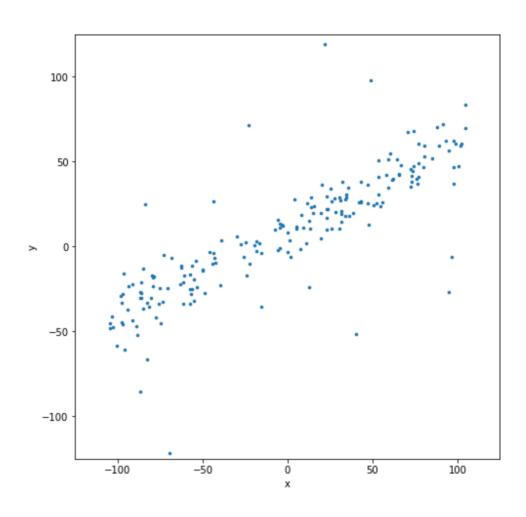


- A technique to find the directions along which the points (set of tuples) in high-dimensional data line up best.
- Treat a set of tuples as a matrix M and find the eigenvectors for M^TM (covariance matrix).
- The matrix of these eigenvectors can be thought of as a rigid rotation in a high-dimensional space.
- When this transformation is applied to the original data the axis corresponding to the principal eigenvector is the one along which the points are most "spread out".

- When this transformation is applied to the original data the axis corresponding to the principal eigenvector is the one along which the points are most "spread out".
- This axis is the one along which variance of the data is maximized.
- Points can best be viewed as lying along this axis with small deviations from this axis.
- Likewise, the axis corresponding the second eigenvector is the axis along which the variance of distances from the first axis is greatest, and so on.

- Principal Component Analysis (PCA) is a dimensionality reduction method.
- The goal is to embed data in high dimensional space, onto a small number of dimensions.
- It most frequent use is in exploratory data analysis and visualization.
- It can also be helpful in regression (linear or logistic) where we can transform input variables into a smaller number of predictors for modeling.

PCA STEPS STEP 1 MEAN SUBTRACTION



PCA STEPS STEP 2 COVARIANCE MATRIX

```
array([[-84.07963403, -29.20401342],

[-94.40799878, -24.21822549],

[-20.0794366 , -18.24247399],

[ 62.63769935, 46.8234735 ]])
```

top 5 rows of mean centered data

```
array([[3881.30854873, 1897.16347756], [1897.16347756, 1557.15527689]])
```

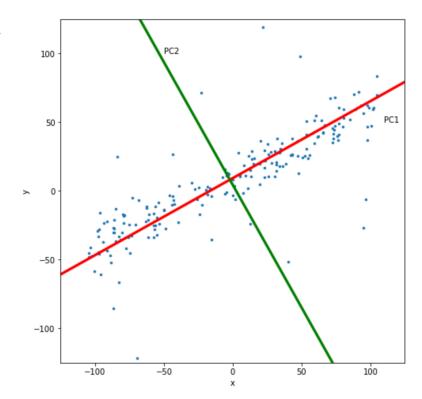
Eigen decomposition of covariance matrix, X^TX

PCA STEPS STEP 3 EIGEN VALUES & EIGEN VECTORS OF COVARIANCE MATRIX

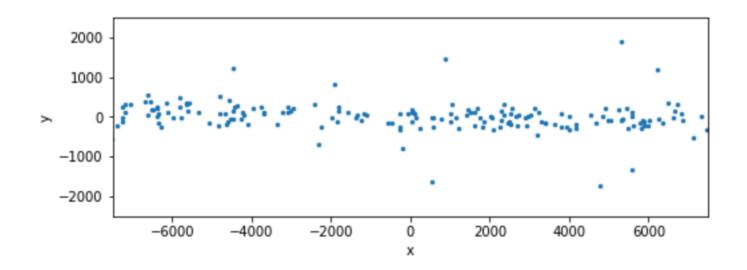
PCA STEPS - STEP 4 - PRINCIPAL COMPONENTS

Multiply each eigen vector by its corresponding eigen value (usually square root)

Plot them on top of the data



PCA STEPS STEP 5 - PROJECT DATA ALONG DOMINANT PC



In general, transformed data, $T = WX^T$

Where X is our original data and W is the Principal components matrix Each column of W is a principal component

· Mathematically,

Given: Data set $\{x_1, x_2, \dots, x_n\}$

where, x_i is the vector of p variable values for the i-th observation.

Return:

Matrix
$$[\phi_1, \phi_2, \dots, \phi_p]$$

of linear transformations that retain maximal variance.

$$\phi_1 = (\phi_{11}, \phi_{21}, ..., \phi_{p1})$$

• You can think of the first vector ϕ_1 as a linear transformation that embeds observations into 1 dimension

$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \dots + \phi_{p1}X_p$$

• You can think of the first vector ϕ_1 as a linear transformation that embeds observations into 1 dimension

$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \dots + \phi_{p1}X_p$$

where ϕ_1 is selected so that the resulting dataset $\{z_i, ..., z_n\}$ has maximum variance.

- In order for this to make sense, mathematically, data has to be centered
 - Each X_i has zero mean
 - Transformation vector ϕ_1 has to be normalized, i.e., $\sum_{j=1}^{p} \phi_{j1}^2 = 1$

- In order for this to make sense, mathematically, data has to be centered
 - Each X_i has zero mean
 - Transformation vector ϕ_1 has to be normalized, i.e., $\sum_{j=1}^{p} \phi_{j1}^2 = 1$
- We can find ϕ_1 by solving an optimization problem:

$$\max_{\phi_{11},\phi_{21},...,\phi_{p1}} \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{j1} x_{ij} \right)^{2} \text{ s.t. } \sum_{j=1}^{p} \phi_{j1}^{2} = 1$$

Maximize variance but subject to normalization constraint.

• We can find ϕ_1 by solving an optimization problem:

$$\max_{\phi_{11},\phi_{21},...,\phi_{p1}} \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{j1} x_{ij} \right)^{2} \text{ s.t. } \sum_{j=1}^{p} \phi_{j1}^{2} = 1$$

Maximize variance but subject to normalization constraint.

- The second transformation, ϕ_2 is obtained similarly with the added constraint that ϕ_2 is orthogonal to ϕ_1
- Taken together $[\phi_1,\phi_2]$ define a pair of linear transformations of the data into 2 dimensional space

$$Z_{n\times 2} = X_{n\times p}[\phi_1, \phi_2]_{p\times 2}$$

• Taken together $[\phi_1,\phi_2]$ define a pair of linear transformations of the data into 2 dimensional space

$$Z_{n\times 2} = X_{n\times p}[\phi_1, \phi_2]_{p\times 2}$$

- Each of the columns of the Z matrix are called Principal components.
- The units of the PCs are meaningless.
- In practice we may also scale X_i to have unit variance.
- In general if variables X_j are measured in different units(e.g., miles vs. liters vs. dollars), variables should be scaled to have unit variance.

HOW MANY PRINCIPAL COMPONENTS?

- How many PCs should we consider in post-hoc analysis?
- One result of PCA is a measure of the variance to each PC relative to the total variance of the dataset.
- We can calculate the percentage of variance explained for the m-th PC:

$$PVE_{m} = \frac{\sum_{i=1}^{n} z_{im}^{2}}{\sum_{j=1}^{p} \sum_{i=1}^{n} x_{ij}^{2}}$$

HOW MANY PRINCIPAL COMPONENTS?

 We can calculate the percentage of variance explained for the m-th PC:

$$PVE_{m} = \frac{\sum_{i=1}^{n} z_{im}^{2}}{\sum_{j=1}^{p} \sum_{i=1}^{n} x_{ij}^{2}}$$

