Continuing operations at a pixel level

Correlation & Convolution

- Basic operation to extract information from an image.
- These operations have two key features:
 - shift invariant
 - linear

Applicable to 1-D and multi dimensional images.

Correlation Example - 1D (Averaging)

$$G = f(I)$$

$$I[2] = 3$$

$$I[2] = 3$$
 $G[2] = \frac{2+3+6}{3} = \frac{11}{3}$ $2 \frac{11}{3} 6 5 5 1 8 9 7$

$$2 \frac{11}{3} 6 5 5 1 8 9 7$$

$$I[3] = 6$$

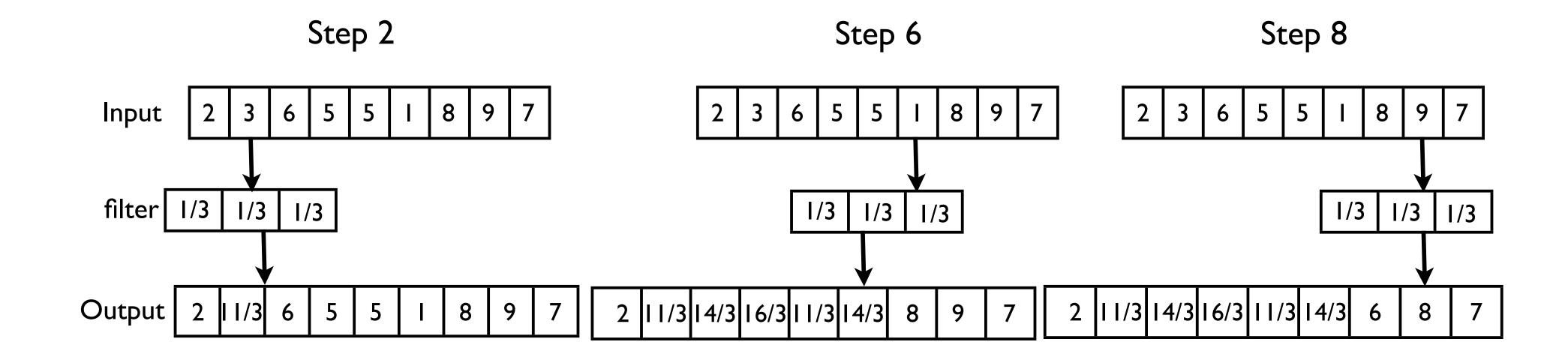
$$I[3] = 6$$
 $G[3] = \frac{3+6+5}{3} = \frac{14}{3}$ $2 \frac{11}{3} \frac{14}{3} 5 5 1 8 9 7$

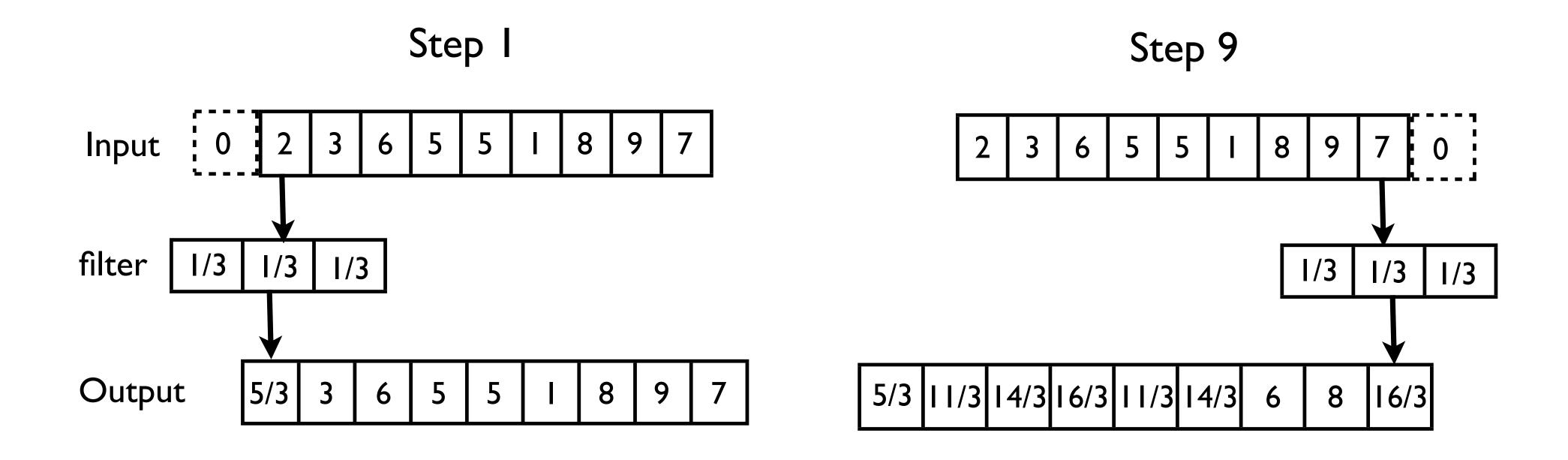
$$2 \quad \frac{11}{3} \quad \frac{14}{3} \quad 5 \quad 5 \quad 1 \quad 8 \quad 9 \quad 7$$

$$I[8] = 9$$

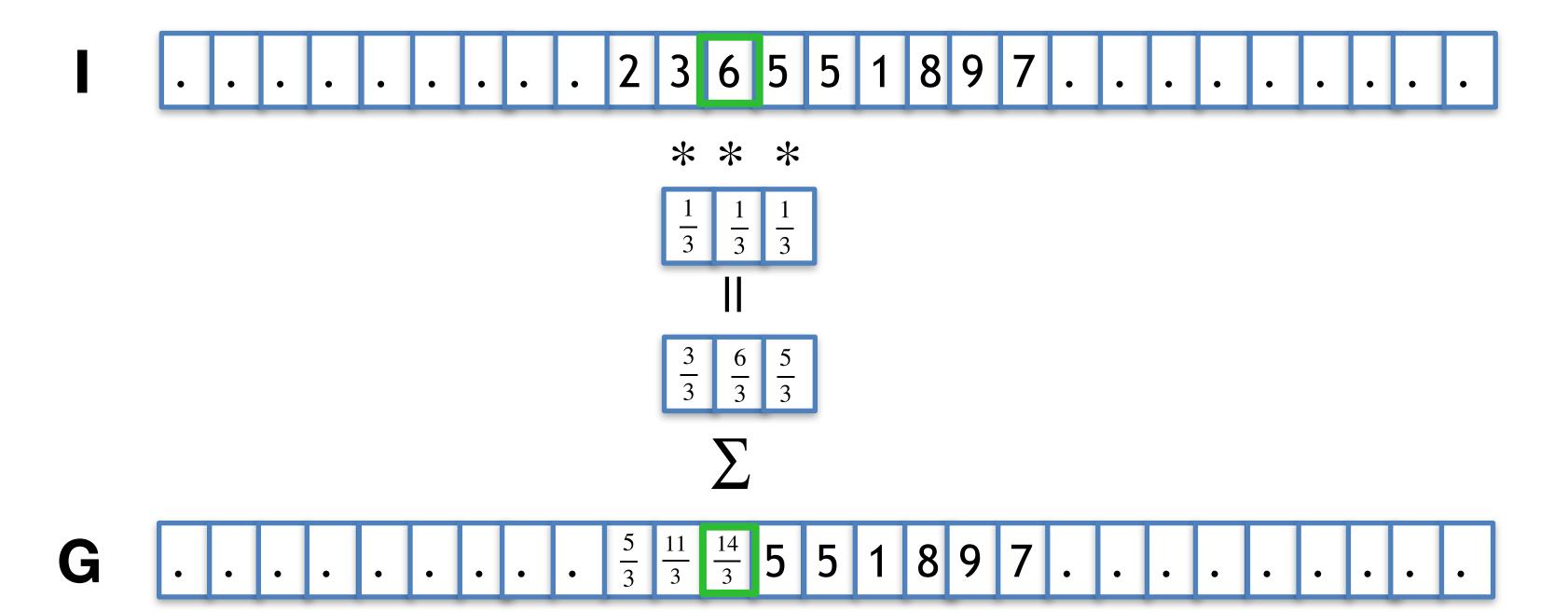
$$I[8] = 9 G[8] = \frac{8+9+7}{3} = 8$$

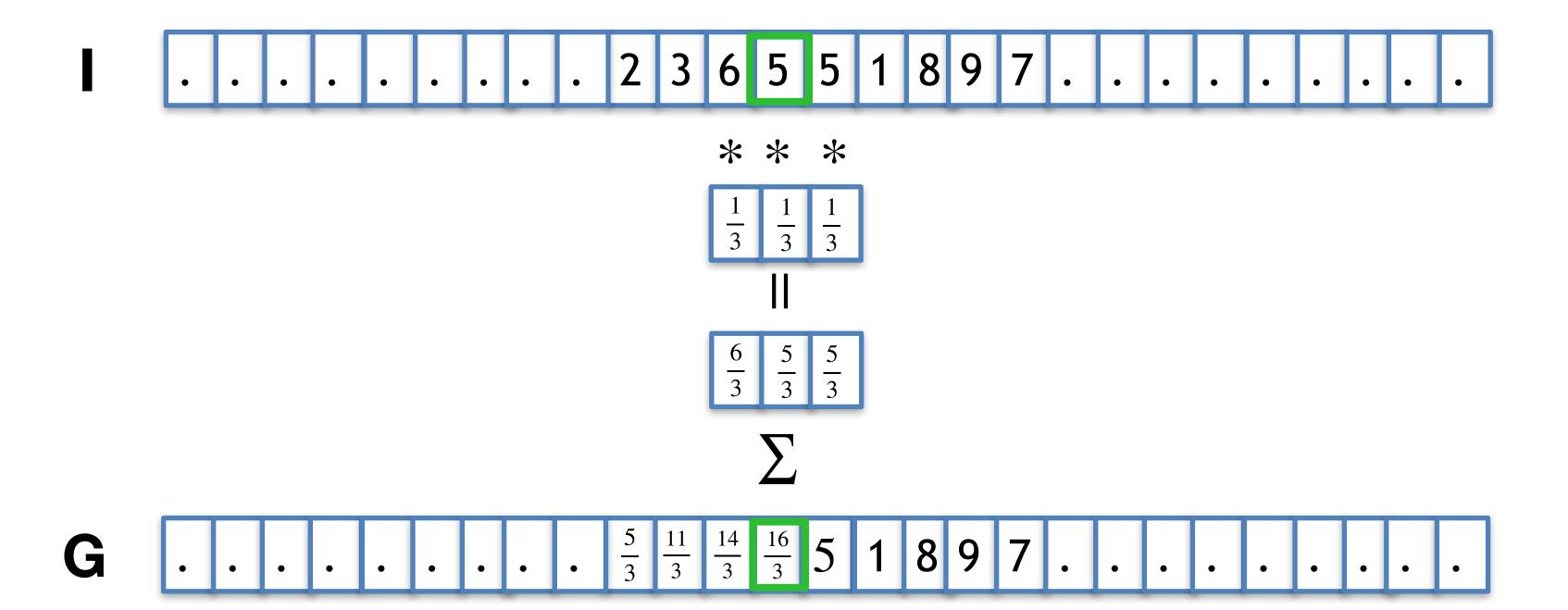
$$2 \frac{11}{3} \frac{14}{3} \frac{16}{3} \frac{11}{3} \frac{14}{3} \frac{16}{3} \frac{1}{3} \frac{1}$$

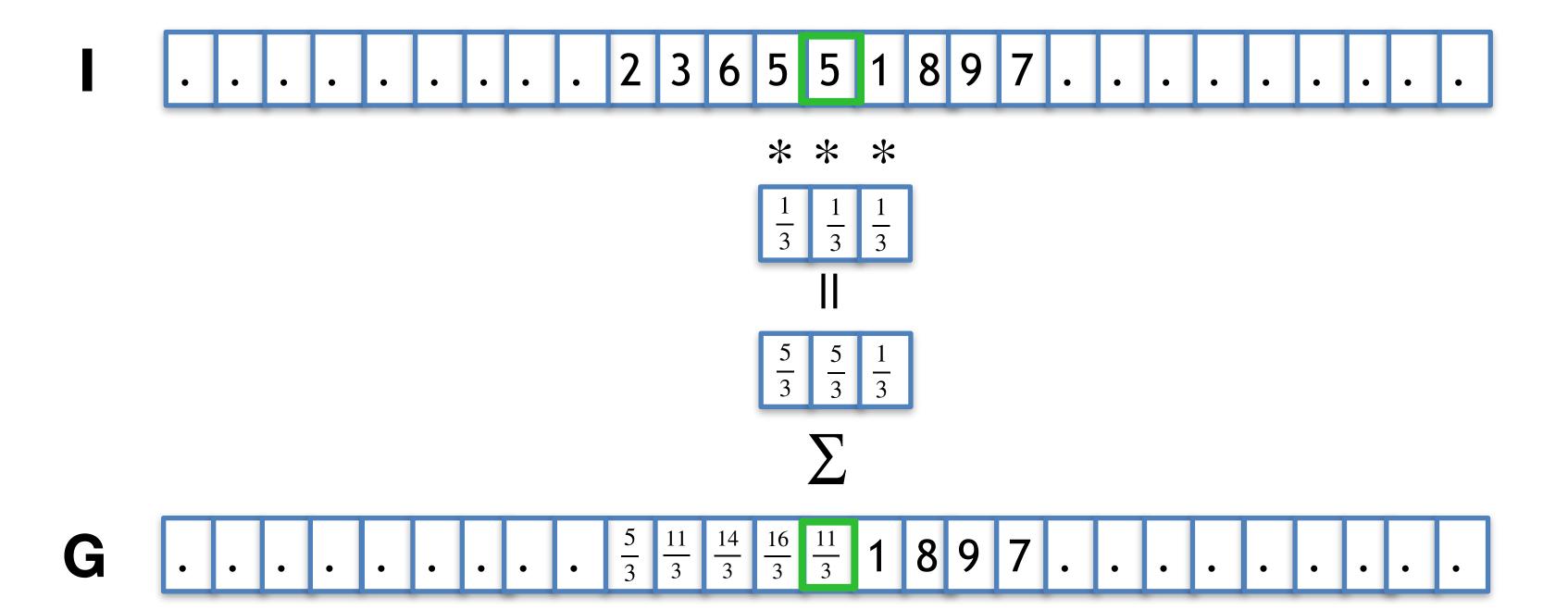


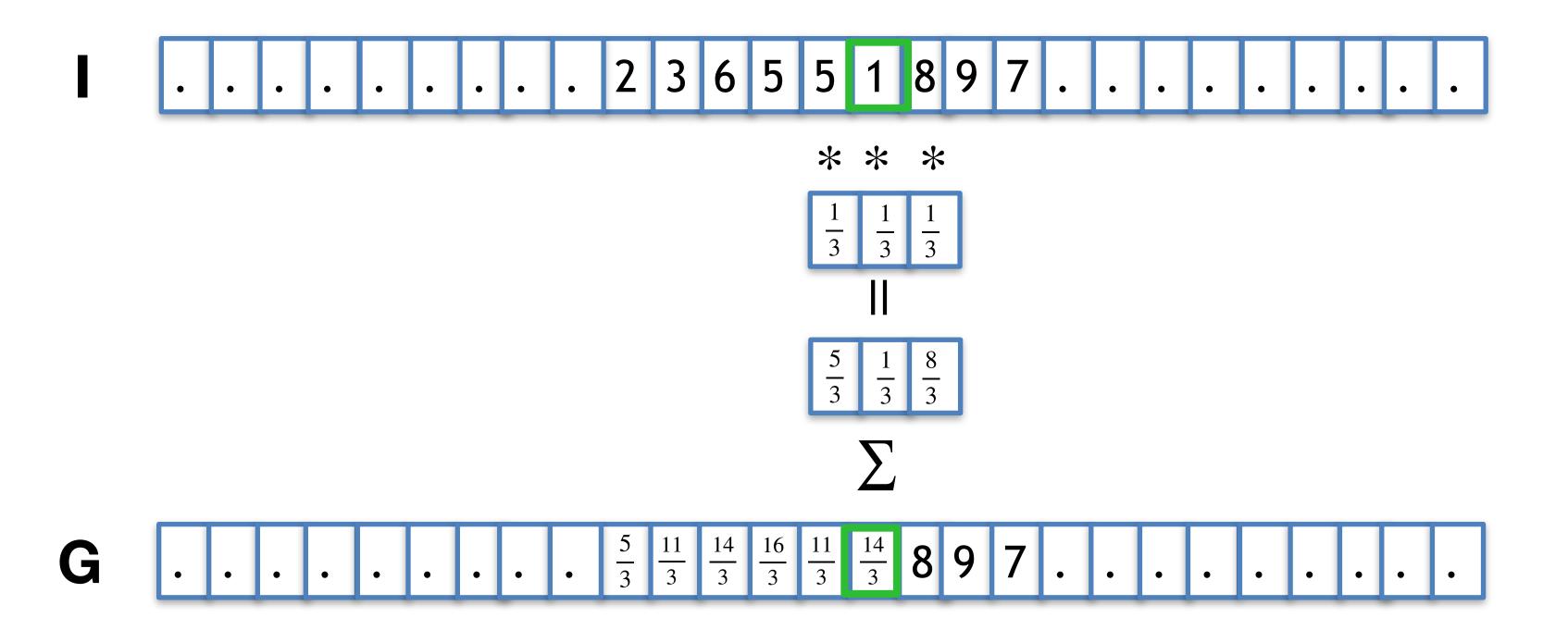


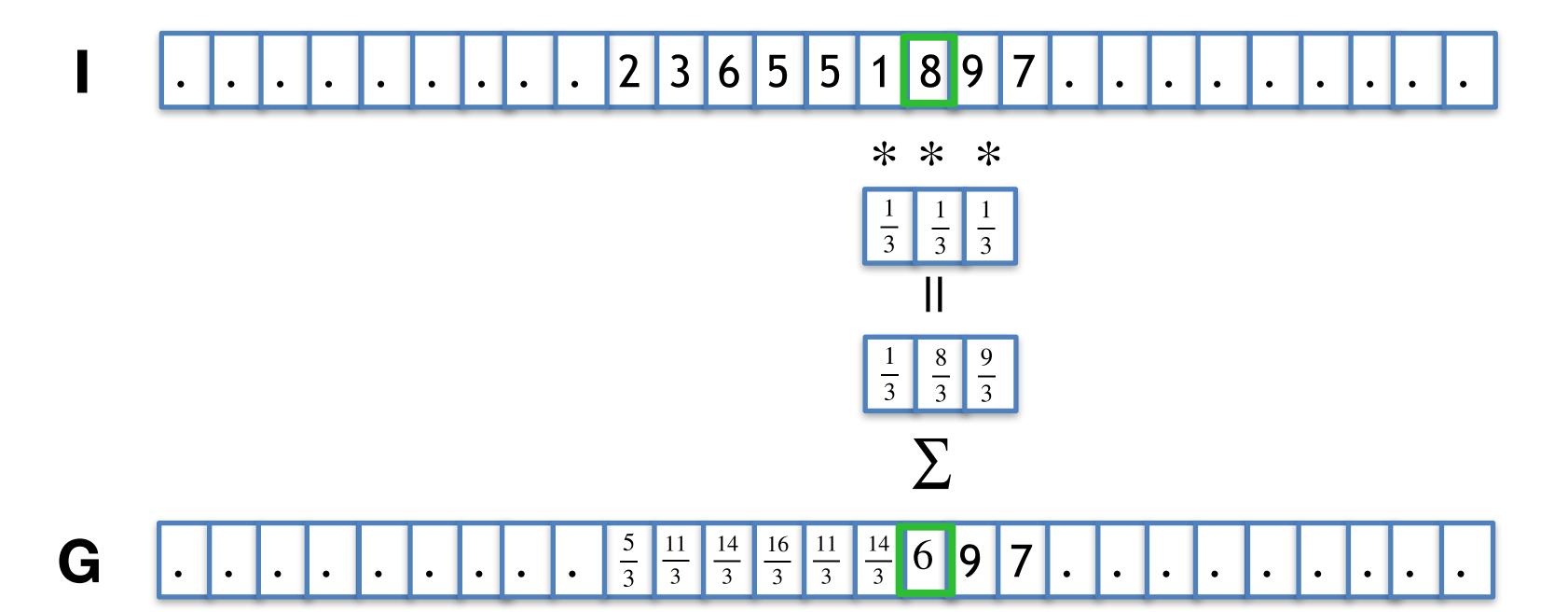


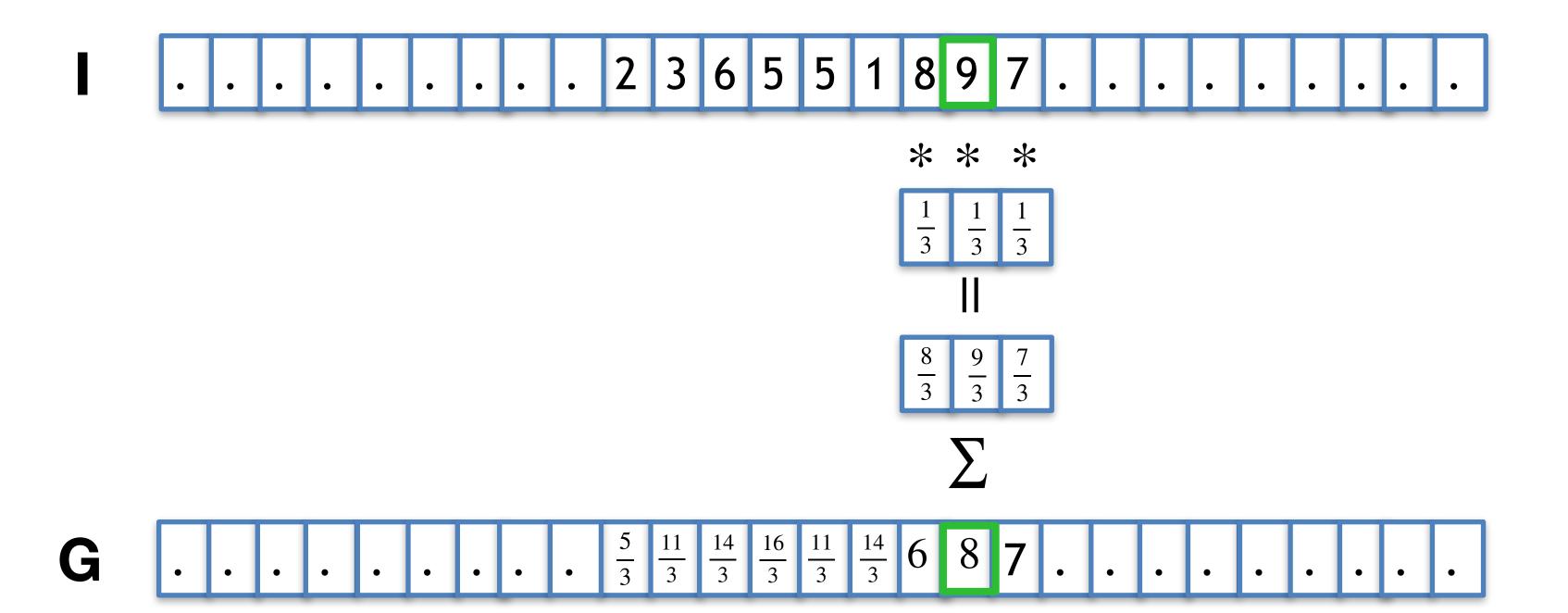


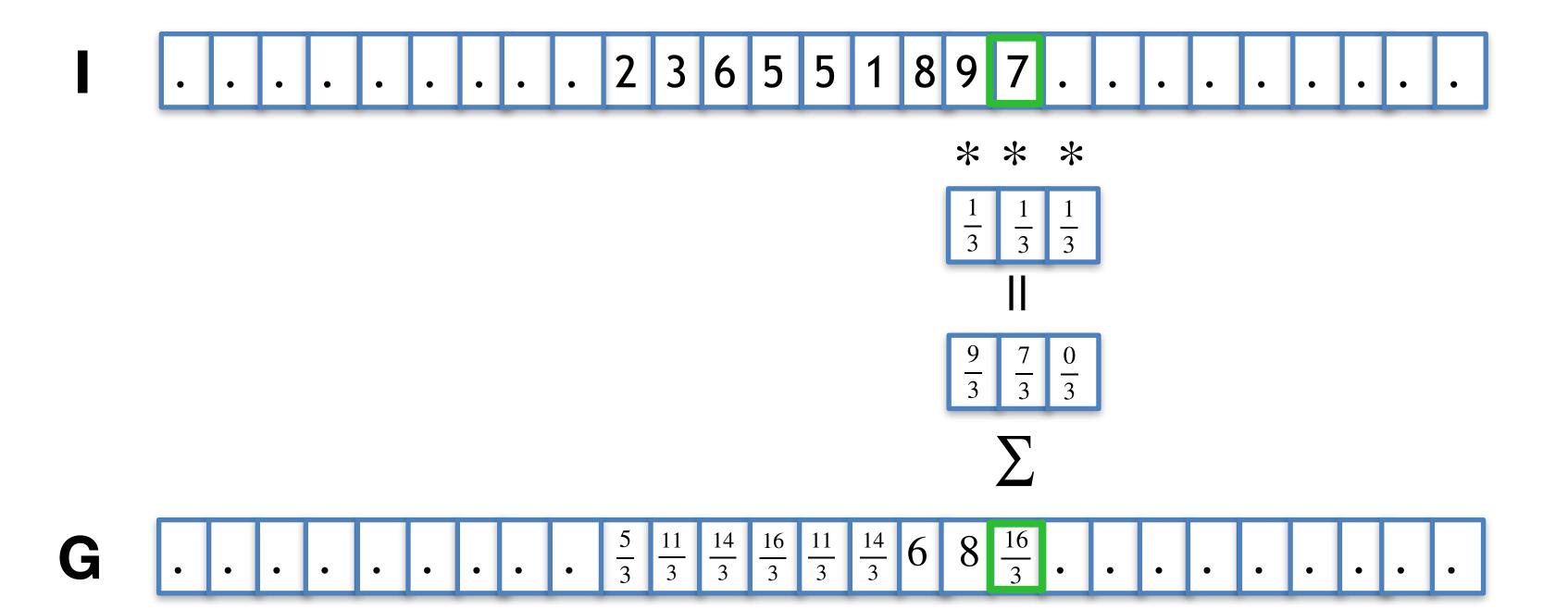




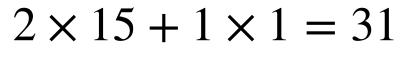


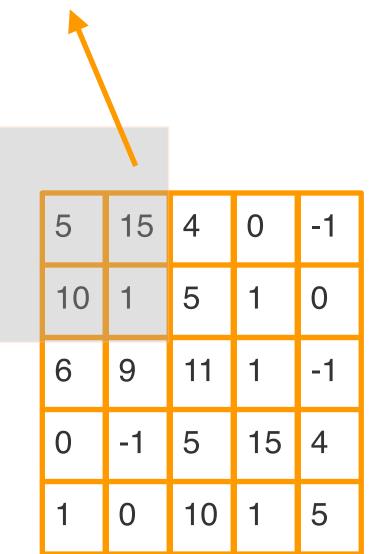




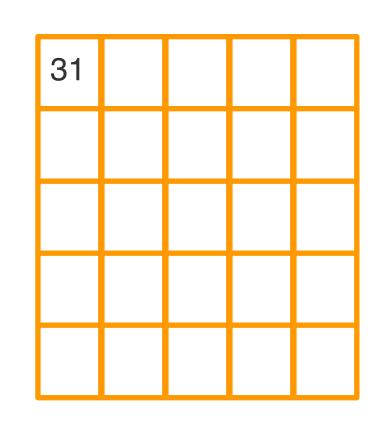


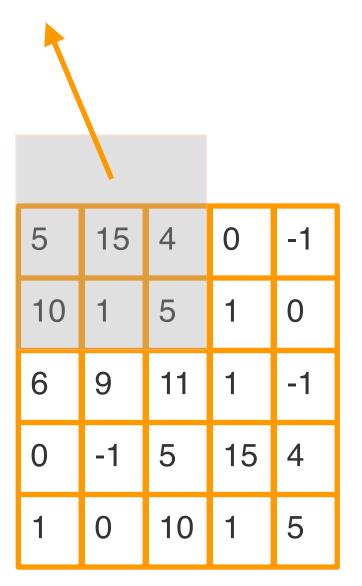
-1	0	1
-2	0	2
-1	0	1

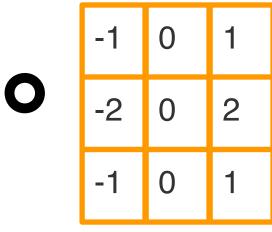


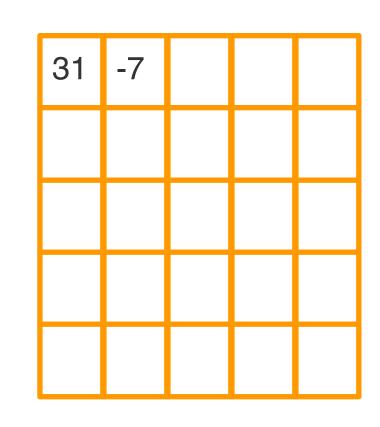


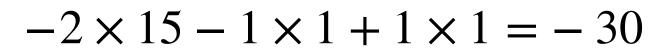
-1	0	1
-2	0	2
-1	0	1

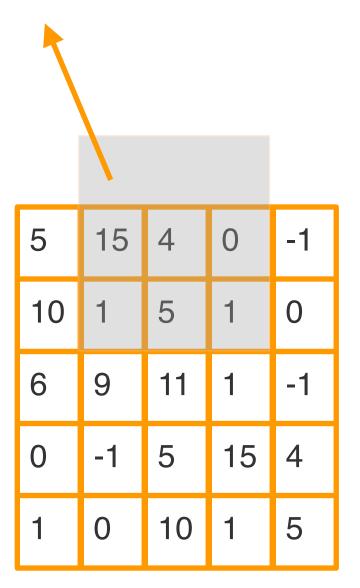


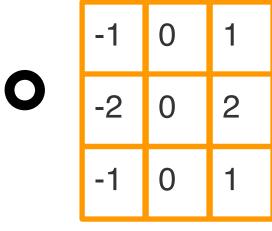


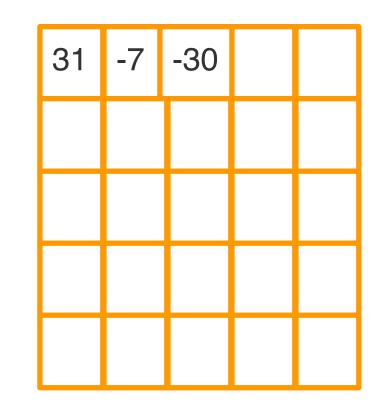


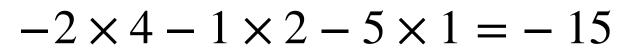


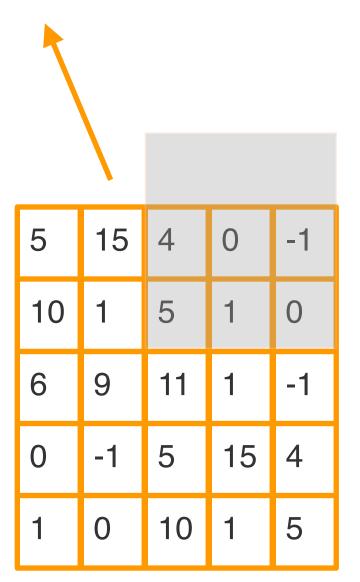


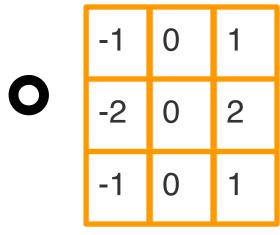


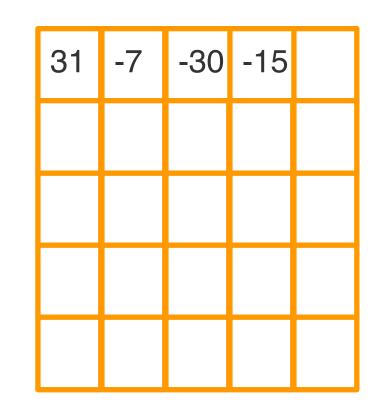


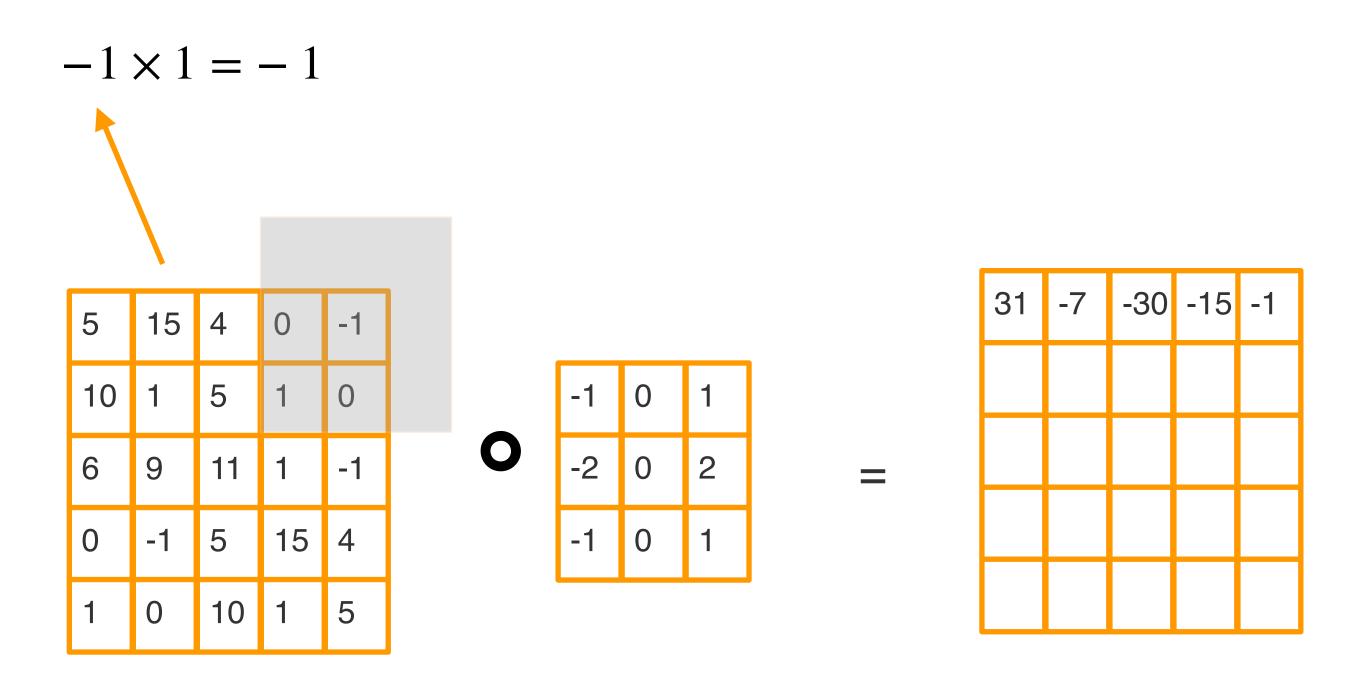


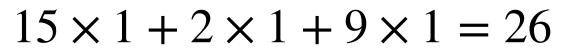












5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5

31	-7	-30	-15	-1
26				

$$5 \times (-1) + 10 \times (-2) + 6 \times (-1) + 4 \times 1 + 5 \times 2 + 11 \times 1 = -6$$

5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5

31	-7	-30	-15	-1
26	-6			

$$15 \times (-1) + 1 \times (-2) + 9 \times (-1) + 0 \times 1 + 1 \times 2 + 1 \times 1 = -23$$

5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5

31	-7	-30	-15	-1
26	-6	-23		

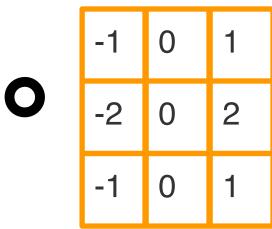
 $4 \times (-1) + 5 \times (-2) + 11 \times (-1) + (-1) \times 1 + 0 \times 2 + (-1) \times 1 = -27$

5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5

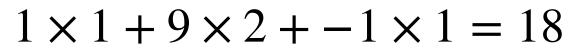
31	-7	-30	-15	-1
26	-6	-23	-27	

$$0 \times (-1) + 1 \times (-2) + 1 \times (-1) = -3$$

5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5



31	-7	-30	-15	-1
26	-6	-23	-27	-3



5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5

31	-7	-30	-15	-1
26	-6	-23	-27	-3
18				

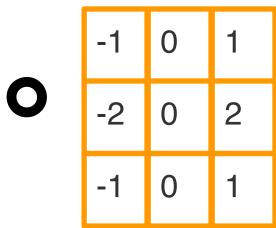
$$10 \times (-1) + 6 \times (-2) + 5 \times 1 + 11 \times 2 + 5 \times 1 = 10$$

5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5

31	-7	-30	-15	-1
26	-6	-23	-27	-3
18	10			

 $1 \times (-1) + 9 \times (-2) + (-1) \times (-1) + 1 \times 1 + 2 \times 1 + 15 \times 1 = 0$

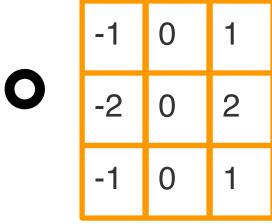
5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5



31	-7	-30	-15	-1
26	-6	-23	-27	-3
18	10	0		

$$5 \times (-1) + 11 \times (-2) + 5 \times (-1) + 0 \times 1 + (-1) \times 2 + 4 \times 1 = -30$$

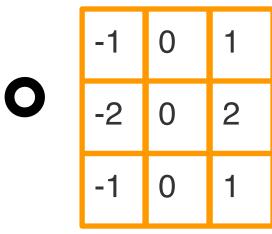
5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5



31	-7	-30	-15	-1
26	-6	-23	-27	-3
18	10	0	-30	

$$1 \times (-1) + 1 \times (-2) + 15 \times (-1) + 0 \times 1 + 0 \times 2 + 0 \times 1 = -18$$

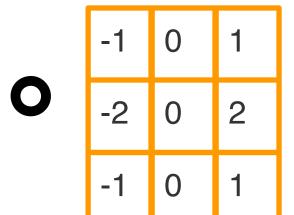
5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5



31	-7	-30	-15	-1
26	-6	-23	-27	-3
18	10	0	-30	-18

$$0 \times (-1) + 0 \times (-2) + 0 \times (-1) + 9 \times 1 + (-1) \times 2 + 0 \times 1 = 7$$

5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5



31	-7	-30	-15	-1
26	-6	-23	-27	-3
18	10	0	-30	-18
7				

$$6 \times (-1) + 0 \times (-2) + 1 \times (-1) + 11 \times 1 + 5 \times 2 + 10 \times 1 = 24$$

5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5

31	-7	-30	-15	-1
26	-6	-23	-27	-3
18	10	0	-30	-18
7	24			

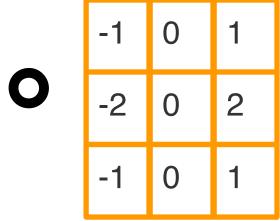
$$9 \times (-1) + -1 \times (-2) + 0 \times (-1) + 1 \times 1 + 15 \times 2 + 1 \times 1 = 25$$

5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5

31	-7	-30	-15	-1
26	-6	-23	-27	-3
18	10	0	-30	-18
7	24	25		

 $11 \times (-1) + 5 \times (-2) + 10 \times (-1) + (-1) \times 1 + 4 \times 2 + 5 \times 1 = -19$

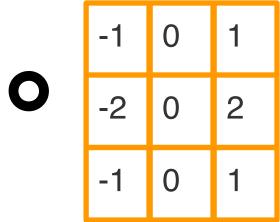
5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5



31	-7	-30	-15	-1
26	-6	-23	-27	-3
18	10	0	-30	-18
7	24	25	-19	

$$1 \times (-1) + 15 \times (-2) + 1 \times (-1) + 0 \times 1 + 0 \times 2 + 0 \times 1 = -32$$

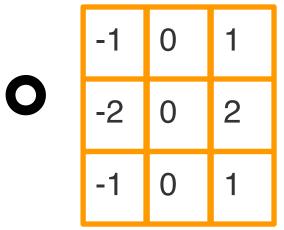
5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5



31	-7	-30	-15	-1
26	-6	-23	-27	-3
18	10	0	-30	-18
7	24	25	-19	-32

$$0 \times (-1) + 0 \times (-2) + 0 \times (-1) + (-1) \times 1 + 0 \times 2 + 0 \times 1 = -1$$

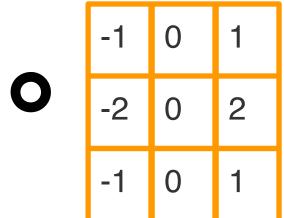
5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5



31	-7	-30	-15	-1
26	-6	-23	-27	-3
18	10	0	-30	-18
7	24	25	-19	-32
-1				

$$0 \times (-1) + 1 \times (-2) + 0 \times (-1) + 5 \times 1 + 10 \times 2 + 0 \times 1 = 23$$

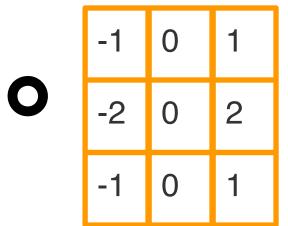
5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5



31	-7	-30	-15	-1
26	-6	-23	-27	-3
18	10	0	-30	-18
7	24	25	-19	-32
-1	23			

 $-1 \times (-1) + 0 \times (-2) + 0 \times (-1) + 15 \times 1 + 01 \times 2 + 0 \times 1 = 16$

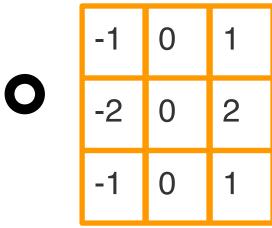
5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5



31	-7	-30	-15	-1
26	-6	-23	-27	-3
18	10	0	-30	-18
7	24	25	-19	-32
-1	23	16		

$$5 \times (-1) + 10 \times (-2) + 0 \times (-1) + 4 \times 1 + 5 \times 2 + 0 \times 1 = -11$$

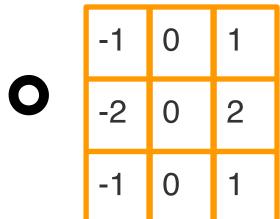
5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5



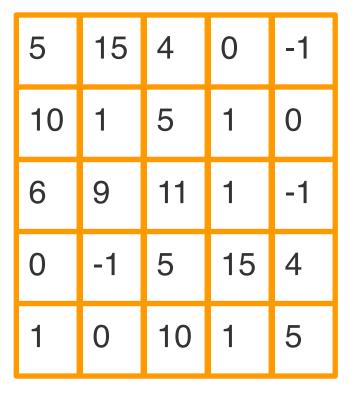
31	-7	-30	-15	-1
26	-6	-23	-27	-3
18	10	0	-30	-18
7	24	25	-19	-32
-1	23	16	-11	

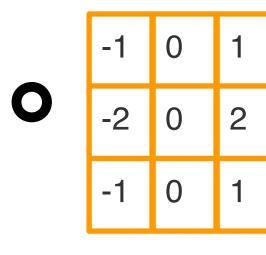
$$15 \times (-1) + 1 \times (-2) + 0 \times (-1) + 0 \times 1 + 0 \times 2 + 0 \times 1 = -17$$

5	15	4	0	-1
10	1	5	1	0
6	9	11	1	-1
0	-1	5	15	4
1	0	10	1	5



31	-7	-30	-15	-1
26	-6	-23	-27	-3
18	10	0	-30	-18
7	24	25	-19	-32
-1	23	16	-11	-17





Image, I

Filter/template

Output image

Cross-Correlation - Mathematically

1*D*

$$G = F \circ I[i] = \sum_{u=-k}^{k} F[u]I[i+u] \qquad F \text{ has } 2k+1 \text{ elements}$$

Box filter
$$F[u] = \frac{1}{3}$$
 for $u = -1,0,1$ and 0 otherwise

Cross-correlation filtering - 2D

Let's write this down as an equation. Assume the averaging window is (2k+1)x(2k+1):

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

We can generalize this idea by allowing different weights for different neighboring pixels:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[u,v]I[i+u,j+v]$$

This is called a **cross-correlation** operation and written:

$$G = F \circ I$$

F is called the "filter," "kernel," or "mask."

Convolution

Filter is flipped before correlating

$$F \text{ has } 2k+1 \text{ elements}$$

$$G = F*I[i] = \sum_{u=-k}^{k} F[u]I[i-u]$$
 Box filter $F[u] = \frac{1}{3}$ for $u=-1,0,1$ and 0 otherwise

for example, convolution of 1D image with the filter [3,5,2] is exactly the same as correlation with the filter [2,5,3]

Convolution filtering - 2D

For 2D the filter is flipped both horizontally and vertically

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[u,v]I[i-u,j-v]$$

Convolution with the filter

1	2	1
0	0	0
-1	-2	-1

is the same as Correlation with the filter

Correlation and convolution are identical for symmetrical filters

Correlation and Convolution

• Convolution is associative: if F and G are filters, then F * (G * I) = (F * G) * I

• Generally, convolution is used for image processing operations like smoothing

- Correlation is used for template matching to an image.
- We combine two convolution filters but not two correlation filters.

Correlation and Convolution Terminology

We used

G for correlation/convolution output

I for image - In literature sometimes F is used for image

F for filter - In literature sometimes H is used for filter

$$G = H \circ F$$

$$G = H * F$$
Filter Image

Mean kernel

What's the kernel for a 3x3 mean filter?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[i,j]

H[u, v]

Box filter

Mean filtering (average over a neighborhood)

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

G[x, y]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
 10	10	10	0	0	0	0	0	

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

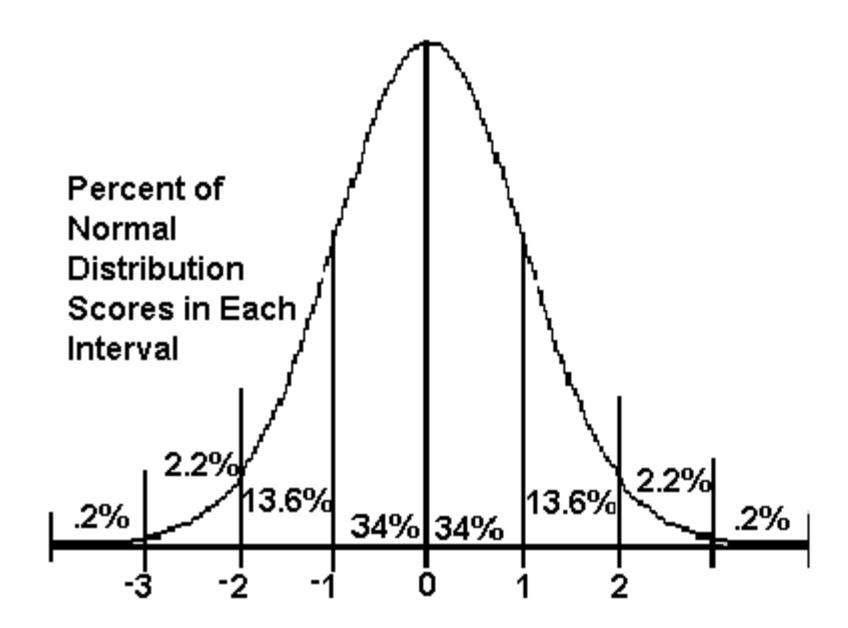
H[u, v]

Gaussian Averaging

Rotationally symmetric.

Weights nearby pixels more than distant ones.

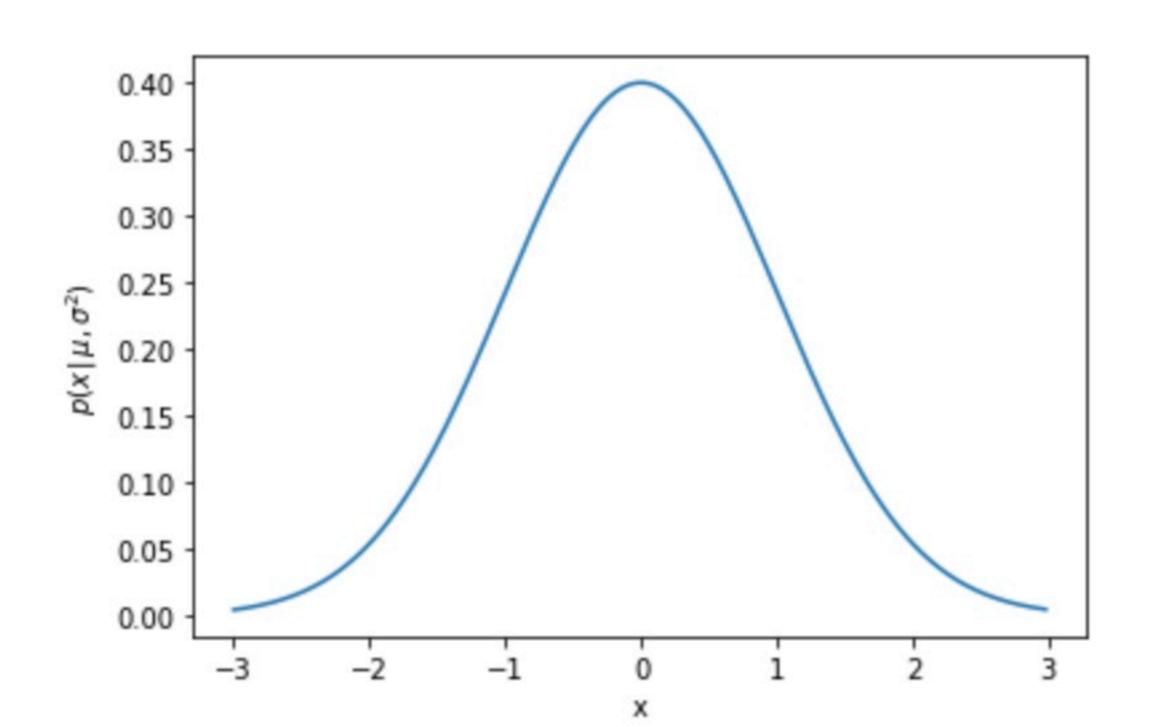
◆ This makes sense as probabilistic inference.



A Gaussian gives a good model of a fuzzy blob

Notation: Normal distribution 1D case

N(μ , σ) is a 1D normal (Gaussian) distribution with mean μ and standard deviation σ (so the variance is σ^2 . $\mathcal{N}(x | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-2)^2}{2\sigma^2}}$



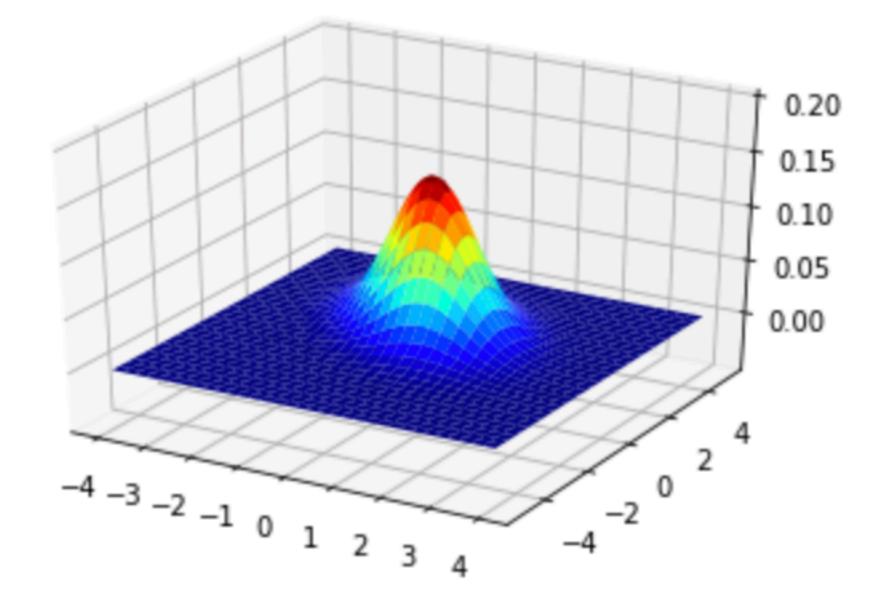
Multivariate Normal distribution

$$\mathcal{N}(z \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{\mid \Sigma \mid^{\frac{1}{2}}} exp \left\{ -\frac{1}{2} (z - \mu)^T \Sigma^{-1} (z - \mu) \right\}$$

z is a D dimensional vector

 μ is a D-dimensinal mean vector

 Σ is a D x D covariance matrix

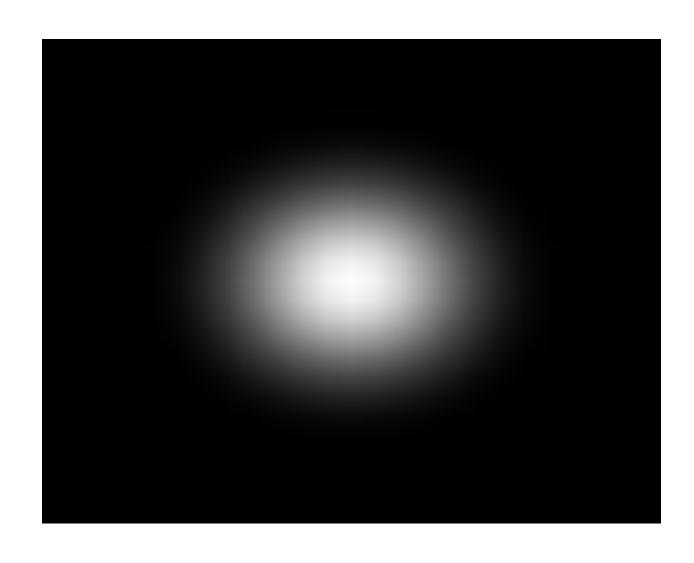


$$z = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mu = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}$$

Example: when D =2
$$z = \begin{bmatrix} x \\ y \end{bmatrix}$$
 $\mu = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}$ $\Sigma = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{bmatrix}$

An Isotropic Gaussian



The picture shows a smoothing kernel proportional to

$$\exp\left(-\left(\frac{x^2+y^2}{2\sigma^2}\right)\right)$$

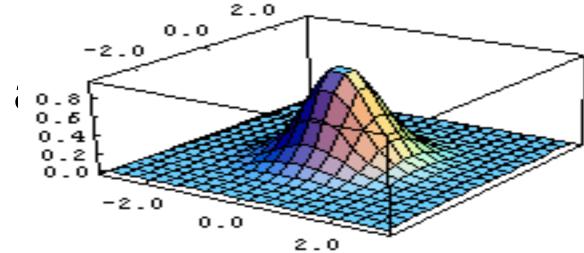
(which is a reasonable model of a circularly symmetric fuzzy blob)

Gaussian Filtering

A Gaussian kernel gives less weight to pixels further from the center of the window

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

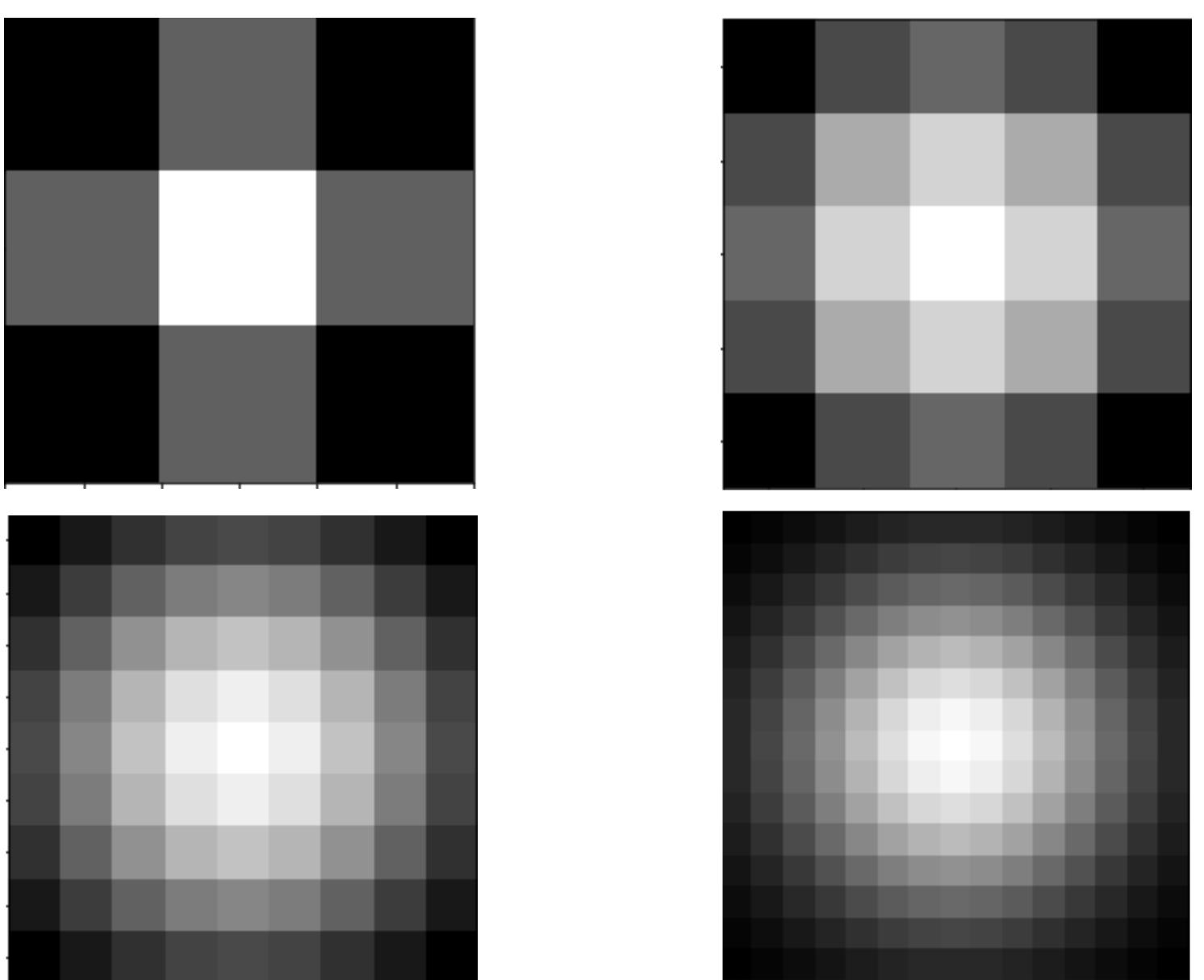
This kernel is an approximation of
$$h(u,v) = \frac{1}{2\pi\sigma^2}e^{-\frac{u^2+v^2}{\sigma^2}}$$



The size of the mask

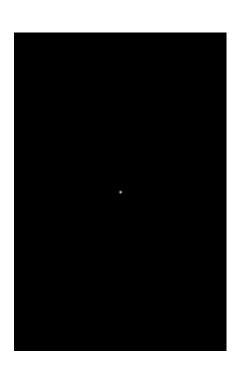
- Bigger mask:
 - more neighbors contribute.
 - smaller noise variance of the output.
 - bigger noise spread.
 - more blurring.
 - more expensive to compute.

Gaussians masks of different sizes



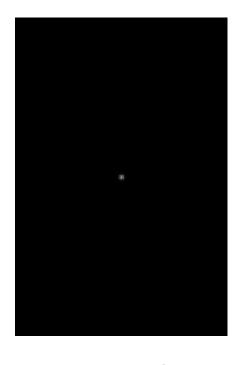
Convolution with masks of different sizes

*



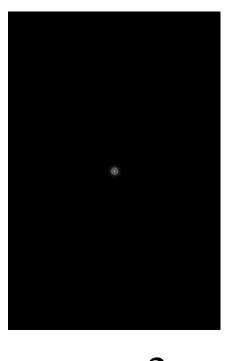
 $\sigma = 1$

*



 $\sigma = 2$

*



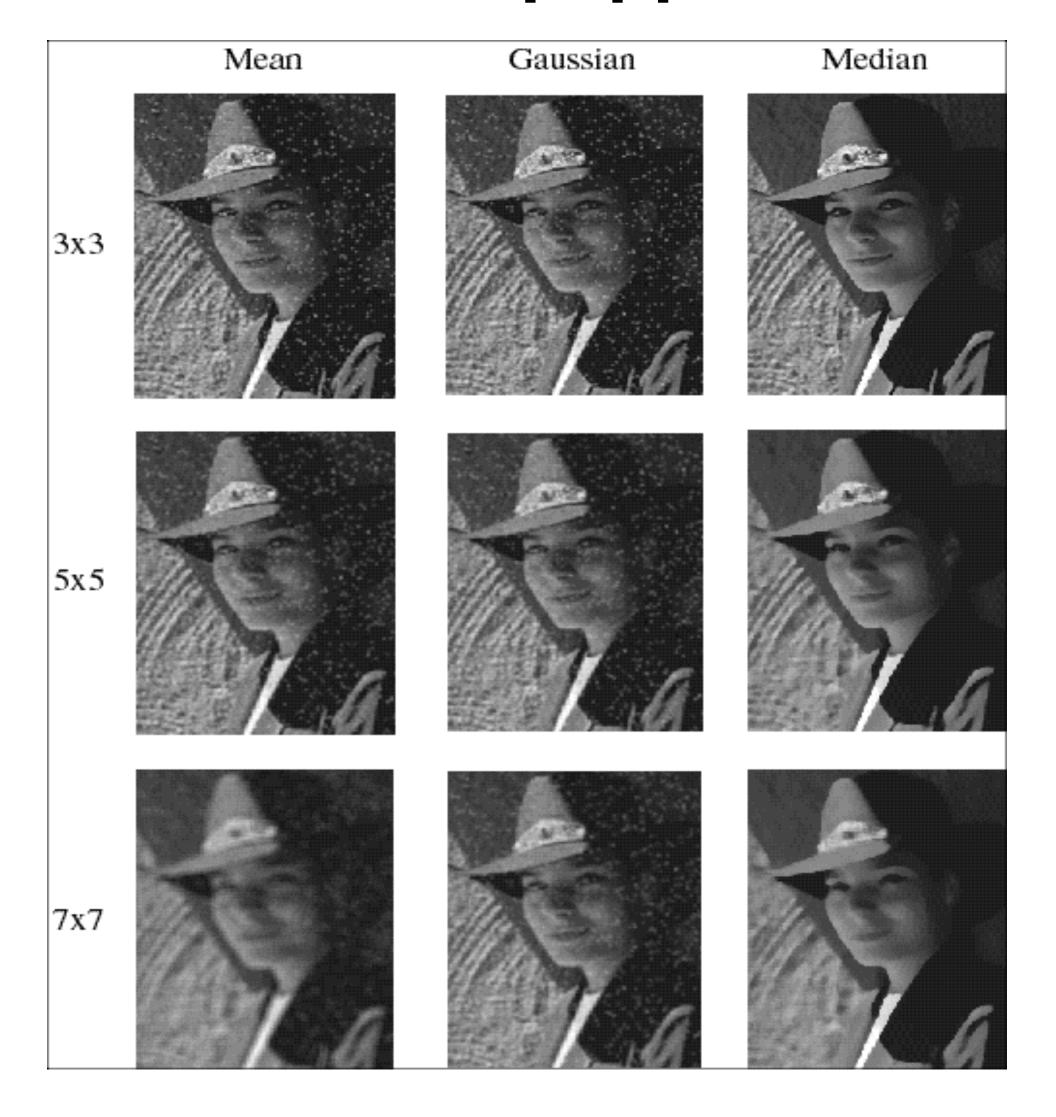
 $\sigma = 3$

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian
- Separable kernel
 - Factors into product of two 1D Gaussians

Median filter

Comparison: salt and pepper noise



Comparison: Gaussian noise

