
Class Notes CMSC 426 
3D Geometry and Projection 

 
Introduction 
 
One of the main goals of computer vision is to use 2D images to determine the structure 
and position of 3D objects in the world.  To do this, we have to discuss geometry.  We 
need to understand how to represent geometric objects in 3D and 2D, and we need to 
understand the relationship between the 3D world and a 2D image.  This note will cover 
three topics: representation of planes, points and lines; perspective projection that relates 
the 3D and 2D positions of these objects; and intersections of these objects as well as the 
process of  finding lines or planes that include multiple lines and points. 
 
Representation 
 
In this class we will only consider the simplest geometric objects: points, lines and 
planes.  This is the minimal set of objects that we can consider.  Points are the simplest of 
objects, we must understand lines because light goes in a straight line, and we must 
understand planes, because the image is a plane.  However, these simple objects are also 
very important, and much work in vision is done using just this set of objects. 
 
Points: First, we recall that we represent a point by its coordinates in space.  If a point is 
in 2D, we describe it with x and y coordinates.  We will describe points using lower case 
letters, so we might write p=(x,y).  If a point is in 3D we also need a z coordinate, and we 
use upper case letters, so we could write P=(x,y,z). 
 
2D Lines: Lines already become a little more complicated.  There are several ways of 
representing lines, each with their own advantages and disadvantages. 
 
In 2D we can represent a line with a single, linear equation, of the form: ax+by+c=0.  
Here, a, b, and c, are constant values that determine the line.  A point (x0,y0) is on this 
line if the equation is satisfied when we plug in these values for x and y.  We can get a 
useful intuition by rewriting this equation in the following way: 
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That is, we can create a unit vector, (a’,b’).  Then a point is on a line if the inner product 
between the point and (a’,b’) is equal to some constant value, c’.  Keeping in mind that 
the inner product between (x,y) and (a’,b’) measures the distance from (x,y) to the origin 
in the direction of (a’,b’), we have the following picture. 
 



   
When we describe a line like this, the vector (a’,b’) will be orthogonal to the line.   
 
Also, it is also useful to recall another way of describing a line, with the equation:  
y = mx+b.  When we describe a line like this, m, is the slope of the line. 
 
There is still one more way of describing a line.  We can write down a recipe for reaching 
any point on a line by starting at one point of the line, say (x0,y0), and then moving some 
distance t, in the direction of the line.  If we describe the direction of the line with a unit 
vector, (u,v), then we can write this down by saying that (x,y) is on the line if it satisfies 
the equation: 
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Notice that this is really two equations, one for the x component of the point, and one for 
the y component, and these equations are linear in three unknowns, x, y, and t.  
Previously, we had described a line with one linear equation and two unknowns.  We can 
convert between these two representations by using one equation to eliminate t; then we 
would obtain one linear equation in two unknowns. 
 
Planes: Before, we consider how to represent a line in 3D, it’s useful to look at a 2D 
plane in 3D.  First, let’s take an example.  Suppose we want to represent the floor of a 
room.  We can say that these are all the points that have a height of zero.  If we use the y 
coordinate to represent height, we can represent this plane with the equation: y=0.  Note 
that this is a linear equation in x, y, and z, although x and z don’t happen to actually show 
up in the equation, since they points on the floor can have any values for x and z.  More 
generally, we can describe any plane with a linear equation of the form: 
Ax+By+Cz+D=0.   
 

c’ 

(a’,b’) 



Just as in 2D, we can rewrite this equation by coming up with a unit vector, (A’,B’,C’)  = 
(A,B,C)/||(A,B,C).  Then, we can say a point (x,y,z) is on the plane if it satisfies the 
equation: 
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where D’=-D/||(A,B,C)||.  That is, a plane is a set of points whose inner products with a 
specific unit vector are all the same.  Or, to put it another way, we get to a point on a 
plane by going a distance D’  in the direction (A’,B’,C’)  and then going in any direction 
orthogonal to (A’,B’,C’)  by whatever amount we want.  In this case, (A’,B’,C’) is the 
vector normal to the plane. 
 
Let’s look at our equation for the floor, y=0, from this point of view.  This equation can 
also be written: (x,y,z).(0,1,0)=0.  This says that the floor is the set of all points whose 
distance from the origin, in the y direction, is 0. 
 
3D Lines: Now we will consider how to represent a line in 3D.  One way to do this is to 
note when two planes intersect, they intersect in a line.  If we want to represent a point as 
lying in the intersection of two planes, we can say that the point must satisfy two 
equations, one for each plane, so that it lies inside both planes.  So we can represent a line 
by saying that a point (x,y,z) is on a line if it satisfies the equations: 
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A second useful way to represent a line, as we did in 2D is to give a starting point, and a 
direction, indicating that we can reach any point on the line by going some distance in 
that direction.  That is, we can write: 
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Here, (x0,y0,z0) is any point on the line, and (u,v,w) is a unit vector indicating the direction 
in which the line extends.  As t varies, the right hand side of the above equation can 
represent the location of any point on the line.  We can note that the above equation is 
really three equations, one for each component of the point, with four unknowns, x, y, z, 
and t.  In contrast the first representation expresses a line as two equations with three 
unknowns.    
 
Intersections and Linear Combinations 
 
We now launch into a discussion of how to find the intersection of lines and planes, and 
how to find the linear space (ie., a line or a plane) that include several geometric objects 
(eg., finding a line that includes two points, or a plane that includes three).  These 
operations are central to many vision tasks, as we will see.  For example, light travels in a 
straight line.  An image is a plane.  If we want to know where a ray of light will appear in 
an image, we must know how to find the intersection of a line and a plane. 
 



Intersecting lines and planes: We have shown how to represent lines and planes with a 
set of linear equations.  When we intersect these objects, this means that for any point in 
the intersection, all these equations should hold.  Therefore, we can represent this 
intersection simply by listing the equations that hold.  For example, suppose we want to 
intersect a line and a plane.  Suppose further that the line is represented by the two 
equations: A1x + B1y + C1z + D1 = 0 and A2x + B2y + C2z+ D2 = 0, while the plane is 
represented by the equation A3x + B3y + C3z + D3 = 0.  The intersection of a line and a 
plane is the set of points that satisfies all three of these equations.  One might have the 
intuition that a line and a plane intersect in a single point, so only one point will satisfy 
these equations.  Or one might note that three linear equations with three unknowns will 
generally have only one solution, which is the single point that satisfies these equations.  
It is also possible for these equations to have no solution, which is what happens if the 
line is parallel to the plane, and never intersects it.   
 
Sometimes it is more convenient to do this intersection using the equation for a line: 
(x,y,z) = (x0,y0,z0) + t(u,v,w).  Suppose the equation for the plane that this line intersects 
is: Ax+By+Cz+D=0.  Then we have four equations with four unknowns to solve.  But 
these have a nice form, since three of the equations give x, y, and z on one side, and linear 
expressions containing no unknowns but t on the other.  So we can substitute, and get the 
equation: A(x0+ tu) + B(y0+tv) + C(z0+tw) + D = 0.  We can then solve this equation for 
t, and substitute this value into our equation for the line to get (x,y,z).   
 
As an example, suppose we have a line with the equation (x,y,z) = (1,2,3) + t(1,1,1), and 
we want to intersect it with a plane that has the equation 2x+y+2z+1=0.  Substituting, we 
get: 2(t+1)+(t+2)+2(t+3)+1=0.  This gives us: 5t+11=0, t = -11/5.  So we then have: 
(x,y,z) = (1,2,3)-(11/5,11/5,11/5).   
 
Finding a line containing two points: We may also wish to find the equation for a line 
that contains two points.  In 2D, we can do this by taking the equation for a line, 
y=mx+b, and treating m and b as the unknowns.  Then, for each point we can substitute 
in the values of x and y, giving us two equations with the unknowns m and b.  Notice that 
this will work except for the case of a vertical line, which cannot be described by y = mx 
+ b, since it has infinite slope.  We would need to check for this case separately.  
 
Here’s another way to get an equation for a line from two points.  Suppose we have 
points p and q.  We can write p + t(p-q).  Here p serves as an example of a point on the 
line, while (p-q) is a vector in the direction of the line.  Note that this works in two or 
three dimensions. 
 
Finding a plane containing three points, or a point and a line 
 
Just as two points determine a line, three points determine a plane.  There are several 
ways of finding the plane from three points.  For example, similar to what we did with a 
line, we can write the equation for a plane as Z = AX + BY + D.  Then we can use the 
(X,Y,Z) values for each point to get a linear equation in A, B, and D.  Notice that this 
approach also doesn’t work for some cases, which we must handle separately.   



 
If we want to form a plane from a point and a line, one way to do this is to just pick two 
points from the line, and then use the above method. 
 
For those of you who are familiar with the cross-product, we note that given points P1, 
P2,  and P3, we can find a vector normal to the plane of the three points by taking (P2 - 
P1)x(P3 - P1), where x is the cross-product operation.  If we express a plane with the 
equation: AX+BY+CZ+D = 0 this gives us (A,B,C).  We can use the coordinates of any 
of the points to solve for D.  We won’t go into this method in detail, though, because we 
will try to stick with problems in which finding the plane formed by points, or a point and 
a line, is easy.    
 
Perspective Projection 
 
We now have the tools that we need to begin to solve some vision problems.  We begin 
by describing the process of perspective projection.  The key question that we must 
address is, given a description of the camera position and the location of a 3D point, 
where will this point appear in the image? 
 
With perspective projection, we describe a camera using a focal point and an image 
plane.  We imagine that light travels in a straight line from a scene point towards the 
focal point.  The location where the light ray intersects the image plane is the image 
location for this scene point.  In a pinhole camera, the focal point is the pinhole, and the 
light passes through it on the way to the image plane, which might be a CCD, or film.  In 
our idealization of a pinhole camera, the image plane is in front of the pinhole, so the 
light strikes the image plane before it reaches the focal point.  Either way, we can find the 
image point by forming a line that includes the scene point and the focal point, and 
finding where it intersects the image plane.  We have explained above how to perform 
these operations, so this tells us how to find the image point corresponding to a scene 
point, for a general camera position. 
 
As an example, suppose we have a camera with a focal point at (1,2,3), with an image 
plane at the x=2 plane, and we wish to find the image produced by a point in the scene at 
the location (9,6,5).  We can describe the line that joins the scene point to the focal point 
with the equation: (x,y,z) = (1,2,3) + t(8,4,2).  x = 1 + 8t, and we want find the point 
where this intersects the x=2 plane, (ie., the point on the line that has x = 2).  This occurs 
when 2 = 1 + 8t, or when t = 1/8.  The point on the line for t = 1/8 is (2, 2.5, 3.25). 
 



 
 
We will often consider a special camera set-up (see figure above) which makes it much 
easier to compute the image points produced by scene points.  This is the case in which 
the focal point is at the origin, and the image plane is the z=f plane, where f is called the 
focal length of the camera.  Suppose now we have a scene point P, with coordinates 
(X,Y,Z), which produces an image point, p.  p has coordinates (x,y), or alternately we can 
think of it as a 3D point on the image plane, with coordinates (x,y,f).  We notice that there 
are two similar triangles, one with corners at (0,0,0), (X,Y,Z), and (0,0,Z) (this is the 
triangle above that is light gray, including also the dark gray triangle and its tip) and the 
other with corners at (0,0,0), (x,y,f), and (0,0,f) (the dark gray triangle).  The first of these 
triangles is the same as the second one, but scaled by a factor of Z/f.  This means that the 
side of the big triangle with corners (0,0,0) and (X,Y,Z) is the same as the side with 
corners at (0,0,0) and (x,y,f), but scaled by a factor of Z/f.  This tells us that (Z/f)(x,y) = 
(X,Y), which implies that  
 
(x,y)=f(X/Z, Y/Z).   
 
This is the basic equation of perspective projection. 
 
The vanishing point and the horizon 
 
We can now derive some basic facts about perspective projection.  The first is that any 
point in front of the camera will project to a point in the image plane.  The scene point 
and the focal point form a line that will intersect the image plane in a single point.  When 
we say that a point is in front of the camera, we mean that the image plane separates the 
scene point and the focal point, so that the line segment connecting the two points will 
intersect the image plane. 
 

z=1, the image plane p=(x,y,1) 

(0,0,0) Focal Point 

(0,0,Z) P=(X,Y,Z) 



If a line is in front of the camera, it will generally project to a line in the image plane.  
Every scene point on the line will project into the image along a line connecting it to the 
focal point.  Collectively, all these projection lines connect the scene line to the focal 
point, forming the plane that includes the scene line and the focal point.  In general, this 
plane will intersect the image plane in a line. 
 
There are two special cases to consider, though.  We’ll discuss one below.  Here we 
mention the case in which the scene line includes the focal point.  In this case, all lines of 
projection that connect a point on the scene line to the focal point are, in fact, identical to 
the scene line.  Since all of these lines are identical, they all intersect the image plane in 
the same point.  One can visualize this by imagining one is looking at a line end-on, so 
that it looks like just a point. 
 
In general, a scene plane can fill the entire image.  Given any image point, this point 
forms a line with the focal point, which will intersect the scene plane.  This point on the 
scene plane, then, will project to the image at this image point. 
 
An interesting special case occurs, though, if the scene plane is orthogonal to the image 
plane.  An important example of this is when the scene plane is the ground, and the 
camera is pointing in a horizontal direction.  We can describe such a situation with a 
camera that has a focal point at (0,0,0) and an image plane of z=1, and with a ground 
plane described by y=-k.  In this case, the y direction is down, and k is the height of the 
camera’s focal point above the ground.  Now, let’s consider the projection of a point on 
the ground.  A point on the ground has coordinates (x, -k, z), for any arbitrary values of x 
and z.  If the point is in front of the camera, then z > 1.  Using the equation of projection, 
the image of this point will be (x/z, -k/z).  This could be any location in the image, except 
that –k/z is always negative, so this point must always be in the bottom half of the image.  
The image of the plane occupies all points with negative y coordinates, up to the line y=0, 
which is called the horizon.  Of course this accords with our experience that when we 
look at the world in a direction parallel to the ground, the ground is always in the bottom 
half of the image.  It does not fill up the whole image.  More generally, similar reasoning 
shows that when we look at any plane that is orthogonal to the image plane, the points in 
that plane will fill up half of the image. 
 
There is one last special case, that occurs when a scene plane is situated so that the focal 
point lies in the same plane.  In this case, every line that connects a point in the scene 
plane to the focal point lies in this plane.  This plane intersects the image plane in a line, 
so the images of all points in the scene plane lie along a line in the image.  This is what 
happens, for example, when you look at a sheet of paper end-on, so that it looks like a 
thin line.   
 
Now let’s consider what happens when a scene line is orthogonal to the image plane, for 
example, a line that lies on the ground plane.  We can describe a line on the ground plane 
with the equation:   
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The zero ensures that this point will always stay in the y=y0 plane.  If we’re talking about 
the ground plane, we would generally expect y0  to be less than 0.  We can use the 
equations of projection to find the image of a point on this line, which will be: 
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Now, let’s look at what happens to with images of points on the line when they get very 
far from the camera.  If we assume that w is positive, then as t gets very big, the z 
coordinate of a point on the line, z0 + tw, will also get very big, meaning the point is very 
far from the camera.  First let’s look at the y coordinate of the image of such a point.  It is 
equal to (y0/(z0+tw)).  As t gets very big, the denominator gets very big, while the 
numerator stays the same.  In the limit, as t goes to infinity, then, the y coordinate goes to 
zero.  For the x coordinate, as t goes to infinity, x0 and z0 become insignificant relative to 
tu and tw.  Therefore, the x coordinate of the image point goes to u/w.  This means that 
the line appears to approach the point on the horizon (u/w,0) as it vanishes in the distance.  
This point is called the vanishing point of the line. 
 
It is interesting to note that if two lines are parallel, they have the same vanishing point.  
A line will be parallel to the one we describe above if it has the equation: 
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We describe this line with a starting point that is different from the first line (though still 
in the y=y0 plane.  But, if the lines are parallel, they must go in the same direction, 
(u,0,w).  By the same reasoning as above, the vanishing point of this line will also be 
(u/w,0).   
 
Another line, which is not parallel to these, will go in a different direction, and its 
vanishing point will have a different x coordinate.  But notice that all lines in the plane 
have vanishing points on the horizon, that is, with y=0.  Again, this is in line with our 
everyday experience.  When we look at a long line, like a railroad track, that seems to 
vanish into the distance, the line seems to rise up to the horizon as it vanishes.  
 
Locating an image point in a scene 
 
We are particularly interested in using our understanding of perspective to perform the 
inverse operation, to locate a point in the scene using our knowledge of its location in one 
or more images. 
 
From one image: When we see a point, p, in only one image, we cannot determine its 
exact location.  There is a whole line in the world that could have produced the image 
point.  This is the line that includes the image point and the focal point.  Call this line L.  
If we take any scene point, P, on L, since L includes both P and the focal point, this is the 



line of light traveling from the P to the focal point.  Since L intersects the image plane at 
p, this will be the image of P.  Therefore, L, describes exactly the set of points that might 
have produced p. 
 
From one image when the point is on a known plane: If we have some prior 
knowledge of the scene, it is possible that we can determine the 3D location of a point 
from a single image.  In particular, if we now that we’re looking at points on a known 
plane, such as the ground plane, then a single image specifies a line that a particular point 
lies on, and this line will intersect this plane at a point. 
 
As an example, let’s suppose that we have a camera with a focal point at (0,0,0),  and an 
image plane at z=1.  We are looking at a point that we know is on the ground plane, 
 y=-10.  The point that we are looking at appears in the image at (3, -5).  We can write an 
equation that gives us a line that this point must lie in, as: (0,0,0)+t(3,-5,1).  To intersect 
this with the y=-10 plane, we must find 0-5t = -10.  So, t = 2 and we find that the point is 
at (0,0,0)+2(3,-5,1) = (6, -10, 2).   
 
Epipolar Geometry 
 
We will now consider what happens when we have two images of a scene.  We’ll 
consider two situations.  First, we’ll discuss some general facts that are true for any two 
camera positions from which the two images might be taken.  Second, we’ll consider the 
special case of two cameras side by side, in an arrangement similar to the two eyes of a 
person. 
 
The Epipolar Plane and Line: We will consider the geometry of a scene point as it 
appears in two images.  First, let’s give some definitions.  We’ll suppose we have one 
scene point, P, and two images, I1 and I2.  Let’s call the two focal points of these images 
f1 and f2.  These three points, P, f1 and f2 form a plane, which we’ll call Q.   
 
First, let’s suppose that we see a point in image one, called p1.  We know that p1 will lie 
on a line that connects P and f1.  This means that p1 must be in the plane Q.  This is 
because if two points are in a plane (P and f1) then the line that joins them must also be in 
this plane.  For exactly the same reason, if we see P in a second image, at the point p2, 
then p2 must also be in the plane Q.  The plane, Q, is called the epipolar plane, and it 
depends only on the camera geometry and the position of a single scene point, P.   
However, it is important to notice that we can figure out what the epipolar plane is even if 
we do not know the location of P, provided that we know the camera geometry and we 
have seen an image of P in one image.  Three points determine a plane, so we can find P 
using f1, f2, and p1.   
 
Now we get some interesting information if we notice that the plane Q will intersect each 
of the image planes in a line; after all, two planes generally intersect in a line.  We’ll call 
the line where Q intersects the first image plane L1, and the line where it intersects the 
second image plane L2.  L1 and L2 are called the epipolar lines.  A final important fact is 
that p1 must lie on the line L1, and p2 must lie on L2.  To see this, notice that L1 is just 



the intersection of Q and the first image plane.  Since p1 is on Q and it’s on the first 
image plane, p1 is on the intersection of these, L1.  Similarly, p2 must lie on L2.   
 
This already gives us some very useful information about the relationship between image 
points of the same scene point.  First, suppose we know the camera geometry that created 
two images.  This situation is called stereo.  Now, suppose we see a point, P, in the first 
image, giving us p1, but we do not know the location of P.  We can use f1, f2, and p1 to 
determine Q.  We can then use Q and the location of the second image plane to determine 
the line L2.  Now we know that the image of P in the second image, p2, must lie on this 
line, L2.  So seeing a point in one image is enough to narrow down its location in the 
second image to a single line. 
 
We can go a bit further.  If we observe an image point anywhere on the line L1, we get 
exactly the same epipolar plane, Q.  This means that any point in the first image, that lies 
on L1, must match a point on the second image that lies on L2.  And the reverse is true by 
similar reasoning.  So L1 and L2 give us two sets of points that can only be matched to 
each other.  When we know the camera geometry, the problem of matching points in 2D 
images can be reduced to the problem of matching points along 1D lines. 
 
The Epipole: The epipolar plane depends on the scene point, P, and different scene 
points give rise to different epipolar planes and lines.  However, the epipolar lines all 
have something in common; in general, they all intersect the same image point.  This 
point is called the epipole.  To see this, consider the line that goes through f1and f2.  Call 
this line F.  Since f1 and f2 are points on any epipolar plane, no matter which scene point 
produces this epipolar plane, this means that F is on always on the epipolar plane.  We 
will call the point where F intersects the second image plane, e2.  This is the epipole in 
image 2.  For any scene point, e2 is on the epipolar plane for that scene point, and on the 
image plane, so it is always on the epipolar line.  This means that all epipolar lines 
intersect at e2.   
 
There is one important special case where the above statements are not true.  It is always 
possible that F does not intersect the second image plane, because they are parallel.  This 
means both F and any epipolar line will lie in the same epipolar plane, but they will not 
intersect.  This can only happen if F is parallel to any epipolar line.  If all the epipolar 
lines are parallel to F, then they must all be parallel to each other.  So, either the epipolar 
lines all intersect at the epipole, or they are all parallel to each other. 
 



 
Standard Stereo: So far we have discussed the general case of two images taken with 
any camera positions.  However, it will often be convenient to consider the case of two 
cameras in a particularly simple position, analogous to the position of our two eyes.  We 
suppose that the two cameras are side by side, with focal points at z=0, and y = 0, 
separated only in the x direction.  For example, the focal points might be at the locations 
(0,0,0) and (T,0,0).  In addition to that, we assume that the cameras are pointing in the z 
direction with the same focal length, so we can assume that they both have the same 
image plane, z = 1.  As explained above, all the epipolar lines will be parallel to the line 
that joins the focal points, which is the x axis.  This means that all the epipolar lines are 
horizontal lines in the two images.  If a scene point appears at the location (x1,y1,1) in the 
first image, it will appear along the line y = y1 in the second image.   
 
Now, let’s suppose we see the scene point, P, in both images.  Suppose that it appears in 
the first image at the location p1 = (x1, y1, 1).  Then the epipolar constraint tells us that it 
will appear in the second image at some location p2=(x2, y1, 1), ie., with the same y 
coordinate, but a different x coordinate.  Then we can notice that we have two similar 
triangles, one involving f1, f2, P, and the other with p1, p2, P.  The base of the first 
triangle has a width of T, while the second triangle has a width of x2-x1.  We will define 
the disparity to be the difference in x coordinates caused by depth, that is, it is d = (T-x2) 
– (0-x1) = T + (x1-x2).  Now, the depth of the point, P, that is, its z coordinate, is given 
by the equation: 
 
(z-1)/z = (x2-x1)/T   
 
Tz – T = z(x2-x1)  
 
z(T + x1 – x2) = T 
 

F 

L2 L1 

e2 e1 

p2 

Focal point f1 

p1 

Image Plane I2 

Image Plane I1 

P 

Epipolar Plane Q 

Focal point p2 



z = T/d 
 
That is, when we see a point in two images, its depth is inversely proportional to its 
disparity, and proportional to the distance between the two camera centers.  So, if a point 
has disparity of zero, its depth is infinite.  That is, points that are infinitely far away will 
appear in the same position in both images. 
 

 
Rectification 
 
What if our cameras are not in this nice configuration?  It turns out that we can rectify the 
images to produce the images that we would have gotten if our cameras were arranged 
like this.  First, we note that we can just define our coordinate system so that the focal 
point of the first camera is the origin, and so that the line connecting the focal points is 
the x axis, and the second focal point is located at some position (T,0,0).  The only thing 
we have to worry about is the possibility that the image planes are not the z=1.   
 
However, if we have an image taken with a particular focal point, f, and image plane, we 
can generate a new image that shows the world as seen by a camera with the same focal 
point, but a different image plane.  Suppose our camera has an image plane I, and we 
want to generate an image with an image plane J.  For any point, p, in J, we can find the 
line L that goes through p and f.  We intersect L with the original image plane, I, 
obtaining the point q.  The point in the world, P, that created the intensity at q lies on the 
line L, which connects q to the focal point.  If we had taken a picture using f and J as our 
focal point and image plane, the line connecting P and f would still be L, and it would 
intersect J at the point p.  So the same world point that generated the intensity at q would 
also create the intensity at p.  So we can create the image at J by transferring the intensity 
from q to p.  
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