
CMSC 426 Section 0201 Project 1: Filtering and Edge Detection 1

Due: 3rd March, 2021 at 2:00 PM

1 Introduction

This project is designed to test your understanding of filtering and edge detection. You will
be developing your own Canny edge detection algorithm from scratch. This project has far
more coding than Homework 1 so please start early.

ELMS has a template “Project1 template.py” made up of functions that I would like you to
complete and test. You will also turn in a pdf report describing your work and illustrating
the output of your algorithm.

2 Restricted functions

Do not import any modules not included in the template. Do not use np.convolve, skim-
age.feature.canny, cv2.canny, or any other similar functions that directly solve parts of the
assignment. You are permitted to use np.fft2 and related functions if you so choose – they
are not required to complete the first two parts of the assignment. If in doubt about whether
a function is OK to use, please message Piazza with a public post.

3 Part 1: Filtering

3.1 Gaussian Kernel

10 points
Write a function that forms a 3sigma×3sigma Gaussian kernel with standard deviation
sigma.

gausskernel(sigma)

You can assume sigma is a positive integer.
Hint: np.meshgrid is useful here.

3.2 Convolution

20 points
Write a function that convolves an image with a given filter.

myImageFilter(I, h)

As input, the function takes a grayscale image (I) and a convolution filter stored as a 2D
numpy array h. The output of the function should be an image of the same size as I which
results from convolving I with h. You can assume that the filter h is odd sized along both
dimensions. You will need to handle boundary cases on the edges of the image. For example,

CMSC 426 Section 0201 Project 1: Filtering and Edge Detection 2

when you place a convolution mask on the top left corner of the image, most of the filter
mask will lie outside the image. One solution is to output a zero value at all these locations.

Test your function by filtering the included “Iribe.jpg” image using Gaussian kernels with
standard deviations 3, 5, and 10. Please include the results in your report.

3.3 Filters

10 points
Apply the filters h1, h2, and h3 from the template file to the “Iribe.jpg” image and add these
results to your report. Describe and explain what effect each of them has on the image.

4 Part 2: Edge Detection

You will now implement and test the canny edge detection algorithm. You will write a
function that applies the canny edge detection algorithm to an image.

myCanny(I, sigma, t low, t high)

As input, the function takes a grayscale image (I), a smoothing parameter (sigma), a lower
threshold (t low), and an upper threshold (t high). The function should return a binary
image made up of the edges of I.

Each of the following steps take place within the myCanny function.

4.1 Noise reduction with Gaussian filtering

5 points
Using the functions you developed in the previous section, apply a Gaussian filter to the
image with standard deviation sigma.

4.2 Finding image gradients

15 points

� Compute the derivatives (Dx(x, y) and Dy(x, y)) using following filters respectively1 0 −1
2 0 −2
1 0 −1

 ,

−1 −2 −1
0 0 0
1 2 1


� Compute the gradient magnitude

D =
√
D2

x(x, y) +D2
y(x, y)

CMSC 426 Section 0201 Project 1: Filtering and Edge Detection 3

and the angle of the gradient

θ = arctan

(
Dy(x, y)

Dx(x, y)

)
Compute θ′ by rounding the angle θ to one of four directions 0◦ , 45◦ , 90◦ , or 135◦ .
For edges, 180◦ = 0◦, 225◦ = 45◦ , etc. This means θ in the ranges [−22.5◦, ... 22.5◦]
and [157.5◦, ... 202.5◦] would “round” to θ′ = 0◦ . For a pictorial representation, each
edge takes on one of four colors:

Here, the colors would repeat on the lower half of the circle (green around 225◦ , blue
around 270◦ , and red around 315◦)

4.3 Edge thinning / Non-maximum suppression

15 points
Three pixels in a 3 × 3 around pixel (x, y) are examined:

� If θ′(x, y) = 0◦ , then the pixels (x+ 1, y), (x, y), and (x− 1, y) are examined.

� If θ′(x, y) = 90◦ , then the pixels (x, y + 1), (x, y), and (x, y − 1) are examined.

� If θ′(x, y) = 45◦ , then the pixels (x+ 1, y+ 1), (x, y), and (x− 1, y− 1) are examined.

� If θ′(x, y) = 135◦ , then the pixels (x+ 1, y− 1), (x, y), and (x− 1, y+ 1) are examined.

If pixel (x, y) has the highest gradient magnitude of the three pixels examined, it is kept as
an edge. If one of the other two pixels has a higher gradient magnitude, then pixel (x, y) is
not on the “center” of the edge and should not be classified as an edge pixel.
At the end of this process, you should achieve a one pixel wide edge.

4.4 Hysterisis Thresholding

15 points
Some of the edges detected by the above steps will not actually be valid, but will just be
noise. We would like to filter this noise out. Eliminating pixels whose gradient magnitude
D falls below some threshold removes the worst of this problem, but it introduces a new
problem.

CMSC 426 Section 0201 Project 1: Filtering and Edge Detection 4

A simple threshold may actually remove valid parts of a connected edge, leaving a dis-
connected final edge image. This happens in regions where the edge’s gradient magnitude
fluctuates between just above and just below the threshold. Hysteresis is one way of solving
this problem. Instead of choosing a single threshold, two thresholds thigh and tlow are used.
Pixels with a gradient magnitude D < tlow are discarded immediately. However, pixels with
tlow ≤ D < thigh are only kept if they form a continuous edge line with pixels with high
gradient magnitude (i.e., above thigh).

� If pixel (x, y) has gradient magnitude less than tlow discard the edge (write out black).

� If pixel (x, y) has gradient magnitude greater than thigh keep the edge (write out white).

� If pixel (x, y) has gradient magnitude between tlow and thigh:

– Identify all the pixels connected to pixel (x, y) via a path through pixels with
gradient magnitudes greater than tlow. (See the hint.)

– If any pixel in that set has a gradient magnitude greater than thigh keep the edge
(write out white).

– Else, discard the edge (write out black).

Hint: scipy.ndimage.measurements.label finds and labels all connected (as defined by
the structure argument) components in a binary image. Using this function, you can assign a
label to every pixel with a gradient magnitude greater than tlow and then decide if it should
be kept by determining if any pixels with gradient magnitudes over thigh share the same
label.

4.5 Testing

10 points
Perform edge detection on “Iribe.jpg” with different values of sigma, t low, and t high.
Save and discuss the results for different values of each parameter.

5 Extra Credit: Hybrid Images

15 points
Combine the low frequencies of one image with the high frequencies of another to form a
hybrid image, preferably with your selfies.
Below are some references on hybrid images.

1. https://en.wikipedia.org/wiki/Hybrid_image

2. http://cvcl.mit.edu/hybrid/OlivaTorralb_Hybrid_Siggraph06.pdf

Hint: Combining images in the Fourier domain is an easy way to form a hybrid image.
Lecture 8 includes most of the code required to complete this task.

https://en.wikipedia.org/wiki/Hybrid_image
http://cvcl.mit.edu/hybrid/OlivaTorralb_Hybrid_Siggraph06.pdf

CMSC 426 Section 0201 Project 1: Filtering and Edge Detection 5

Submission Instructions

Your canvas submission should consist of a zip file named YourDirectoryID Project1.zip,
for example xyz123 Project1.zip. The file must contain the following:

� Iribe.jpg

� Project1.py or .ipynb

� report.pdf

If performing the extra credit portion of the assignment, also include the images you used
to form the hybrid image:

� Img1.jpg

� Img2.jpg

Collaboration Policy

You are encouraged to discuss ideas with your peers. However, the code should be your own
and should represent your understanding of the assignment. Code should not be shared or
copied. If you reference anyone else’s code in writing your project, you must properly cite it
in your code (in comments) and in your report.

Please list any individuals you collaborated with at the end of your report.

Plagiarism

Plagiarism of any form will not be tolerated. You are expected to credit all sources explicitly.
If you have any doubts regarding what is and is not plagiarism, talk to me.

Credit

Thanks to Ashok Veeraraghavan, Ioannis Gkioulekas, and Mohammad Teli for sharing their
course resources.

	Introduction
	Restricted functions
	Part 1: Filtering
	Gaussian Kernel
	Convolution
	Filters

	Part 2: Edge Detection
	Noise reduction with Gaussian filtering
	Finding image gradients
	Edge thinning / Non-maximum suppression
	Hysterisis Thresholding
	Testing

	Extra Credit: Hybrid Images

