
CMSC 426 Project 2: Feature-based Image Classification 1

Due: 24th March 2021 2:00 PM

In this project you need to classify images. You will learn a classifier from the training data
provided in Project 02.zip, then use it to classify test images, as described in Section 2.

The provided dataset includes both training and test data. The first 3 digits of each image’s
file name provides its label: 024 denotes butterflies, 051 denotes cowboy hats, and 251 de-
notes airplanes.

As always, you will document your work and show your results in a pdf report.

1 Restricted Functions

You may import numpy, matplotlib, PIL, sklearn, cv2 (with contrib), os, and time. Any and
all functions in these packages are fair game. Please do not import additional packages.

2 Bag of Features Classification with SIFT Descriptors

A Bag of Features algorithm uses image features for classification1. It operates under the
key assumption that the presence or absence of certain features within an image indicate the
class of the image. For instance, the presence of “tire” features would indicate membership of
the “vehicle” class. SIFT2 features are in general robust to a wide range of non-ideal imaging
situations, and therefore are what you will use for your implementation. This means you
will need to find SIFT features and compute their associated feature descriptors for a large
pool of images. You can use OpenCV-Python to detect and compute SIFT features.
You will need to install opencv-contrib to have access to SIFT. The easiest route to do this
is using pip install opencv-contrib-python.
After instantiating the SIFT feature detector with sift = cv2.SIFT create(), SIFT fea-
tures and descriptors can be found for a single precision uint8 grayscale image I using [f,d]

= sift.detectAndCompute(I,None). The output f stores the location, size, and orientation
of the keypoints while d stores the actual (128 × 1) feature descriptors.

1Also sometimes referred to as a Bag of Words algorithm, from the techniques by the same name used
to classify written documents.

2D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91–110, 2004.



CMSC 426 Project 2: Feature-based Image Classification 2

3 Instructions

Complete the following steps to build your own bag of features classification algorithm.

3.1 Find SIFT features

10 points
Use SIFT to find features (and their descriptors) in all of the training set images. Do this
carefully, so that you can easily identify which features belonged to which training class.

3.2 Clustering

15 points
Cluster all the SIFT feature descriptors you found using the k-means clustering algorithm.
With three image classes, N = 100 clusters provide a reasonable balance between runtime
and performance. These clusters represent your visual words and, conceptually, you can
imagine that each cluster represents the presence of certain distinct “things” in your images.

3.3 Form Histograms

15 points

1. For each training image, form a histogram of N bins, where each bin corresponds to
a cluster found above. When forming an image’s histogram, the bin associated with
a cluster j is incremented every time one of the image’s SIFT features falls closest to
cluster j. The resulting histogram represents a bag of visual words.

2. Normalize the bin counts by dividing by the total number of SIFT features binned
for that particular image. This normalized histogram now forms a descriptor for that
particular training image.

3.4 Prepare for Classification

5 points

1. Find the SIFT feature descriptors within each test image.

2. Assign these features to clusters as you did when creating the class descriptors.

3. Use these assignments to calculate a normalized cluster histogram for each test image.



CMSC 426 Project 2: Feature-based Image Classification 3

3.5 Classification

3.5.1 K=1 Nearest Neighbor

10 points
Assign each test image to one of the possible classes by comparing its cluster histogram to
the cluster histograms of the various images you trained with previously. One conceptual
way to do this comparison is to think of each normalized cluster histogram as a point in an
N dimensional space. Finding the class is akin to finding the class associated with the image
whose histogram vector is closest to the one associated with image being tested. This task
can be implemented using SKLearns’s KNeighborsClassifier function.
Compute and report the fraction of the test set that was correctly classified.

3.6 Linear Support Vector Machine

10 points
Use a linear support vector machine to classify the data, again using the normalized his-
tograms. To do this, you will first need to learn linear decision boundaries (in the normalized
histogram space) using the training set. Once you have determined these boundaries, you
can use them to classify the test data. This task can be implemented using SKLearns’s svm
function.
Compute and report the fraction of the test set that was correctly classified.

3.7 Kernel Support Vector Machine

10 points
The linear SVM’s performance is no doubt disappointing. This is because the normalized
feature histograms are not linearly separable. We will overcome this by (implicitly) lifting the
data, using the kernel trick, to a higher dimensional space where it can be linearly separated.

Use a kernel SVM with a radial basis function kernel to classify the data, again using the
normalized histograms. You will again first need to learn decision boundaries using the
training set and then use these to classify the test data. Kernel SVMs are also suppored by
SKLearns’s svm function.
Compute and report the fraction of the test set that was correctly classified.

3.8 Technical Write-up: Results and Discussion

25 points

� Clearly and cogently document your methods and results. From your PDF report, it
should be clear what you did, how/why you did it, and how well it worked, without
needing to run code or sift through 300 figures.



CMSC 426 Project 2: Feature-based Image Classification 4

� Indicate points of possible improvement and provide conceptual solutions to the extent
you are able.

� Include and interpret three distinct (3× 3) confusion matrices (one for each classifier).
See below for an example:

Predicted class

Actual class

Classes Hat Butterfly Airplane
Hat 55% 31% 14%

Butterfly 20% 70% 10%
Airplane 12% 5% 83%



CMSC 426 Project 2: Feature-based Image Classification 5

Submission Instructions

Your canvas submission should consist of a zip file named YourDirectoryID Project2.zip,
for example xyz123 Project2.zip. The file must contain the following:

� Project2.py, not .ipynb

� report.pdf

Do not include the datasets in your submission. Rather use relative pathing assuming the
code and Project2 data directory are in the same parent directory.
E.g., load your training data from “./Project2 data/TrainingDataset/”.

Collaboration Policy

You are encouraged to discuss ideas with your peers. However, the code should be your own
and should represent your understanding of the assignment. Code should not be shared or
copied. If you reference anyone else’s code in writing your project, you must properly cite it
in your code (in comments) and in your report.

Please list any individuals you collaborated with at the end of your report.

Plagiarism

Plagiarism of any form will not be tolerated. You are expected to credit all sources explicitly.
If you have any doubts regarding what is and is not plagiarism, talk to me.

Credit

Thanks to Ashok Veeraraghavan and Mohammad Teli for sharing their course resources.


	Restricted Functions
	Bag of Features Classification with SIFT Descriptors
	Instructions
	Find SIFT features
	Clustering
	Form Histograms
	Prepare for Classification
	Classification
	K=1 Nearest Neighbor

	Linear Support Vector Machine
	Kernel Support Vector Machine
	Technical Write-up: Results and Discussion


