
CMSC 426 Project 3: Classification with Neural Networks 1

Due: 14th April 2021 2:00 PM Total points: 150

This project has you classifying the MNIST dataset of hand-written digits using neural
networks. In part 1 of this project you will implement your own multi-layer perceptron
network, write code to train the network using back-propagation, and train the network to
perform classification. You will be graded on the accuracy of your classifier.
In part 2, you will use Pytorch to create and train a simple convolutional neural network to
perform the same task.
As always, you will document your work and show your results in a pdf report. You have
been given (just under) 3 weeks for this project, which is worth 50% more than Projects 1
and 2. It will likely take at least 50% more effort. Start early!

Note: Training your MLP over the full dataset could take a significant amount
of time (twenty minutes on a high-end CPU and well over an hour on slower
laptops). Be sure to give yourself ample time to complete this project. Also,
be sure to read the full assignment before starting. Parts of the assignment
(e.g., plotting intermediate accuracy) require modifying the code associated with
earlier sections.

1 Restricted Functions and Installation

For Part 1, you may import numpy, matplotlib, and time. For Part 2, you may also import
torch. Any and all functions in these packages are fair game. Please do not import additional
packages.
The easiest way to install pytorch is using Anaconda: https://pytorch.org/. You don’t
need GPU support for this project.

2 Multi-layer Perceptrons

100 points total
Your first task is to create, train, and test a fully connected neural network (a.k.a. MLP).
Your MLP will have 64 neurons in its hidden layer and 10 neurons in its output layer. Each
neuron should have a bias variable. The hidden layers will use a sigmoid activation function.
The output layer will apply a soft-max function across the 10 neurons. See Figure 1.

The included template.py file provides a MLP class definition that you will be completing.

2.1 Define the network

10 points

https://pytorch.org/


CMSC 426 Project 3: Classification with Neural Networks 2

𝑥1

𝑥2

𝑥784
So
ftm

ax

Loss

𝑎1
3
𝑓1
3

𝑎1
1
𝑓1
1

𝑎1
2
𝑓1
2

𝑎1
64𝑓1

64

⋮⋮

⋮

𝑎2
1

𝑎2
2

𝑎2
10

ො𝑦1

𝑥3

𝑊2

𝑊1

𝑏1
1

𝑏1
2

𝑏1
3

𝑏1
64

𝑏2
10

𝑏2
2

𝑏2
1

⋮

ො𝑦2

ො𝑦10

Figure 1: Network Architecture

Complete the forward definition in the code. It should take in an input image x and output
an estimate ŷ, representing the probability the image belongs to each of the 10 classes. In
matrix form, the network can be described by

ŷ = softmax(W2(σ(W1x+ b1)) + b2).

You may find it very useful later on to store all intermediate results within the MLP object.
E.g., self.f1=sigmoid(self.a1). This will allow you to access these results during back-
propagation without having to recompute them.

2.2 Initialize the network

5 points
Initialize the network weights and biases. The network weights should be initialized with
random Gaussian variables with standard deviation 0.1. The biases should be initialized
with zeros.

2.3 Back-propagation

2.3.1 Derive the Jacobians

15 points
The Jacobian of a multivariate, vector-valued function f : Rn → Rm, is a matrix

J =


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fm
∂x1

. . . ∂fm
∂xn

 .
With some slight abuse of notation, let’s call this Jacobian ∂f

∂x
. Note, each row of the Jacobian

is a transposed gradient.



CMSC 426 Project 3: Classification with Neural Networks 3

Derive the following Jacobian matrices and include them in your report: ∂a2
∂b2

, ∂a2
∂W2

, ∂a2
∂f1

, ∂f1
∂a1

,
∂a1
∂b1

, and ∂a1
∂W1

.

The Jacobian ∂L
∂a2

is a 1× 10 matrix with elements

∂L

∂a2
=
[
ŷ1 − y1, ŷ2 − y2, . . . ŷ10 − y10

]
,

This expression will help with the next section. (The term yi denotes the ith element of y,
not y to the ith power.)

2.3.2 Compute the gradients

15 points
Complete the update grad definition in the code. Your code will first compute and back-
propagate the loss. The back-propagated gradients will then be added to estimates of
the gradients over the entire batch: self.W2 grad, self.b2 grad, self.W1 grad, and
self.b1 grad. The expressions for the Jacobians you just computed will be useful here.

2.4 Training

15 points
Write code to train the network using stochastic gradient descent with a batch size of 256,
a cross-entropy loss function, and a learning rate of 0.001.Your code should iteratively call
myNet.reset grad(), myNet.forward(x), myNet.update grad(), and myNet.update params(lr),
in that order.

2.5 Over-fitting?

10 points
Train your network using the first 2000 images and labels from the training set. During or
at the end of each training epoch, compute the accuracy over the entire training set and over
the entire validation set. Plot the accuracy vs iteration for both the training and validation
set. Your plot should looking something like Figure 2.
Repeat this process and make an analogues plot using all 50000 images (this could take a
while!). Comment on the differences between the two plots.

2.6 How well does it work?

20 points + E.C.
Test your trained network on the testing dataset and compute the average accuracy. You
will receive an extra credit points for every percentage point the network does better than
90% and will lose a point for every percentage point it does worse than 90% (up ot 70%).
You can improve the network’s performance with any number of methods discussed in class
including drop-out, augmentation, regularization, adaptive learning rates, etc.



CMSC 426 Project 3: Classification with Neural Networks 4

Figure 2: Example plot for Section 2.5

Important: Do not train on the test set. Doing so will result in a loss of 20 points on this
portion of the assignment.

2.7 Where does it make mistakes?

5 points
Compute the 10× 10 confusion matrix. Which numbers are difficult to identify?

2.8 Visualize the weights

5 points
The first layer of the neural network is computing inner products between the incoming
image x and the rows of the weight matrix W1. In effect, it is performing a basic form of
template matching. Visualize and comment on these templates (rows of W1).



CMSC 426 Project 3: Classification with Neural Networks 5

3 Convolutional Neural Networks

50 points total
Read through the Pytorch classification tutorial on https://pytorch.org/tutorials/beginner/

blitz/cifar10_tutorial.html. Much of the code to complete this portion of the assign-
ment can be copied directly from the tutorial. Copying code from the tutorial is allowed,
just make sure you specify which portions of code were copied.

3.1 Describe the network architecture

10 points
The template comes with code to define a simple convolutional neural network. Describe
this network sufficiently that someone could re-implement it without looking at the code.
E.g., how many channels per layer, stride size, padding, etc.?

3.2 Train CNN

10 points
Write code to train the provided convolutional neural network on the provided MNIST
dataset. Again train with a batch size of 256, a learning-rate of 0.001, and a cross-entropy
loss function. It may be easier to reuse code you wrote in the previous section to feed data,
rather than using Pytorch’s dataloader.

3.3 Over-fitting?

10 points
Train your network using the first 2000 images and labels from the training set. During or
at the end of each training epoch, compute the accuracy over the entire training set and over
the entire validation set. Plot the accuracy vs iteration for both the training and validation
set. Your plot should looking something like Figure 2.
Repeat this process and make an analogues plot using all 50000 images. Comment on the
differences between the two plots.

3.4 How well does it work?

20 points + E.C.
Test your trained network on the testing dataset and compute the average accuracy. You
will receive an extra credit points for every percentage point the network does better than
98% and will lose a point for every percentage point it does worse than 98% (up ot 78%).
You can improve the network’s performance with any number of methods discussed in class
including drop-out, augmentation, regularization, adaptive learning rates, etc.
Important: Do not train on the test set. Doing so will result in a loss of 20 points on this
portion of the assignment.

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html


CMSC 426 Project 3: Classification with Neural Networks 6

Submission Instructions

Your canvas submission should consist of a zip file named YourDirectoryID Project3.zip,
for example xyz123 Project3.zip. The file must contain the following:

� Project3.py, not .ipynb

� report.pdf

Do not include the datasets in your submission. Rather use relative pathing assuming the
code and Project3 data directory are in the same parent directory.

Collaboration Policy

You are encouraged to discuss ideas with your peers. However, the code should be your
own and should represent your understanding of the assignment. With the exception of the
Pytorch tutorial mentioned in section 3, code should not be shared or copied. If you
reference anyone else’s code in writing your project, you must properly cite it in your code
(in comments) and in your report.

Please list any individuals you collaborated with at the end of your report.

Plagiarism

Plagiarism of any form will not be tolerated. You are expected to credit all sources explicitly.
If you have any doubts regarding what is and is not plagiarism, talk to me.

Credit

Thanks to Ashok Veeraraghavan, Ioannis Gkioulekas, and Mohammad Teli for sharing their
course resources.


	Restricted Functions and Installation
	Multi-layer Perceptrons
	Define the network
	Initialize the network
	Back-propagation
	Derive the Jacobians
	Compute the gradients

	Training
	Over-fitting?
	How well does it work?
	Where does it make mistakes?
	Visualize the weights

	Convolutional Neural Networks
	Describe the network architecture
	Train CNN
	Over-fitting?
	How well does it work?


