
Quantum Routing
Aniruddha Bapat

with Eddie Schoute, Andrew Childs, Alexey Gorshkov,

REU-CAAR-20: Sam King and Hrishee Shastri

REU-CAAR-21: Sam DeCoster, Nicole Dong, Mason Wittman

Outline
● The routing problem

● REU-CAAR-20 showcase: Routing with fast

reversal

● REU-CAAR-21: Routing with defects

Part I: Routing

(Classical) Routing
Item 1

Routing models the problem of information transfer in a network of

connected information sources (such as CPUs in a cluster).

Setup: Given a graph G = (V, E). At t=0, every node i has a “packet” with

a vertex label π(i) on it, where π is a permutation of the nodes.

Allowed moves: swap packets between any two vertices connected by an

edge. Each swap consumes 1 time step.

Goal: Route every packet to its given destination in the least possible

time.

4

1 3

2

1

2

3 4

π = (1243)

Example
π = (1243) = (23)(12)(34).

rt(G, π) := min

C(π)

depth(C(π))

rt(G) := max

π

 rt(G,π)

So, the routing number of a graph is a functional measure of connectivity

that tells us how slow permuting on it can be.

4

1 3

2

1

2

3 4

2

4

1

3

1

2

3

4

t=0 t=1 t=2

C(π):

π = (1243)

Quantum Routing

Item 1

Now, suppose every node i contains a qubit in an unknown state |ψ
i

>.

Goal: Permute qubits on a graph with limited connectivity, i.e., implement

U

π

: |ψ
1

> ⊗ |ψ
2

> ⊗ … ⊗|ψ
N

> ↦ |ψ
π(1)

> ⊗ |ψ
π(2)

> ⊗ … ⊗|ψ
π(N)

>

via operations that act on single nodes or pairs of nodes connected by an edge.

4

1 3

2
|ψ

1

>

|ψ
2

>

|ψ
3

> |ψ
4

>

2

3 4

1
|ψ

3

>

|ψ
1

>

|ψ
4

> |ψ
2

>

Why study routing?
Because most algorithms assume this: But most architectures look like this:

Therefore, it is usually necessary to permute distant qubits between steps of the

algorithm.

Why study routing?
Because most algorithms assume this: But most architectures look like this:

Therefore, it is usually necessary to permute distant qubits between steps of the

algorithm.

“Sycamore” (Google)

Why study routing?
Most problems of state transfer in physical systems are restrictions of the routing problem.

|ψ> |0> |0> |0> |0> |0> |0> |ψ>

Extra assumptions (usually):

- Known initial state

- Fixed permutation

Why study routing?
Routing is one of the easiest ways to distribute a known amount of (bipartite) entanglement:

A B A B

Conversely, routing can be achieved using entanglement via, e.g., the quantum repeater:

|ψ>

m

1

m

2

|ψ> m

3

|ψ>

Route red qubits

Routing of qubits is most commonly achieved using SWAP gates acting on neighboring

nodes.

But in the quantum setting, a richer array of operations is available. It makes sense to

study routing models with more power that might beat SWAP-based protocols.

Various models of quantum routing can be considered based on the allowed operations:

- SWAP gates (“classical”)

- 2-qubit gates (unitary)

- 2-local interactions (Hamiltonian)

- Measurement, classical communication (LOCC)

(+ ancilla)

Is it possible to beat SWAP-based routing?

≥≥

The best known routing algorithm for the path is known as

Odd-Even Sort (OES) and takes time N. This is classically

optimal due to the diameter bound.

In fact quantum (non-LOCC) routing on the path must also

scale as N.

However, we can hope for a constant factor speedup: T = cN

in the worse case, where c < 1.

SWAP-based routing on the path
3 1 6 2 4 5

≤≥≥

1 3 2 6 4 5

1 2 3 4 6 5

≥≤ ≤

1 2 3 4 5 6

Routing algorithms often use path routing as a subroutine (see, e.g. [1])

SWAP-based routing on the grid

[1]: arXiv:1902.09102

Example: 2D Grid

Naive algorithm: O(L

2

)

OES-based routing: O(L)

L

Idea: Route rows in parallel, then columns, and then the rows again. (Why does this

work?)

L

Part II: Routing with fast
reversal

Fast reversal on a path

23 145

P

5

:

In [2], we showed that the reversal permutation can be perfectly

implemented in time N/3 using a time-independent Hamiltonian.

(The best SWAP-based protocol takes time N.)

Reversal = exp(iH*(N+1)π/4) = exp(iH*(N+1)/3*t

SWAP

)

A time-dependent was protocol shown previously in [3].

Reversal = ∏

layer=1,...,N+1

 exp(iπ/4 ∑

i

Z

i

) ⋅ exp(iπ/4 ∑

i

X

i

X

i+1

)

[2]: arxiv:2003.02843

[3]: arxiv:quant-ph/0505122

Routing via fast reversal (FR)
It is likely hard to design fast quantum protocols for every possible permutation. However,

we already have a fast protocol for a specific permutation, namely, reversal.

Let’s adopt a hybrid approach where we ask whether this fast primitive can be used by a

classical algorithm to achieve fast routing. At the end we may have a circuit that looks like

this:

S

S

FR

S

FR

The goal then is, given any input permutation, to implement the permutation on an

arbitrary state on the chain using FR. (Ideally, faster than OES.)

Divide-and-Conquer and Binary Sorting
Label nodes routing to the left half by ‘0’, and nodes routing to the right half by ‘1’. Sorting

the string divides the problem divides into two sub-problems!

Apply binary sort on every sub-chain recursively until you have chains of length 1. This

achieves routing on the original chain.

4 1 8 6 5 2 3 7 0 0 1 1 1 0 0 1

4 1 3 2 5 8 6 7

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

“Bring to the middle”

Time T(N/2)

Fast Reversal

Time N/3

1 2 3 4 5 6 7 8

Binary Sort
So, binary sort takes time T

BS

(N) ≤ T

BS

(N/2) + N/3 = N/3 + N/6 + N/12 + … = 2N/3

The full algorithm uses binary sort recursively. Therefore, the total routing time is

 T(N) = T

BS

(N)+T

BS

(N/2)+ ... ≤ 2N/3*(1+½+¼+ ...) = 4N/3 …. Too slow :(

4 1 8 6 5 2 3 7 0 0 1 1 1 0 0 1

4 1 3 2 5 8 6 7

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

“Bring to the middle”

Time T(N/2)

Fast Reversal

Time N/3

1 2 3 4 5 6 7 8

“Tripartite” Binary Sort (TBS)
Can we fix this? Well, yes! The middle reversal is the problem - it’s not “doing enough” for

the time it takes. So, let’s make it more useful by dividing the chain into three parts

instead of two.

0 0 1 1 1 0 0 1 0 1 1 0

0 0 1 1 1 1 0 0 0 0 1 1

0 0 0 0 0 0 1 1 1 1 1 1

T

TBS

(N) ≤ T

TBS

(N/3) + N/3

= N/3(1+⅓+...) = N/2

So,

T(N) = T

TBS

(N)+T

TBS

(N/2)+....

≤ N/2*(1+½+¼+...) = N (!)

Worst-case performance
An upper bound of N is still not sufficient, since we know that the SWAP-based routing

number for the path is N. But in fact, we can show the following:

Theorem: For all bit strings b of length n, T

TBS

(b) ≤ (½-ε)N + O(log(N)) where ε is a small,

positive constant.

⇒ Routing using TBS beats any SWAP-based protocol! (As far as we know, this is the first

known quantum speedup for the routing problem.)

But does TBS offer any practical advantage?

- Is it faster on average? By how much?

- Is it as implementable as SWAP?

Average-case performance
We compare OES vs TBS vs Adaptive TBS for random permutations as a function of length.

Numerical fits suggest that TBS-based routing takes time 2N/3 + O(√N) on average....

Average-case performance
Theorem: The average-case routing time of GDC(TBS) is 2N/3 + O(n

α
), where α ∊ (½ , 1).

⇒ On average, TBS-based (quantum) routing is 66% faster than SWAP-based routing :)

Implementability
SWAP(a,b) = CNOT(a,b)⋅CNOT(b,a)⋅CNOT(a,b). That’s three entangling operations.

Therefore, a reversal on N qubits using OES would use ~3N

2

/2 entangling gates classically.

On the other hand, a fast reversal can be implemented via Mølmer-Sørensen gates:

Reversal = ∏

layer=1,...,N+1

 exp(iπ/4 ∑

i

Z

i

) ⋅ exp(iπ/4 ∑

i

X

i

X

i+1

)

This is only N

2

 entangling gates. Depending on the native gates in the hardware, fast reversal

could be no harder to implement than SWAP-based routing (and likely faster).

Part III: Routing with
Defects

Defects
But actually, they’re more like this:Earlier, I said architectures look like this:

Bad qubit

How do you route on a defective grid?

Defect models

Bad qubit

Random defects (each qubit fails with

probability p)

Correlated defects, or defective regions

- Defective edges, etc.

Routing algorithms often use path routing as a subroutine (see, e.g. [1])

Routing on the grid

[1]: arXiv:1902.09102

Example: 2D Grid

Naive algorithm: O(L

2

)

OES-based routing: O(L)

L

Idea: Route rows in parallel, then columns, and then the rows again. (Why does this

work?)

Routing algorithms often use path routing as a subroutine (see, e.g. [1])

Routing on the defective grid?

Example: Defective Grid

Naive algorithm: O(L

2

)

OES-based routing: 𝛺(L), O(??)

L

Possible questions:

- On a scale of O(L) to O(L

2

), what is the routing time of a defective grid?

- Is routing on (random) defective grids robust in the failure probability p?

- What happens when you allow quantum primitives such as fast reversal?

L

Spanning tree

Thanks!

