
How to Make ASLR Win the Clone Wars:
Runtime Re-Randomization

Kangjie Lu†, Stefan Nürnberger‡§, Michael Backes‡¶, and Wenke Lee†
†Georgia Institute of Technology, ‡CISPA, Saarland University, §DFKI, ¶MPI-SWS
kjlu@gatech.edu, {nuernberger, backes}@cs.uni-saarland.de, wenke@cc.gatech.edu

Abstract—Existing techniques for memory randomization
such as the widely explored Address Space Layout Randomization
(ASLR) perform a single, per-process randomization that is
applied before or at the process’ load-time. The efficacy of such
upfront randomizations crucially relies on the assumption that
an attacker has only one chance to guess the randomized address,
and that this attack succeeds only with a very low probability.
Recent research results have shown that this assumption is not
valid in many scenarios, e.g., daemon servers fork child processes
that inherent the state – and if applicable: the randomization – of
their parents, and thereby create clones with the same memory
layout. This enables the so-called clone-probing attacks where an
adversary repeatedly probes different clones in order to increase
its knowledge about their shared memory layout.

In this paper, we propose RUNTIMEASLR – the first ap-
proach that prevents clone-probing attacks without altering
the intended semantics of child process forking. The paper
makes the following three contributions. First, we propose a
semantics-preserving and runtime-based approach for preventing
clone-probing attacks by re-randomizing the address space of
every child after fork() at runtime while keeping the parent’s
state. We achieve this by devising a novel, automated pointer
tracking policy generation process that has to be run just once,
followed by a pointer tracking mechanism that is only applied to
the parent process. Second, we propose a systematic and holistic
pointer tracking mechanism that correctly identifies pointers inside
memory space. This mechanism constitutes the central technical
building block of our approach. Third, we provide an open-
source implementation of our approach based on Intel’s Pin on
an x86-64 Linux platform, which supports COTS server binaries
directly. We have also evaluated our system on Nginx web server.
The results show that RUNTIMEASLR identifies all pointers,
effectively prevents clone-probing attacks. Although it takes a
longer time for RUNTIMEASLR to start the server program
(e.g., 35 seconds for Nginx), RUNTIMEASLR imposes no run-
time performance overhead to the worker processes that provide
actual services.

I. INTRODUCTION

In the arms race of remote code execution, the introduc-
tion of non-executable memory has relocated the battlefield:
attackers are now forced to identify and suitably reuse existing
code snippets, while protective technologies aim at hiding

the exact memory location of these code snippets by means
of various forms of memory randomization. As a result, a
variety of different memory randomization techniques have been
proposed that strive to impede, or ideally to prevent, the precise
localization or prediction where specific code resides [29],
[22], [4], [8], [33], [49]. Address Space Layout Randomization
(ASLR) [44], [43] currently stands out as the most widely
adopted, efficient such kind of technique.

All existing techniques for memory randomization including
ASLR are conceptually designed to perform a single, once-
and-for-all randomization before or at the process’ load-time.
The efficacy of such upfront randomizations hence crucially
relies on the assumption that an attacker has only one chance
to guess the randomized address of a process to launch attack,
and that this attack succeeds only with a very low probability.
The underlying justification for this assumption is typically
that an unsuccessful probing of the attacker will cause the
process to crash, so that it has to be restarted and hence will
be randomized again. Technically, the assumption is that each
attacker’s guess corresponds to an independent Bernoulli trial.

In reality, however, this assumption is not valid in many
scenarios: daemon servers (e.g., Apache or Nginx web servers,
and OpenSSH) fork() child processes at runtime which then
inherit the randomization of their parents, and thereby creating
clones with the same memory layout. Consequently, if a
child crashes after unsuccessful probing, a clone with the
same address space layout is created again. Therefore, an
unsuccessful probing does not require an attacker to start from
scratch, instead he can reuse the knowledge gained in his
previous probings. In the following, we refer to such attacks
as clone-probing attacks.

A fundamental limitation with existing ASLR implemen-
tations is that they are only performed at load-time. That is,
any process that is created without going through loading will
not be randomized. For example, all forked child processes
always share exactly the same address space layout. As a result,
clone-probing attacks enable an adversary to bypass current
memory randomization techniques by brute-force exploration
of possibilities. Moreover, practical scenarios often exhibit side-
channel information that can be used to drastically reduce the
search space. In these cases, the consequences are far worse,
as impressively demonstrated by recent sophisticated attacks
against memory randomization. For instance, Blind ROP [7]
exploits a buffer overflow vulnerability to overwrite return
pointers only by one byte each time, and thereby reducing the
search space to mere 256 possibilities since the remaining bytes
of the return pointer are left unmodified. After a successful
return, i.e., if the program does not crash or exhibit unexpected

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23173

behavior, the first byte of a valid pointer has been correctly
discovered. The technique is then used repeatedly to discover
remaining bytes. On average, the probing of a byte is successful
after 128 tries. This approach hence reduces the brute-force
complexity from 263 to 128 · 8 = 1, 024 tries on average (for
64-bit systems). A successful clone-probing attack can hence
be leveraged to bypass ASLR, which is a general prerequisite
for further, more severe attacks, including code reuse attacks,
privilege-escalation by resetting uid, and sensitive data leaks.

The root cause of clone-probing attacks is that the forked
child processes are not re-randomized. Starting a process from
its entry point by calling execve() in the child after fork() [7],
however, alters the intended semantics of child forking: fork
is intentionally designed to inherit the parent’s state (variables,
stack, allocated objects etc.), whereas execve() starts another,
fresh instance of a program so that the execution starts at
the program’s entry point without inheriting any information
from its parent. It is possible to make the forked child process
independent from the parent process so that execve() can be
used to easily re-randomize the child process; however, the
child process will not be able to benefit from the semantic-
preserving and resource-sharing (e.g., sharing file descriptors
and network connections) fork(), and the target server program
has to be carefully restructured and rewritten to make the child
process not depend on any resource or data of the parent
process. For example, the complicated dependencies (e.g., on
program structure, file descriptors, shared memory, and global
variables) made us give up rewriting Nginx (about 140KLOC)
to use execve(). As a result, we aim to propose a practical
(e.g., negligible performance overhead) and easy-to-use (e.g.,
supporting COTS binary directly without modifying source
code) re-randomization mechanism to prevent clone-probing
attacks in a semantic-preserving manner.

A. Contributions

In this paper, we propose RUNTIMEASLR – the first
semantics-preserving approach that prevents clone-probing
attacks, by consistently re-randomizing the address space of
children after fork() at runtime while keeping the parent’s state.
More specifically, the paper makes the following contributions:
(1) a semantics-preserving and runtime-based approach for
preventing clone-probing attacks; (2) a systematic and holistic
pointer tracking mechanism as our approach’s central technical
building block; and (3) an open-source implementation of our
approach and a corresponding evaluation on Nginx web server.

The RUNTIMEASLR approach. Contemporary implementa-
tions of the fork system call simply clone the parent’s address
space in order to create a child that inherits the same state.
Cloning is cheap in terms of complexity and benefits from
inherited open file descriptors and network connections. Instead,
RUNTIMEASLR re-randomizes the address space of children
after fork() at runtime while inheriting their parent’s state, as
shown in Figure 1. This consistent re-randomization imposes
formidable challenges since the state of a program typically
incorporates references to a variety of objects, including code,
data, stack and allocated objects on the heap. A successful
randomization in particular has to ensure smooth continued
execution at the new address; hence, it has to relocate code,
data and all references consistently at runtime. RUNTIMEASLR

Parent process

Automatic
tracking
policy

Pointer tracker

Module1

Module n

Stack

Heap

Fork() with
RuntimeASLR

: code pointer : data pointer

Child process

Module1

Module n

Stack

Heap

P

T

T'

P'

Fig. 1: RUNTIMEASLR approach for re-randomization with fork().
Pointer tracker accurately tracks all pointers based on automatically
generated tracking policy set. Module-level re-randomization is
performed and all pointers are updated for fork(). For example,
in parent process, a pointer P in heap points to T in stack. After
the re-randomization, stack is moved and thus T is moved to T’.
Accordingly, P is patched to P’.

meets this challenges by first conducting a pointer tracking
policy generation process that has to be run once, followed by
a novel pointer tracking mechanism that is only applied to the
parent process. By treating a pointer as a tainted value, the
pointer tracking problem is naturally transformed into a taint
tracking problem: the initial pointers prepared by OS are used
as taint sources, pointer tracking is done using taint propagation,
and the necessary propagation policy is automatically created.
To generate a pointer tracking policy, instead of manually
identifying which CPU instructions typically carry on tainted
pointers and which ones remove taints [46], [11], [15], we
opted for an automatic approach: the policy generation process
executes the target program and sufficient sample programs
using Intel’s Pin instrumentation tool and inspects the semantics
of each executed instruction with regard to pointer creation,
manipulation or deletion. The result is a policy that describes
exactly which instructions deal with pointers in memory and
registers.

Pointer tracking mechanism. We use the generated policy
to track pointers during run-time. Whenever the parent
forks a child, RUNTIMEASLR performs address space re-
randomization in the cloned child process and patches pointers
according to the tracked pointers of the parent process. As
a result, the child processes have mutually different address
space layouts without facing any instrumentation overhead.
Hence, RUNTIMEASLR imposes no overhead to the services
provided by the worker processes of daemon servers. Effec-
tiveness requires us to correctly identify all pointers inside all
dynamically allocated structures, such as stack, heap, .bss or
even uncharted mmap’ed memory. To this end, RUNTIMEASLR
first identifies all pointer sources, which we classify into three
categories. First, initial pointers prepared by the OS (e.g., the
stack pointer rsp) because their location is deterministic and
fixed; second, program counters (e.g., rip); and third, return
values of certain syscalls (e.g., mmap, mremap, and brk). In
an ASLR-enabled program, no static pointer is allowed, thus
any other pointer must be directly or indirectly derived from
these pointer sources. In order to address taint propagation that
occurs in the kernel, we identify all syscalls that may propagate

2

pointers and that adapt memory mappings. Our findings show
that only a limited number of pointer-propagating syscalls
need to be taken into account, and that the memory-related
syscalls (e.g., mmap, munmap, and mprotect) can be hooked in
order to track changes in memory maps. With taint policies
and appropriate syscall modeling in place, pointer tracking is
realized by consistently updating hash tables storing taints.

Implementation and evaluation. We have implemented
RUNTIMEASLR based on Intel’s Pin on an x86-64 Linux
platform. RUNTIMEASLR is implemented as a combination
of three tools: a taint policy generator, a pointer tracker,
and a randomizer. The taint policy generator and the pointer
tracker are implemented as two Pintools; the randomizer is
implemented as a shared library that is dynamically loaded
by the pointer tracker in the child process. Note that, the
current implementation of RUNTIMEASLR is dedicated to
server programs that pre-fork worker processes at begining.
For other programs that do not adopt the pre-fork scheme,
different implementation approaches (e.g., compiler-based code
instrumentation) may be preferred instead of dynamic code
instrumentation. More details will be discussed in section VIII.
To evaluate the effectiveness of RUNTIMEASLR, we applied
it to the Nginx web server because it is one of the most
popular web servers and has been an attractive attack target
in the past [7], [21], [35], [9], [20]. Our evaluation shows that
RUNTIMEASLR identifies all pointers, effectively prevents
clone-probing attacks. Due to the dynamic instrumentation
based, heavy-weight pointer tracking, it takes a longer time for
RUNTIMEASLR to start the server programs (e.g., 35 seconds
for starting Nginx web server), however, the one-time overhead
is amortized over the long run-time, and more importantly,
RUNTIMEASLR imposes no performance overhead to the
provided services after the worker processes are pre-forked.

B. Organization of the paper

In the rest of the paper, we introduce the approach overview
of RUNTIMEASLR in Section II, the design of the three key
components of RUNTIMEASLR in Section III, IV, and V. We
explain the implementation of RUNTIMEASLR in Section VI,
and evaluate the correctness, effectiveness and efficiency of
RUNTIMEASLR in Section VII. We discuss the limitation and
future work of RUNTIMEASLR in Section VIII, compare it
with related work in Section IX and conclude in Section X.

II. OVERVIEW OF RUNTIMEASLR

RUNTIMEASLR aims to prevent clone-probing attacks by
re-randomizing the address space of a process at runtime.
More specifically, RUNTIMEASLR protects daemon servers
that fork multiple child (worker) processes for responding to
users’ requests.

A. Threat Model

The attacker’s goal is to launch attacks against a daemon
server with ASLR enabled, e.g., code re-use attack like return-
oriented programming, privilege-escalation by overwriting the
uid, or stealing sensitive data stored at a certain address. We
assume the daemon server consists of a daemon process and
multiple worker processes forked by the daemon process. For
the sake of robustness, if a worker process is crashed, a new

worker process is created by the daemon process with fork.
This model is widely adopted by daemon servers, e.g., Apache
web server, Nginx web server, and OpenSSH. Bypassing ASLR
is a general prerequisite of these attacks, as they usually need
to access the code or data (at a particular address) in the
process memory. To bypass ASLR, the attacker can mount a
clone-probing attack to iteratively recover the address space
layout, which is shared amongst all children of the daemon
process.

We assume that the operating system running the daemon
server realizes the standard protection mechanisms, e.g., W⊕X
and ASLR, and the daemon server is compiled with -PIE
or -fPIC, i.e. the server is compiled to benefit from ASLR.
However, the daemon binary may not be diversified, and hence
the attacker may have exactly the same copy of it. As a result,
attackers can perform both static and dynamic analyses on
the daemon program, e.g., scanning it for vulnerabilities. We
assume there exists at least one exploitable buffer overflow
vulnerability, i.e., a buffer can be overwritten arbitrarily long
including return pointers and frame pointers.

RUNTIMEASLR focuses on preventing clone-probing at-
tacks that indirectly infer the address space layout by repeatedly
probing worker processes of daemon servers. Other programs
that do not adopt the pre-fork scheme usually do not suffer from
the clone-probing attacks, and thus are out of scope. Direct
leaks, e.g., a leaked pointer in a malformatted printf or a
memory disclosure vulnerability [45], are out of scope for
this paper, but have been covered in existing work [13], [3],
[36], [14]. Physical attacks, e.g., cold boot attacks, are out
of scope. We assume the OS is trusted, so attacks exploiting
kernel vulnerabilities are also out of scope.

B. The RUNTIMEASLR Approach

To defeat clone-probing attacks, one can either reload the
child process or re-randomize the address space of the child
process by patching all pointers. As reloading the process will
not inherit any state or semantics from the parent process,
it would constitute a great loss as a programming paradigm.
Moreover, reloading requires the existing server programs to
be thoroughly restructured and rewritten to make the child
process not depend on any resource or data of parent process.
Therefore, RUNTIMEASLR instead keeps the semantics of its
parent process and re-randomizes the address space at runtime.

Since we want RUNTIMEASLR to be a practical tool, it is
designed to use user mode on-the-fly translation of programs
and hence does not require any source code or OS modifications.
Since daemon servers usually respond to a multitude of requests
at the same time, performance is also a primary goal of
RUNTIMEASLR. Those two goals are brought together by
dynamic program instrumentation using Intel’s Pin Tool: it
allows to monitor and modify arbitrary programs on-the-fly
and can be detached after randomization in order not to impose
any performance overhead.

The high-level overview of RUNTIMEASLR is depicted
in Figure 2. We first provide an overview of its three main
components. Then, technical details will be given in the
subsequent sections.

3

+
Taint Policy
Generation

(Pintool)

Program
binaries

Taint
policies

Pointer
Tracking
(Pintool)

Daemon
binary

Daemon
process

(w/ tracked
pointers)

Address Space
Re-randomization

(shared lib)

Child
process

(w/
re-random)

fork

re-rand

Fig. 2: An overview of RUNTIMEASLR’s architecture. It consists of three components: taint policy generation, pointer tracking, and address
space re-randomization. Program binaries include the daemon binary.

a) Taint Policy Generation: The first phase of
RUNTIMEASLR– taint policy generation – automatically gen-
erates pointer tracking policies by inspecting lots of input
programs. The generated policy grows with every input program
by “learning” more behaviors of Intel x86-64 instructions. At
some point, all possible usages of instructions have been seen
and the policy does not grow any further. The generated policy
file can then be used in the second phase, pointer tracking, to
accurately track pointers of arbitrary programs. Although the
identification of pointers is not a new topic, existing approaches
lack a systematic approach that can vouch that the used tainting
policy is sound. Additionally, prior approaches often aimed
at catching out-of-bounds access, which is a slightly different
problem as it also needs to know the size of the object pointed
to by the pointer [27], [40], [39], [30], [46], [11], [15]. These
approaches either rely on type-based analysis, or on heuristic-
based taint analysis to identify pointers. Type-based analysis
can only identify pointers with pointer-type. However, integers
that are also used as pointers, such as base addresses, cannot
be identified. Heuristics, on the other hand, do not provide any
sound guarantee, since they might incorrectly track identified
pointers or fail to identify some pointers in the first place.
For example, previous approaches [46], [11] that work on
instruction-level tracking only specified a handful of operations
(e.g., assignment, addition, subtraction, and bitwise-AND) to
carry on taints if the input was tainted. However, as we show in
Table II, there are not only many more instructions that either
carry on a taint or remove a taint, but many of them come as a
surprise and can only be discovered by a systematic approach
rather than empirical heuristics. For example, the CPUID and
RDTSC instructions modify general purpose registers, thereby
potentially overwriting stored pointers.

To tackle this problem, we propose an automated taint
policy generation mechanism that automatically discovers all
kinds of instructions that have direct or indirect effect on stored
pointers. The basic concept for creating a pointer tracking policy
is to inspect all instructions with respect to whether they create,
update, or remove a taint. To this end, we check if an instruction
writes to a register or to a memory location and whether that
written value constitutes a pointer. Then a pointer is determined
based on whether its value points inside any currently mapped
memory. This approach does not miss any pointers, i.e., there
are no false negatives as long as they point into valid memory.
However, this approach might coincidently identify a random
integer value as a valid pointer (false positive). For a 64-bit
address space such false positive probability is very low since
mapped memory segments are sparse in relation to the huge
address space. Nevertheless, we further reduce that probability
by running the program multiple times with ASLR enabled, and

then compare the results. Correctly identified pointers occur in
all runs, whereas false positives do not. We use this technique
to automatically create a policy that identifies all instructions
that will generate or remove a pointer.

b) Pointer Tracking: In the second step, the generated
policy is used to perform pointer tracking. Pointer tracking
itself consists of three parts: (1) it collects all initial pointers
prepared by OS; (2) it performs taint tracking for pointers based
on the taint policies generated by the first component; (3) since
RUNTIMEASLR is explicitly designed to not modify the OS,
some syscalls are modeled for taint propagation. The output
of this component is the list of all pointers in the process.

c) Address Space Re-randomization: Using the tracked
pointer list, the third component of RUNTIMEASLR– address
space re-randomization – then performs module-level memory
remapping for all currently mapped memory segments in the
child process. As Pin is no longer necessary in the child process,
the detachment of Pin is immediately performed after fork,
and then the re-randomization is triggered as a callback of Pin
detachment. After the re-randomization, the dangling pointers
are corrected using the list of identified pointers. As a last step,
the control is transferred back to the native child process code.
Since Pin is already detached, there is no performance overhead
in the child processes associated to dynamic instrumentation
(see section VII for performance results).

III. AUTOMATED TAINT POLICY GENERATION FOR
POINTERS

As alluded to earlier, the existing approaches for taint
tracking on binary code are not complete. To tackle this
challenging problem, we propose a novel pointer tracking
mechanism that accurately identifies pointers (tainting) and
tracks pointers throughout their lifecycle (taint propagation).
In general, taint analysis can be categorized into static taint
analysis and dynamic taint analysis. In theory, static taint
analysis can identify all pointers without false negatives.
However, false positives may be unavoidable [19] because
of higher level compound type definitions such as structs and
unions, which are not necessarily pointers. As a building block
for re-randomization, however, we must neither allow any false
positives nor false negatives. Otherwise, an overlooked pointer
(false negative) will reference an outdated memory location and
will most likely cause a program crash due to an illegal memory
access. Similarly, tagging innocent integer values as pointers
(false positive) changes data when patching the believed-to-be
pointer resulting in erratic program behavior.

Given the limitations of static taint analysis and the strict
requirements of our runtime re-randomization, we choose to

4

leverage dynamic taint analysis to identify pointers. Dynamic
taint analysis, however, needs a policy that describes which
instructions of an entire instruction set architecture (ISA)
modify a pointer, either directly or through side effects, and how
the pointer is modified. This is possible by studying the 1,513-
pages Intel instruction set architecture manual [25] and hoping
that one did not overlook a side effect of an obscure instruction.
Alternatively, we opted for an automatic learning process that
creates annotations for each observed instruction of the ISA
by monitoring what each instruction does during runtime. This
is possible by leveraging dynamic instrumentation based on
Intel’s Pin, which makes the execution of each instruction
tangible. By carefully inspecting how and which memory and
registers an instruction with different operands modifies, a
policy is generated that describes how each instruction either
creates a taint, removes a taint, does not modify a taint, or
even propagates a taint to another register or into memory. This
policy grows with every taught program and it eventually can
be used in the second phase, the Pointer Tracking phase, to
actually track which parts of memory or registers store pointers.
The latter part is described in the next section.

d) Workflow: The sample programs used for generating
the taint policies also contain the target program. We use
Pintool to hook each instruction that writes to at least one
register or one memory address (Pin provides an API to iterate
all operands, including the implicit ones, e.g., operand EAX in
RDTSC). Then, Pintool provides us with the metadata information
for that particular instruction. This includes the opcode, count of
operands, types of operands (register, memory, or immediate),
widths of operands, read/write flags of operands, and data
of operands (e.g., register number or immediate value). For
conditional instructions (e.g., cmovnz), we further include the
flag bits in register rflags. As an additional step, we hook
syscalls to identify the ones that create pointers, e.g. mmap().
Also, memory-related syscalls such as mmap() are monitored
for the requested memory range they allocate because our
algorithm needs to know which memory is currently valid and
which is not, for pointer verification.

The actual policy generation executes each instruction and
compares the state of all registers and accessed memory before
execution to after the execution of each instruction. This way,
side effects of an instruction can be detected even though
the register was not specified as an operand. For example,
RDTSC reads the CPU’s internal Time Stamp Counter (TSC)
into EAX:EDX, thereby overwriting what was stored in RAX
and RDX. This can be detected by checking each register for
being a pointer using multi-run pointer verification (III-A). If
an executed instruction modifies “pointer”-ness of a register
or memory location, it is reported as a new policy for that
instruction. This policy includes a description whether a pointer
was created, removed or copied somewhere else.

e) Example: The instruction mov RDI, RSP (in Intel
syntax) is always the first instruction that gets executed in
every program. We first extract the opcode (that is 384 in
Pin), the types, widths, and read/write flags of its operands.
The operands are two 64-bit registers with the first one being
destination and the second one being source. Then we analyze
whether any of those operands (RDI or RSP) is a pointer using
multi-run pointer verification (III-A). In this case, RSP is a
pointer, while RDI is still zero after initialization of the program.

After executing the instruction, the operands are checked again
for “pointer”-ness. In this case, RDI becomes a pointer after
execution. Therefore, we generate a pointer tracking policy as
follows. Given an instruction with opcode = 384 and exactly
two 64 bit registers as operands, the first operand will be tainted
after execution if the second operand was before execution.

A. Realizing multi-run pointer verification

To ensure that only actual pointers are tracked, it is crucial
that the pointer detection does not mistakenly classify an integer
as a pointer, simply because its numerical value coincidentally
represents a valid, mapped memory address. To address this
problem, we propose multi-run pointer verification to check if
a value indeed constitutes a real pointer.

The idea of multi-run pointer verification is inspired by the
fact that in a 64-bit address space, the mapped memory is
sparsely allocated, and it is unlikely for a random data to point
into mapped memory. So by checking if a value points into
mapped memory, we can determine a pointer with a high prob-
ability. To further decrease the false positive rate, we execute
the program multiple times at different load addresses (with
ASLR-enabled). The workflow of multi-run pointer verification
is shown in Figure 3. In the first run, we output discovered
policies with metadata, including the relative location (relative
address into the base address of corresponding loaded module)
of the targets of generated pointers. For each of the next runs,
only the intersection of policies is kept, which identifies those
pointers whose targets have the same relative locations.

The probability that a non-pointer value passes this check
and is hence classified as a valid pointer is extremely low.
On 64-bit x86 machines, Linux reserves the lower 47 bits for
user mode programs1. Pointing inside the user mode address
space is thus possible if the upper 17 bits of a random 64-
bit number are set to zero. Additionally, the lower 47 bits
must point into valid mapped memory that has been chosen
randomly by ASLR. For the combination of all loaded modules
with a total size of b bytes, the probability for a 64-bit integer
pointing inside any loaded module is b · 2−64. For each run
of the multi-run pointer verification, the probability decreases
drastically. In the next run, the probability is not only b · 2−64

to be inside any loaded module, but the same instruction must
produce an integer whose value has the same offset into the
same module to be still considered a (false positive) pointer.
Hence, only one valid address for the given randomization
remains, which has a probability of only 2−64 for randomly
chosen integers. For n runs, the final false positive rate is
deceased to b · 2−64·n. The running Nginx web server for
example has a total of approximately 22 MB of mapped valid
memory. This would result in a false positive rate of ≈ 2−103

in a 2-runs verification.

1) Multi-thread Support: In order to identify the same
pointer across different runs, it is necessary to deterministically
enumerate all pointer creations in a reliable way – one way
would be the order of pointer creation, another would be the
memory position of the pointer itself. In a single-threaded
program, the position of pointers and the order of their creation
are deterministic. However, multi-threaded programs might

1arch/x86/include/asm/processor.h:881 of Kernel 4.1 defines
#define TASK SIZE MAX ((1UL << 47) - PAGE SIZE)

5

Checking pointer
with ranges of

maps

Program
binary

Taint policy
set 1

(w/ metadata)

Run 1

Checking pointer
with ranges &

verification
with policy set 1

Run 2

...
Checking pointer

with ranges &
verification

with policy set n-1

Run n

Final
policy

set

Program
binary

Program
binary

Taint policy
set n-1

(w/ metadata)

Fig. 3: The work-flow of multi-run pointer verification. For each policy, the metadata indicates which registers/memory is written to. Only
pointers that point to the same relative address throughout multiple runs are kept.

create pointers in a different order, due to that threads share
a common heap, which also influences the pointer positions
inside the heap. To overcome this problem, we also consider
where pointers are stored. For pointers that are stored on the
heap, the base address of the heap object the pointer resides
in and its relative position into the base of heap object are
recorded and used to uniquely refer to that particular pointer.
Since loadable sections (e.g. .data or .bss) have their objects
at fixed locations and each thread has its own stack, they are
not affected by multi-threading.

IV. TAINT TRACKING FOR POINTERS

Using the taint policy that has been created once in the
taint policy generation step, the program can be run again with
pointer tracking enabled based on the created policy. The first
step is to identify a pointer when it is created. It is crucial to
identify exactly when a pointer is created to be able to track
it from its inception. Otherwise, it might have been copied to
other places already without noticing.

A. Pointer Sources

In ASLR-enabled programs, no static pointer (known at
compile time) can exist because all code and data are loaded at
an unpredictable address. All pointers are either derived from
the current address of execution (RIP register), the stack (RSP
regsiter), the heap (call to mmap(), mremap() or brk()) or they
are injected by the OS. For example, lea RAX,[RIP+0x2007bc]
derives a pointer based on current instruction pointer (RIP), and
saves it in the register RAX. In fact, RIP and RSP are also injected
by the Linux kernel before the program starts. In chronological
order, whenever a new process is loaded after calling execve(),
the Linux kernel inserts pointers into the process. As per the
Linux 4.1 source, execve() first clears all registers2 and then
sets the first instruction to execute by modifying the RIP register
and setting the stack register RSP to the end of the stack. Then,
initial environment variables and program arguments are pushed
to the stack before the first instruction of the newly created
process begins execution. The initial data in stack prepared
by OS also contains some pointers (e.g., entry point). As OS
routinely stores these initial pointers in stack in the same order
at load-time, their relative locations are fixed, we also apply
the idea of multi-run pointer verification to accurately identify
them. Once all of these pointer sources are found and tainted,
the discovered taint policy of the earlier step can then accurately
tracks other pointers derived from these pointer sources.

2Macro ELF PLAT INIT(regs, load addr) of file arch/x86/um/asm/elf.h

B. Syscall Modeling

The only other way to introduce new pointers is as a result
of a syscall. Since we do not want to track pointers in kernel
mode, we rather use well-established method syscall modeling
to mimic the behavior of the kernel with respect to pointer
tainting in user mode. Our analysis of all side effects of syscalls
has revealed that the only syscalls that modify mapped memory
and hence create new pointers are mmap, mremap and brk. Those
syscalls are monitored during execution by hooking them inside
the Pintool. The return values of those syscalls are then tainted
as pointers accordingly. As a side effect, the gained knowledge
about memory mappings is used as a plausibility check that data
tainted as pointers indeed points into valid, mapped memory.

C. Bookkeeping

The internal bookkeeping of which register or memory
location is tainted is stored in a simple but fast hash map.
Indexing the memory hash map with an address will return taint
information about that address if applicable. Untainted memory
will of course not be stored in the hash map and returns null.
According to the used taint policy, each executed instruction
may propagate a taint into another register or memory location
(e.g., mov or add) or remove the taint (e.g., xor RAX, RAX). The
taint policy contains tuples describing matches based on their
opcode, operand type (i.e., register, memory, or immediate),
operand size, flag bits (for conditional instructions), and whether
operands are already tainted. Using this tuple, the policy is
queried on the expected action for the modified registers or
memory. If a matching policy is found, it is applied, i.e., the
expected registers or memory locations are tainted or un-tainted.
Otherwise, no pointer propagation effect is expected and no
taints are changed.

V. ADDRESS SPACE RE-RANDOMIZATION

Even with the knowledge of exact pointer locations, re-
randomization of a running process is not straight-forward. In
fact, we faced the following challenges:

C1: The child process also inherits the dynamic instrumentation
of the Pin by fork(). For performance reasons, Pin in
child process is unnecessary, thus should be detached.

C2: Unmapping and clearing of Pintool is a chicken-and-egg
problem since the instrumented fork() code would need
to unmap itself while executing.

C3: Remapping a set of memory blocks is not an atomic pro-
cess and hence during the intermediate state of remapping,
no valid stack and no valid library functions are accessible
as they are already remapped.

6

To overcome those challenges, we designed our re-
randomization mechanism as a separate shared library as shown
in Figure 4, which is triggered by the callback of Pin’s detaching.
This way, it can (1) be attached to child process, (2) perform
the re-randomization and patch all pointers,(3) clear the Pin
code/data, and finally (4) load updated registers and perform a
context switch to the newly fork’ed child.

Shared
address space

Pin/Pintool

Program

Randomizer
(shared lib)

1. load randomizer
in child

2. re-rand
program

3. clear Pin

4. context switch

Fig. 4: The workflow of re-randomization.

A. Re-randomization Granularity

The default ASLR provided by Linux OS performs ran-
domization in process-level, which means offsets between
modules are fixed. RUNTIMEASLR chooses to perform module-
level randomization by specifying random base to mmap, which
achieves a better effective entropy [23]. However, finer-grained
randomizations [22], [29], [4], [48], [24], [18] can be further
applied thanks to the tracked pointer information.

VI. IMPLEMENTATION

RUNTIMEASLR is implemented as a combination of three
tools: the taint policy generator, pointer tracker, and randomizer.
The taint policy generator and pointer tracker are implemented
as two Pintools for pin-2.14-71313, while the randomizer is
implemented as a shared library that is dynamically loaded by
the pointer tracker into the child process.

A. Policy Generator

1) Instruction Abstraction: In the automated policy genera-
tion phase, our Pintool learns how x86 instructions “behave”
given a certain combination of operands. For this purpose, we
are only interested in how they behave with respect to pointer
creation, modification, erasure, and propagation. Therefore,
the created policy is an abstraction of instruction behavior
that is just enough to accomplish accurate taint tracking. Our
experiments have shown that, in most cases, it suffices to
abstract an instruction to only its opcode, number of operands,
type of operands (immediate, register, memory), width of each
operand (in bits), flag bits (only for conditional instructions),
and which operands were tainted before execution of the
instruction. For this exact combination, an entry in the policy
describes how it behaves with respect to tainted registers and
memory after executing the instruction. For example, let the
observed instruction be mov RDI, RSP with two operands of
64 bit register type. The second operand RSP is tainted, because
it is a stack pointer. One specific policy entry for this exact
combination (opcode=mov, operands=register64,register64,

taint=false, true) specifies that after execution the first operand
will be tainted. This makes sense, as mov actually copies the
value of the second operand into the first operand.

Instruction Input Output Category

1 add reg1, reg2 reg1=1 and reg2=0 reg1?=1 arithmetic
2 sub reg1, mem1 reg1=1 and mem1=0 reg1?=1 arithmetic
3 add mem1, reg1 mem1=0 and reg1=0 mem1?=1 arithmetic
4 add reg1, mem1 reg1=0 and reg2=0 reg1?=1 arithmetic
5 and reg1, imm1 reg1=1 and reg2=0 reg1?=1 bitwise

TABLE I: Ambiguous policies found in tested programs. An implicit
instruction may either generate or remove a pointer (i.e., its output is
not deterministic), even the provided taintness inputs are the same. 1:
pointer; 0: non-pointer

2) Ambiguous Policy: There are special cases for which the
aforementioned tuples of operand types, amount of operands,
operand sizes and taints are not unambiguous enough to
make a statement about taints after the execution of an
instruction. Table I lists the ambiguous cases found in the
tested programs. Case 5 is easy to understand, since a bitwise
and operation could be used to compute either the base address
(i.e., a pointer) or an offset (i.e., a non-pointer) depending
on the value of the other operand. For example, assume RAX
in and RAX, 0x???????? contains a pointer and is therefore
tainted. If the bitmask of the second operand exhibits many
set MSBs, e.g., and RAX, 0xfffffffffffff000, the result will
be the base address of the provided pointer in RAX. Vice
versa, setting a few LSBs (e.g., 0x0000000000000fff) calculates
the offset into something. Our experiments with real-world
programs show that the only use of a bitwise and instruction
with a pointer is to either calculate the base or an offset. This
confirms similar findings by [11] and [46].

Case 1 - case 4 indicate that ambiguous policies also
exist for arithmetic instructions – a pointer could be added
or subtracted by an offset to generate either a new pointer
(e.g., relocation) or a non-pointer. To understand these special
cases, we performed an in-depth analysis (on Ubuntu 14.04.2).
Note that RUNTIMEASLR provides a debugging mode that
can print context information of executed instructions to ease
the analysis.

Case 1. At the beginning of execution in loader, in-
struction add r12, rcx adds the pointer saved in rcx with
a constant 0x3800003d8, which generates a “non-pointer”
(it does not point to mapped memory). However, we
found that this non-pointer is added back to generate
a new pointer with constant -6FFFFEF5×8 in instruction
mov qword ptr [r12+rax×8], rdx.

Case 2 - 4. We found that there is an instruction
sub rdx, qword ptr [r12] that destroys a pointer by sub-
tracting it with an offset. Before execution, rdx points to
the base of vDSO, which is then subtracted by constant
0xffffffffff700000 to generate a value pointing to unmapped
memory. Interestingly, we found case 3 and case 4 are
paired to case 2, which re-assemble the pointers from the
destroyed one in case 4. For example, case 3 is the instruction
add qword ptr [r12+0x348], rdx) that adds the destroyed
pointer by constant 0xffffffffff700fbd to generate a new
pointer still pointing to vDSO. We believe the arithmetic

7

operations in case 2, 3, and 4 are used to perform a very
simple pointer protection employed by vDSO, which is however
not found in other normal programs.

Based on the analysis, we generally cope with these
ambiguous instructions by the simple range-checking approach:
we check whether the result after executing the instruction
points into valid memory, if it does, it is a pointer; otherwise, it
is a non-pointer. The check only needs to be lazily performed for
those ambiguous cases that are clearly marked in the policy file.
For ambiguous cases with bitwise operations, range-checking
can easily differentiate between a base address and an offset.
For ambiguous ones with arithmetic operations, no matter what
unrecognizable representation a pointer is transformed into, it
will be recognized again by range-checking if it is changed back
to the pointer. Therefore, the simple range-checking approach
can generally handle all these ambiguous cases in a lazy manner.

3) Hidden Pointers in SSE Registers: Streaming SIMD
Extensions (SSE) is an x86 instruction set extension that
provides 128 bit registers xmm0-xmm15 and and 256 bit registers
ymm0-ymm15. In theory and good practice, 64 bit pointers of
the 64 bit Intel x86 architecture should be stored in its gen-
eral purpose registers (RAX, RBX, ..., r1, r2, ...r15) or in
segment registers (FS, GS). However, our policy generation
showed that these 128 bit SSE registers may also be used
to store pointers, e.g., Nginx web server. Fortunately, those
pointers were always stored either in the first 64 of the 128 bits
(upper half) or in the last 64 bit (lower half). Based on this
observation, RUNTIMEASLR treats a SSE register as a multiple
of non-overlapping 64 bit general purpose integer registers.
Whenever these SSE register are used, each 64-bit of their
content is checked by RUNTIMEASLR for 64 bit pointers.

4) Mangled Pointers: Interestingly, the GNU standard C
library (glibc) that is linked to every C or C++ program per-
forms pointer obfuscation for some syscalls. It is implemented
as a simple XOR operation against a random but fixed value
stored relative to the segment register FS (see Figure 5).

#define PTR_MANGLE(reg) \
xor %fs:POINTER_GUARD, reg; \
rol $2*LP_SIZE+1, reg

#define PTR_DEMANGLE(reg) \
ror $2*LP_SIZE+1, reg; \
xor %fs:POINTER_GUARD, reg

Fig. 5: Pointer mangling and demangling in libc. The XORing key is
hidden by using fs segment register. LP SIZE is 8 on 64 bit platform.

To cope with mangled pointers, we demangle the pointers
and check if the demangled values point inside valid mapped
memory. This is possible because the XOR value is accessible
by the process itself (stored at fs:POINTER GUIARD), but not
accessible for attackers residing outside the process. Should the
demangled value reveal a pointer, the stored taint is augmented
by meta information indicating a mangling according to glibc’s
method. This meta information leaves room for future, other
methods of pointer obfuscation to be implemented. Currently,
all tested programs compiled with gcc only exhibit the pointer
obfuscation using the PTR MANGLE macro shown in Figure 5.

B. Pointer Tracker

The pointer tracker itself is also implemented as a Pintool.
As alluded to earlier, the only initial pointers after process
creation are RSP, RIP, and some initial pointers in stack. In
particular, we found 71 initial pointers in stack with the help
of multi-run pointer verification. As the kernel routinely loads
programs in the same way, we confirmed that these initial
pointers have fixed relative locations in stack. From these
initial pointers, further pointers are derived using the generated
policy, which is applied to the affected instructions specified
in the policy set. The policy set is loaded into an STL list
container. We then use Pin’s functionality to hook instructions
based on their opcode, operand types and widths of operands.
The hooking is realized in Pin by inserting a call before
and after each instruction in question. Control flow is then
diverted from the main executable code or library code into
Pin and thereby into our pointer tracking mechanism. The
pointer tracking mechanism fetches information about the
used operands (register and/or memory), especially whether
they are tainted and their current value. After applying the
policy, which results in further or fewer taints for registers or
memory, execution continues normally at the original position
in memory. Unmatched instructions will not be hooked and
execute normally.

1) Syscall Handling: Since RUNTIMEASLR is designed
as a user space tool, all syscalls are a black box operation to
RUNTIMEASLR. However, we are only interested in whether
a syscall modifies a pointer or creates a new one. We found
that most syscalls actually do not generate new pointers or
propagate pointers. We manually evaluated the visible effects of
the 313 Linux syscalls in user mode. Only 15 of them generate
or propagate user mode pointers. Some representative ones are
detailed as below.

• mmap creates new memory space and returns the base.
We taint its return value when it returns.

• munmap unmaps the given memory space. In this case,
we untaint the corresponding pointers that point to the
unmapped memory.

• mremap moves an existing memory space to a new one
and returns the new base address. In this case, we
update the corresponding pointers pointing to the old
memory space with the moved offset. Also we taint
the returned value.

• mprotect changes the access permissions of memory.
We update the tracked pointers according to how
permissions are changed. For example, if the memory
is changed from readable to non-readable, we untaint
the corresponding pointers.

• brk either obtains current program break (by providing
the first parameter with 0) or changes the location of
program break. In the former, we simply taint its return
value; while in the latter, if it shrinks the memory, we
untaint the corresponding pointers and also taint its
return value.

• arch prctl, etc. There are also some syscalls that
may load existing pointers of user space. For example,
arch prctl can be used to get base values in segment

8

register fs or gs. For these cases, we taint the obtained
pointers in return value or parameters.

2) Pointer Scope and Memory Deallocation: Whenever a
called function returns, the local variables of the callee are
no longer valid, i.e., they have left their scope. Such local
variables may also contain pointers. Hence, it is vital to remove
any associated taint of pointers that have gone out of scope.
The memory region that contains variables that have gone out
of scope is considered uninitialized memory, since reading
from that memory is non-deterministic as it depends on which
function was called last. A good compiler will catch that type
of uninitialized access at compile-time and warn the developer
about it.

To prevent unpredicted behaviors, we detect out-of-scope
pointers when a function returns so that they can be untainted.
To this end, we hook the ret instruction and on each return
calculate the currently valid stack frame by inspecting RSP. By
the x86-64 calling convention, the stack pointer RSP must point
to the top of the valid stack after returning from a function,
therefore, all data stored above RSP can be untainted.

The same applies to objects on the heap: after a call to
free() (delete() also calls free()), pointers stored in that
now deallocated area become invalid. We therefore remove all
taints of pointers that are stored in a free’ed area. A caveat is
that the call to free does not include any information about
the size of the to-be-deleted object. However, the memory in
question was once allocated using malloc with a specific size.
We therefore use a map that associates a length obtained from
hooking malloc to each heap pointer. Whenever, free() is
called, we look up the size for the specified base pointer and
untaint all pointers stored in the deallocated area.

C. Randomizer

The randomization is done in module-level, which is better
than the “process-level” randomization provided by Linux’
ASLR implementation. Finer-grained randomization is possible,
as we have all pointer information. However, even position-
independent code assumes fixed offsets between code and data.
Finer-grained randomization may require patching these offsets,
and thus introduces more overhead. The actual remapping from
an old address (cloned from the parent) to a new random address
is achieved by calling the syscall mremap with a random base
address. We obtain the cryptographically secure randomness
from /dev/random. In the current implementation, we set the
default entropy to the one provided by default Linux OS, which
is 28 bits. However, we also provide a configuration switch for
the entropy so it can be set up to 48 bits (the full canonical
address space on Intel x86-64 platforms). Note that when heap
is remapped, we also need to adjust program break by calling
the syscall sbrk(). The protection flags and size of the new
mapping are simply taken from the old one to preserve all
semantics. After remapping, we patch the pointers accordingly
(in both memory and registers).

The final step is context switching from Pin to program. The
context includes not only general registers but also SSE registers
(e.g., xmm0-xmm15) and segment registers (e.g., fs and gs).
As all pointers are patched when the address space is re-
randomized, the context is naturally updated accordingly. Before
Pin’s mappings are unmapped, the context data is copied to the

stack of the program. To load the context into the corresponding
registers (after unmapping Pin), we have to use handwritten
assembly, as no library functions are available and we cannot
even use Pin’s stack and heap. Special care must be taken for
loading values from stack into SSE registers (i.e., xmm0-xmm15)
as those memory addresses must be 16-byte-aligned in order
to not trigger a general protection fault (#GP). Finally, we use
an indirect jmp to transfer the control back to program and
continue the original execution of child process. At this point,
Pin is completely unmapped and as the child process is no
longer instrumented, it runs with its native performance.

1) Recursive Forking: So far, we have described that
fork’ed children are no longer instrumented in order not to
suffer from performance penalties. However, one cannot know
if child processes will or will not fork their own children. If
they do, there would not be any pointer tracking information
because it was intentionally disabled for performance reasons.
To overcome this, we provided a feature that records which
layer of processes of a program typically fork their own new
processes. For example, the Nginx web server first forks a
daemon process, and then that daemon process forks worker
processes for each CPU core. Therefore, we can configure
which layer of children will disable their instrumentation which
will not.

VII. EVALUATION

In this section we evaluate the correctness, effectiveness,
and efficiency of RUNTIMEASLR. To this end, we have
developed the following four evaluations:

1) A theoretical and practical analysis of the accuracy of
identifying pointers.

2) A memory snapshot analysis to compare the correctness of
re-randomization with the help of load-time randomization.

3) An empirical test of real clone-probing attack prevention.
4) A performance evaluation of re-randomized child pro-

cesses and microbenchmarks of fork overhead and pointer
tracking in the parent process.

Experiment setup. We applied RUNTIMEASLR to the Nginx
web server, as it is one of the most popular web servers and
has been an attractive attack target [7], [21], [35], [9], [20]. We
chose Nginx in version 1.4.0, as this version contains a stack
buffer overflow vulnerability that was also exploited by Hacking
Blind [7]. This way, we can later show the effectiveness of
our solution in the presence of a real vulnerability. We use
Nginx web server to evaluate the correctness, effectiveness,
and performance of RUNTIMEASLR. Further, we applied
RUNTIMEASLR to SPEC CPU2006 benchmarks to evaluate
the performance of the pointer tracking component. All
experiments were conducted on a Dell OptiPlex 390 equipped
with an Intel R⃝ CoreTM i3 2120 running at 3.30 GHz and
8 GiB of RAM. This particular processor has two physical
cores each of which supports Simultaneous Multithreading,
which presents itself as four cores to the operating system. For
operating system, we used an unmodified fresh install of the
latest Ubuntu long-term support release 14.04.2.

A. Correctness

We first evaluated the correctness of RUNTIMEASLR by
analyzing its accuracy in pointer identification.

9

1) Theoretical Analysis: In this section, we present an upper
bound for false positive pointer detection. As already described
in subsection III-A, the probability for a random integer to
be mistaken as a pointer is p = b · 2−64·n for b bytes being
mapped into a process’ address space and n-runs are performed
in multi-run pointer verification. Of course, this only applies
to a single pointer identification. As every executed instruction
is inspected for potential pointers, in the worst case, every
inspected instruction might introduce a new random integer
that could be mistaken for a pointer. So in the worst case, the
entire mapped memory only consists of instructions that handle
64 bit integers. Even though it is technically not possible due
to encoding, a maximum of b instructions can exist in b bytes
of memory. Therefore, the probability of identifying at least
one integer coincidently as a pointer is

1− (1− p)b = b · p−
(
b

2

)
· p2 +

(
b

3

)
· p3 − · · · − pb

according to the binomial probability. Assuming b < 247 and
n >= 2, then

(
b
i

)
· pi must be significantly larger than

(
b

i+1

)
·

pi+1, where 1 < i < b − 1 and pb > 0. Therefore, this
probability can be safely simplified to:

b · p = b2 · 2−64·n

To fill in some numbers, we can assume that 100 MB
of the address space are used, and 2 runs are performed in
multi-run pointer verification. This yields a false positive rate
of 2−76, which is negligible.

2) Memory Analysis: Although the protected programs do
work successfully, we want to thoroughly check the correctness
of RUNTIMEASLR in practice. To this end, we evaluate the
false positive and false negative rate of pointers and check if
the address space is re-randomized correctly.

a) False pointer checking: The goal of false pointer
checking is to scan the entire address space for 8-byte pointers
and make sure that our tracking did find all (no false negatives)
and not too many (no false positives) pointers. Checking
is done right before re-randomization, when it is crucial
that all pointers have been tracked correctly. To be fair,
multi-run pointer verification was used during the analysis to
check false positive pointers. For false negative pointers, we
check each 8-byte value in the readable memory to see if
it points to mapped memory. We ran the Nginx web server
and hooked fork() for the memory analysis. This revealed a
total of 7952 pointers were tracked with no false positives, i.e.
all tracked pointers indeed point into valid mapped memory.
The analysis further revealed four “false negatives”, i.e. some
readable 8-byte values that point into valid memory had not
been tracked. However, we found that those “pointers” were
located in freed heap objects and hence were no longer valid.
Since Nginx did not clear the data when freeing heap objects,
the out-of-scope pointers remained in memory.

b) Memory space consistence checking: It is of
paramount importance that our forcefully imposed re-
randomization at run-time is indeed correct. To verify this,
we compare the address space right after re-randomization to
legitimate address space before forking, but at the same address.
This verification process is two-fold. First, the program is run
with ASLR enabled so that it is executed at a random address.
At the moment a fork() syscall is issued, we take a memory
snapshot of the entire address space, record base addresses

of mappings, and abort the program without re-randomization.
Second, we run the program again, which results in a different
address, but this time let the re-randomization happen after
fork() is called. However, the re-randomization of our Pintool
is instructed to use the recorded addresses of each mapped block
of memory instead of true randomness. This way, the address
space of our re-randomization should look exactly like the
address space of a properly randomized ASLR process. After
that, we compare the remapped memory with the previously
dumped memory. Our results show that all mappings are exactly
the same, which indicates that all pointers are correctly patched.
Please note that in the first ASLR run, the program is run with
Pin enabled because our comparison (re-randomization) will
have Pin enabled as well. Otherwise comparisons would differ
in the mapped memory of Pin.

c) Some Interesting Policies: Unlike previous pointer
tracking approaches (e.g., [46], [11]) that only empirically
cover a handful of taint policies (e.g., assignments, addition/-
subtraction, and bitwise AND), we have automatically discovered
a total of 342 taint policies that operate pointers. Table II lists
some that we think are interesting for the reader.

Instruction Input Output

1 rdtsc N/A rax=0 and rdx=0
2 cpuid rax,rbx,rcx,rdx=1 rax,rbx,rcx,rdx=0
3 and rcx, rax rcx=1 and rax=0 rcx?=1
4 neg rcx rcx=1 rcx=0
5 add rcx, [rax+0x28] rcx=0 and mem=0 rcx?=1
6 mov eax, edi rax=1 and rdi=1 rax=0
7 rol rax, 0x11 rax=1 rax=0
8 lea rdx, [rip+0x21e3cc] rdx=0 rdx=1
9 shr rax, 0x2 rax=1 rax=0
10 leave rsp=1 and rbp=1 rsp=1 and rbp=1
11 movdqu xmm8, [rsi] xmm8=10 and mem=00 xmm8=00
12 pslldq xmm2, 0x5 xmm2=01 and mem=00 xmm2=00

TABLE II: Selected interesting taint policies that are hard to identify
based on heuristics. Policies are stored in compact manner. Some
properties are omitted. 1: pointer; 0:non-pointer; mem: the memory
read or written; ?: ambiguous policy.

B. Security

1) Address Space Analysis: RUNTIMEASLR performs
module-level re-randomization on the child process.
RUNTIMEASLR provides mremap with cryptographically
secure randomness obtained from /dev/random. In this
evaluation, we set the entropy of randomness to be 28 bits
– which is the default entropy of Linux’ default ASLR. The
generated random base address is of the form 0x7f???????000,
where ? bits are randomized. The security provided by
RUNTIMEASLR is the re-randomization of child processes’
address space, which consists of two parts: (1) remapping all
modules of protected program to randomized addresses; (2)
all other modules (e.g., of Pin and Pintool) are unmapped.
To evaluate the security, we run Nginx web server with
RUNTIMEASLR. We configured the number of worker
processes to be 4, which is the default number suggested
by Nginx and is exactly the amount of physical CPU cores
of the test machine. We then verify the re-randomized
memory mappings of each worker process by checking
/proc/worker-pid/maps. We empirically confirmed that
the question-marked bits in 0x7f???????000 are indeed
continuously randomized. The relative addresses between

10

(a) Nginx w/o RUNTIMEASLR (b) Nginx w/ RUNTIMEASLR

Fig. 6: ASLR bypassing (clone-probing) attack against Nginx web
server with stack reading of Hacking Blind.

different modules are also randomized, which further improves
the effective entropy [23] of default Linux ASLR. We also
confirmed that all other mappings (of Pin and Pintool) are
not shown in /proc/worker-pid/maps, and hence have been
completely unmapped. Based on these results, we conclude that
the expected security is indeed achieved by RUNTIMEASLR.

2) Real Exploit Testing: To further verify the effectiveness
of RUNTIMEASLR, we also test if RUNTIMEASLR can defeat
real clone-probing attack. Fortunately, the Hacking Blind attack
(BROP) [7] is publicly available3. We downloaded the provided
exploit and ran it without any change against Nginx 1.4.0. As
per BROP website, the exploit consists of several steps, including
ASLR bypassing with stack reading, locating the required
gadgets, and building the ROP shellcode. The foremost step
is to efficiently bypass ASLR. The approach proposed in BROP
is so-called stack reading. As already mentioned in section I,
it overwrites the return address on stack byte-by-byte with a
single guessed byte. As the newly forked worker process has
the same address space as the crashed one, the probing can be
repeatedly performed for each byte.

To verify the effectiveness of RUNTIMEASLR, we ran Ng-
inx with and without RUNTIMEASLR. The results are shown in
Figure 6. In the case of Nginx without RUNTIMEASLR, stack
reading can successfully bypass ASLR within two minutes.
However, if RUNTIMEASLR is enabled, we had to manually
terminate the exploit after 10 hours, as it could not even guess
3 bytes. The reason why stack reading does not work under
RUNTIMEASLR is apparent: the correctly guessed bytes keep
changing in later trials due to re-randomization.

C. Performance

In order to test the performance of our approach, we
conducted two independent experiments to be able to measure
the performances of the instrumented parent process (with
heavy-weight pointer tracking) and uninstrumented child (i.e.,
worker) processes.

1) Performance with Web Benchmarks: To measure the
child process performance, we used the Nginx 1.4.0 web
server and measured different performance aspects. The perfor-
mance slowdown that might potentially be introduced by our

3http://www.scs.stanford.edu/brop/

RUNTIMEASLR is measured in comparison to an unmodified
system as baseline. Nginx used four worker child processes
– one pinned to each core. The client to measure network
performance was running on a second machine, which was
connected to the Nginx web server over a 1000BASE-T (Gigabit
Ethernet) switch using a 10m long CAT 5e cable. We measured
two dimensions, connection concurrency performance and
throughput performance to check if either of them is affected
by RUNTIMEASLR.

Connection concurrency measures the round-trip time in
relation to the number n of simultaneously connected clients,
i.e., the time it takes from the beginning of a request until
the complete response has been received from the server. The
more clients that are requesting resources from the server at
the same time, the longer it takes the server to send back the
entire response. To measure the connection concurrency, we
used the Apache Benchmark (ab 2.3) tool. ab lets each of the
n simultaneous connections request 10,000 documents from
the server as fast as possible.
Throughput in turn measures the rate of successfully received
bytes per time unit. For this purpose, we let Nginx deliver a
1 GiB4 file 100 times and averaged the download speed.

As a test bed, we used HTML documents obtained from real
web sites. We mirrored the top 10 Alexa [2] websites into our
Nginx root document root directory using wget. Performance
results showed that the response times only loosely correlate
to the size of the delivered content (see Figure 7). Since
our performance slowdown evaluation is interested in the
RUNTIMEASLR performance in relation to the baseline, the
document size and content did not affect the results as the
quotient of RUNTIMEASLR

baseline was unaffected. For the remainder of
the concurrency tests, we therefore picked a random top 10
web site to test with: Number 6, Amazon.com (442.1 kB of
HTML, CSS and JavaScript).

55
.6

 k
B

68
.4

 k
B

70
.0

 k
B

92
.7

 k
B

16
1.

4
kB

16
3.

0
kB

 35
9.

9
kB

44
2.

1
kB

45
2.

4
kB

58
8.

0
kB

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0
20
40
60
80

100
120
140
160
180

R
oo

t D
oc

um
en

t S
iz

e
[k

B
]

R
es

po
ns

e
Ti

m
e

[m
s]

Response Time (median)
Root Document Size

Fig. 7: Response time for single real-world documents retrieved
from our Nginx webserver using 30 concurrent connections. Content
mirrored from Alexa Top 10.

Concurrency Results: We tested the concurrency perfor-
mance of the RUNTIMEASLR-enabled Nginx with 10, 20, 30,
40 and 50 concurrent clients and there was no measurable
performance overhead. Figure 8 shows the median of 10,000
response times with the number of concurrent connections
n ∈ 10, 20, 30, 40, 50. The worst measured performance
difference was for 10 simultaneous connections and is a

4We use the notation of a Gibibyte (1 GiB = 1024× 1024× 1024 bytes)
instead of a Gigabyte (1 GB = 1, 0003 bytes)

11

http://www.scs.stanford.edu/brop/

slowdown of 0.51%, which is well within the jitter margin
of the experiment.

0%

10%

20%

30%

40%

50%

150 160 170 180 190 200 210
Response Time [ms]

Response Time Distribution 
(50 Concurrent Connections)

Baseline (median 198.6 ms)

RASLR (median 198.6 ms)

0%

10%

20%

30%

40%

50%

35 36 37 38 39 40 41 42 43 44
Response Time [ms]

Response Time Distribution 
(10 Concurrent Connections)

Baseline (median 39.4 ms)

RASLR (median 39.6 ms)

40%

50%

Response Time Distribution

50 Concurrent Clients

870.5 MBit/s

866.4 MBit/s

860.0 MBit/s 870.0 MBit/s 880.0 MBit/s

Baseline (100%)

Pin (99.5%)

150

200

R
es

po
ns

e
Ti

m
e

[m
s]

Concurrency Response Time

Baseline

198.6 ms

158.9 ms

117.7 ms

78.1 ms

39.4 ms

198.6 ms

157.9 ms

117.6 ms

78.4 ms

39.6 ms

0 50 100 150 200 250

50
40
30
20
10

Median of Response Times [ms]

of

 C
on

cu
rr

en
t C

lie
nt

s

RASLR
Baseline

Fig. 8: Nginx response time with different concurrencies.

The overall distribution of response times is depicted in
Figure 9, which shows that the majority of response times is
≈ 200 ms for 50 simultaneous connections and ≈ 40 ms for 10
simultaneous connections. The performance difference between
RUNTIMEASLR and the baseline is not measurable.

Throughput Results: We also measured the average and
peak throughput for a large single file download over HTTP
using only one connection at the same time. The throughput
result for 100 downloads of a 1 GiB file is shown in Table III.
The measured difference is only 0.5% slowdown on average
and a mere 0.1% slowdown for the peak throughput.

Throughput
Average Peak

Baseline 870.5 MBit/s 898.1 MBit/s
RUNTIMEASLR 866.4 MBit/s 897.2 MBit/s

TABLE III: Throughput performance of HTTP file download with
RUNTIMEASLR enabled and without (baseline)

2) Micro Benchmark of Fork: In traditional UNIX systems
and Linux, the fork() syscall is tuned to be very fast. We
measured the performance overhead of our instrumented fork
to give the reader an insight of introduced delays. Table IV
shows the micro-benchmarks for the instrumented fork()
with RUNTIMEASLR. Without RUNTIMEASLR, forking is
extremely efficient, taking only 0.1 ms. RUNTIMEASLR per-
forms Pin detaching, address space remapping, Pin unmapping,
and context switching for fork(). While unmapping and context
switching is efficient, the detaching of Pin seems to be a
bottleneck. Although percentage of performance overhead is
significant, the absolute overhead is less than 150 ms. More
importantly, most daemon processes, e.g., Nginx web server
and Apache web server, only fork worker processes once
and delegate work instead of creating a new process for
each work item, so the performance overhead of fork() with
RUNTIMEASLR only affects the starting time of these servers.

Detach Remap Unmap & Total
Context switch fork

Fork w/ RUNTIMEASLR 109.7 ms 27.0 ms 0.8 ms 137.5 ms

TABLE IV: Micro benchmark for fork() with RUNTIMEASLR. The
original fork() takes 0.1 ms. Worker processes are pre-forked once at
startup in many daemon servers.

Benchmark Original RUNTIMEASLR Overhead
(seconds) (seconds) (times)

gcc 1.13 12,783 11,312
mcf 2.64 24,708 9,359
hmmer 2.28 19,004 8,335
libquantum 0.06 1,491 24,850
xalancbmk 0.08 1,932 24,150
soplex 0.02 217 10,850
lbm 2.28 2,468 1,028
sphinx3 1.61 12,661 7,863

TABLE V: Pointer tracking on SPEC CPU2006 benchmarks. Pointer
tracking is completely detached in child process, and thus does not
affect the performance of child (worker) process.

3) Performance of Pointer Tracking: RUNTIMEASLR is
mainly used to prevent clone-probing attacks targeting daemon
servers. As shown in VII-C3, RUNTIMEASLR imposes no
overhead to the web service itself. Here, we also want to
evaluate the performance of the pointer tracking component.
We first measure the time for Nginx web server to start.
On our machine, it finishs starting within 35 seconds. We
then apply RUNTIMEASLR to SPEC CPU2006 benchmarks
which contains some relatively complicated programs, e.g.,
gcc. Since these benchmark programs do not adopt daemon-
worker scheme, pointer tracking will be performed for all
executed code. In this evaluation, all the benchmark programs
are compiled with options -pie -fPIC -O2. Table V shows
the results. The significantly reduced performance is not
surprising, as RUNTIMEASLR performs runtime taint analysis
to accurately identify all pointers. However, pointer tracking
is only performed in the parent process at startup. The child
process, the actual worker process, is not affected by pointer
tracking (see VII-C1). For the long-running daemon servers,
the starting overhead introduced by “one-time” pointer tracking
before fork is acceptable, but the performance of its provided
service is more critical, and in our case not affected. One may
also wonder about the performance of taint policy generation,
although it is less concerned than pointer tracking, since it is
performed offline. The running time for taint policy generation
aginst Nginx is about 30 seconds.

VIII. DISCUSSION

In this section, we discuss some potential problems with
RUNTIMEASLR, which might appear in special cases.

A. Soundness of Taint Policy Generation

The taint policy generation mechanism of RUNTIMEASLR
is not sound in general, since the instruction abstraction may
generate ambiguous policies. In Section VI-A2, we performed
an in-depth analysis to understand how ambiguous policies
are introduced in the tested programs. From that analysis,
we learned that normal code emitted by compilers usually
process pointers in an universal manner; however, special
programs (e.g., dynamic loader and glibc) may process pointers
specially, resulting in ambiguous policies (about 1% out of all
policies). Although the simple range-checking approach (see
Section VI-A2) is sufficient to handle the ambiguous cases listed
in Table I, manual analysis may still be required to confirm the
correctness of taint policies when more ambiguous cases are
reported by RUNTIMEASLR. If the ambiguous policies cannot

12

0%

10%

20%

30%

40%

50%

150 160 170 180 190 200 210
Response Time [ms]

Response Time Distribution 
(50 Concurrent Connections)

Baseline (median 198.6 ms)

RASLR (median 198.6 ms)

0%

10%

20%

30%

40%

50%

35 36 37 38 39 40 41 42 43 44
Response Time [ms]

Response Time Distribution 
(10 Concurrent Connections)

Baseline (median 39.4 ms)

RASLR (median 39.6 ms)

40%

50%

Response Time Distribution

50 Concurrent Clients

870.5 MBit/s

866.4 MBit/s

860.0 MBit/s 870.0 MBit/s 880.0 MBit/s

Baseline (100%)

Pin (99.5%)

150

200

R
es

po
ns

e
Ti

m
e

[m
s]

Concurrency Response Time

Baseline

198.6 ms

158.9 ms

117.7 ms

78.1 ms

39.4 ms

198.6 ms

157.9 ms

117.6 ms

78.4 ms

39.6 ms

0 50 100 150 200 250

50
40
30
20
10

Median of Response Times [ms]

of

 C
on

cu
rr

en
t C

lie
nt

s

RASLR
Baseline

(a) Always 50 concurrent connections

0%

10%

20%

30%

40%

50%

150 160 170 180 190 200 210
Response Time [ms]

Response Time Distribution 
(50 Concurrent Connections)

Baseline (median 198.6 ms)

RASLR (median 198.6 ms)

0%

10%

20%

30%

40%

50%

35 36 37 38 39 40 41 42 43 44
Response Time [ms]

Response Time Distribution 
(10 Concurrent Connections)

Baseline (median 39.4 ms)

RASLR (median 39.6 ms)

40%

50%

Response Time Distribution

50 Concurrent Clients

870.5 MBit/s

866.4 MBit/s

860.0 MBit/s 870.0 MBit/s 880.0 MBit/s

Baseline (100%)

Pin (99.5%)

150

200
R

es
po

ns
e

Ti
m

e
[m

s]

Concurrency Response Time

Baseline

198.6 ms

158.9 ms

117.7 ms

78.1 ms

39.4 ms

198.6 ms

157.9 ms

117.6 ms

78.4 ms

39.6 ms

0 50 100 150 200 250

50
40
30
20
10

Median of Response Times [ms]

of

 C
on

cu
rr

en
t C

lie
nt

s

RASLR
Baseline

(b) Always 10 concurrent connections

Fig. 9: Nginx response time distribution with/without our pointer tracking Pin instrumentation.

be handled by range-checking, one may need to manually
define the special taint policies. Alternatively, an automated
approach to handle ambiguous policies is to relax the instruction
abstraction. For example, including the effective width (or the
highest order of bit) of the operands can remove ambiguous case
5 in Table I. A tradeoff needs to be made between the degree
of abstraction and pointer tracking performance – relaxing
the abstraction will introduce further performance overhead in
pointer tracking.

B. Completeness of Taint Policy

The pointer tracking of RUNTIMEASLR consists of the
offline taint policy generation and runtime taint tracking. In our
experiments, because the sample programs used for generating
taint policy include the target program, and the inputs for two
runs for policy generation and taint tracking are exactly the
same, the policy set is usually complete for pointer tracking
in practice – we did not meet any missed policy in Nginx.
However, we cannot guarantee the 100% completeness of
policy set, as the two runs of program for policy generation
and taint tracking are independent. For example, if the system
administrator changes the Nginx configurations at runtime (i.e.,
after policy generation), new code paths not covered during
policy generation may be introduced, thus may result in false
negative policy. Assuming such cases exist, we can either
manually add the reported new policies – as the total number
of x86 64 instructions is limited5 – or adopt an automatic
approach: if we find an instruction generates, updates, or
removes a pointer, but is not covered in existing policy set, we
can append it to the policy set at runtime.

C. Applicability for General Programs

A program that does not adopt the daemon-worker scheme
is not vulnerable to clone-probing, so it is not necessary to
use RUNTIMEASLR. As specified in threat model in subsec-
tion II-A, RUNTIMEASLR is dedicated to server programs that
pre-fork worker processes processing users’ actual requests and
perform light-weight tasks (e.g., worker process management) in
daemon process, e.g., web servers. RUNTIMEASLR performs
runtime taint analysis to accurately identify all pointers in parent
(daemon) processes, so the performance of parent process is dra-
matically reduced. Current implementation of RUNTIMEASLR

5http://ref.x86asm.net/coder64.html

is not suitable for server programs that perform heavy-weight
tasks in parent process for performance reasons. Regarding per-
formance in pointer tracking, RUNTIMEASLR can be improved
in two ways: (1) static code instrumentation using a compiler
or binary rewriting can help improve the pointer tracking
performance. It is worth noting that statically instrumented
code is hard to be completely detached in worker processes,
which is actually the main reason we chose to employ dynamic
instrumentation; (2) as our primary goal is to make the pointer
tracking accurate, our current implementation still has room
for improvements to tweak its performance. Improving the
performance of pointer tracking is a long-studied topic [9],
[26], [28], we can employ these techniques to improve the
performance of pointer tracking.

D. Pointer Obfuscation

Pointer tracking in RUNTIMEASLR can generally handle
pointer obfuscations, as encryption and decryption are sym-
metric, i.e., the encrypted pointers will be recognized when
they get decrypted. However, we encounter a problem when
pointer patching happens on encrypted or otherwise obfuscated
pointers. If we do not know how the pointers are encrypted,
it is impossible to patch the encrypted pointers in memory;
therefore, we assume all pointer obfuscations applied in the
protected program must be known to RUNTIMEASLR. To
better handle this, we provide a detection to help users identify
pointer obfuscations. Note that, in the case of Nginx, we only
found one such case – glibc’s mangled pointers.

IX. RELATED WORK

A. Pointer Tracking

The heart of runtime re-randomization is accurately tracking
all pointers. Pointer tracking has been well-studied for object
bounds checking for memory safety, and pointer protection.
Existing works either employ type-based analysis or heuristics-
based analysis to identify pointers. Type-based analysis [27],
[40], [39], [30] statically infers the type information of an
object (e.g., a pointer). It is efficient and easy to use; however,
it suffers from a high number of false negatives. Pointers with
non-pointer type (e.g., base addresses) and the ones prepared by
the OS are not covered. Memcheck [46], Clause et al [11], and
Raksha [15] empirically specify the pointer propagation rules to
track pointers. Although they specified very detailed rules, it is

13

still difficult to cover all cases, due to the complexity of C/C++
programs. We propose an automatic mechanism to accurately
identify all pointers (subsection VII-A). Some interesting cases
that are not discussed in heuristics-based analysis papers are
shown in Table II.

B. Re-randomization

Morula [32] is one of most related works, as it also targets
the ASLR limitation with fork. Android adopts the Zygote
model that starts app by forking, so that every app shares the
same address space layout. Morula addresses this problem by
simply maintaining a pool of pre-forked but re-randomized
Zygote processes (template), so that when an app is about to
start, one Zygote process is picked, and it starts execution from
its entry point. Unfortunately, in our case of daemon processes,
its child processes are forked on the fly, which starts execution
from the point after fork() rather than the entry point. The
semantic-preserving requirement of re-randomization makes
RUNTIMEASLR fundamentally more difficult than Morula.
We cannot simply fork-exec the child process; rather, have
to perform runtime re-randomization. Similarly, ASR [22]
performs re-randomization at load-time, so not all semantics are
preserved. Isomeron [16] and Dynamic Software Diversity [12]
dynamically choose targets for indirect branches at runtime to
reduce the probability of predicting the correct runtime address
of ROP gadgets. In their proposals, clone-probing attacks are
still effective, as child processes still share the same memory
layout. TASR [6] re-randomizes code sections after a pair
of socket read/write. It requires compiler support and cannot
protect data pointers.

C. Code and Data Diversification

Code diversification [42], [31] makes multiple copies of
the code, which preserves the semantics. An assumption of
Code diversification is that the attacker cannot get the same
copy of the code. This assumption does not hold when there
are memory overread vulnerabilities in the program [47]. Data
layout randomization [5], [10], [34] mitigates buffer overrun by
making the offset between the target data (e.g., return address)
and overflow point unpredictable. However, clone-probing
attacks can still work under code or data diversification, since
the child processes still share their parent’s layout.

D. Fine-grained ASLR and Control-flow Integrity

Fine-grained ASLR [22], [29], [4], [48], [24], [18] and
Control-flow Integrity [50], [51], [1], [17], [41], [37], [38] aim
to make the exploit more difficult after ASLR is bypassed.
Complementarily, RUNTIMEASLR aims to defend against the
first step– bypassing ASLR. Therefore, RUNTIMEASLR is
orthogonal to these techniques.

X. CONCLUSION

A fundamental limitation with ASLR is that the forked
child processes always share the same address space layout as
their parent process. This has resulted in clone-probing attacks.
We propose RUNTIMEASLR, the first approach that prevents
clone-probing attacks without altering the intended semantics
of child forking. RUNTIMEASLR consistently re-randomizes
the address space of every child after fork() at runtime while

keeping the parents state. The heart of RUNTIMEASLR is an
automatic, systematic, and holistic pointer tracking mechanism,
which we believe is a useful tool for future researches on pointer
identification and protection. Our evaluation results on Nginx
web server show that RUNTIMEASLR can correctly identify
all pointers and effectively prevent clone-probing attacks.
More importantly, RUNTIMEASLR imposes no performance
overhead to the provided service (after pre-forking).

ACKNOWLEDGMENT

We thank the anonymous reviewers and David Wagner
for their valuable feedback, as well as our operations staff
for their proofreading efforts. This research was supported
in part by the BMBF-funded Center for IT Security, Privacy
and Accountability (CISPA). Kangjie Lu and Wenke Lee were
supported in part by the NSF award CNS-1017265, CNS-
0831300, CNS-1149051 and DGE-1500084, by the ONR under
grant N000140911042 and N000141512162, by the DHS under
contract N66001-12-C-0133, by the United States Air Force
under contract FA8650-10-C-7025, by the DARPA Transparent
Computing program under contract DARPA-15-15-TC-FP-
006. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF, ONR, DHS, United
States Air Force or DARPA.

REFERENCES

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in ACM Conference on Computer and Communication Security,
2005.

[2] Alexa Internet, Inc., “Top 500 Global Sites,” http://www.alexa.com/
topsites.

[3] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny,
“You can run but you can’t read: Preventing disclosure exploits in
executable code,” in Proceedings of the 21st ACM conference on
Computer and communications security, 2014.

[4] M. Backes and S. Nürnberger, “Oxymoron: Making fine-grained memory
randomization practical by allowing code sharing,” in 23rd USENIX
Security Symposium, Aug. 2014.

[5] S. Bhatkar and R. Sekar, “Data space randomization,” in Proceedings
of the 5th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, ser. DIMVA ’08, 2008.

[6] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi, “Timely
rerandomization for mitigating memory disclosures,” in Proceedings of
the 22nd ACM Computer and Communications Security (CCS’15), Oct
2015.

[7] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking blind,” in Proceedings of the 2014 IEEE Symposium on Security
and Privacy, Washington, DC, USA, 2014.

[8] H. Bojinov, D. Boneh, R. Cannings, and I. Malchev, “Address space
randomization for mobile devices,” in Proceedings of the Fourth ACM
Conference on Wireless Network Security, ser. WiSec ’11, 2011.

[9] E. Bosman, A. Slowinska, and H. Bos, “Minemu: The world’s fastest
taint tracker,” in Proceedings of the 14th International Conference on
Recent Advances in Intrusion Detection, ser. RAID’11, 2011.

[10] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida,
“Stackarmor: Comprehensive protection from stack-based memory error
vulnerabilities for binaries,” in Proceedings of the 2015 Network and
Distributed System Security Symposium, ser. NDSS ’15, 2015.

[11] J. Clause, I. Doudalis, A. Orso, and M. Prvulovic, “Effective memory
protection using dynamic tainting,” in Proceedings of the Twenty-
second IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’07, 2007.

14

http://www.alexa.com/topsites
http://www.alexa.com/topsites

[12] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Thwart-
ing cache side-channel attacks through dynamic software diversity,” in
22nd Annual Network & Distributed System Security Symposium, 2015.

[13] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in 36th IEEE Symposium on Security
and Privacy, 2015.

[14] S. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi,
A.-R. Sadeghi, T. Holz, B. D. Sutter, and M. Franz, “It’s a TRAP: Table
randomization and protection against function reuse attacks,” in Proceed-
ings of the 22nd ACM conference on Computer and communications
security, ser. CCS ’15, 2015.

[15] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible informa-
tion flow architecture for software security,” in Proceedings of the 34th
Annual International Symposium on Computer Architecture, ser. ISCA
’07, 2007.

[16] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code randomization resilient to (just-in-time) return-oriented
programming,” in 22nd Annual Network & Distributed System Security
Symposium, 2015.

[17] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in 23rd USENIX Security Symposium, 2014.

[18] L. V. Davi, A. Dmitrienko, S. Nürnberger, and A.-R. Sadeghi, “Gadge me
if you can: Secure and efficient ad-hoc instruction-level randomization
for x86 and arm,” in 8th ACM SIGSAC symposium on Information,
computer and communications security (ACM ASIACCS 2013). ACM,
2013, pp. 299–310.

[19] I. Dillig, T. Dillig, and A. Aiken, “Reasoning about the unknown in
static analysis,” Commun. ACM, 2010.

[20] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li,
N. Weaver, J. Amann, J. Beekman, M. Payer, and V. Paxson, “The
matter of heartbleed,” in Proceedings of the 2014 Conference on Internet
Measurement Conference, ser. IMC ’14, 2014.

[21] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. Shrobe,
S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi, “Missing the
point(er): On the effectiveness of code pointer integrity,” in Proceedings
of the IEEE Symposium on Security and Privacy, 2015.

[22] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating
system security through efficient and fine-grained address space random-
ization,” in Presented as part of the 21st USENIX Security Symposium
(USENIX Security 12), 2012.

[23] W. Herlands, T. Hobson, and P. J. Donovan, “Effective entropy: Security-
centric metric for memory randomization techniques,” in Proceedings
of the 7th USENIX Conference on Cyber Security Experimentation and
Test, ser. CSET’14, 2014.

[24] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “ILR:
Where’d my gadgets go?” in Proceedings of the 2012 IEEE Symposium
on Security and Privacy, 2012.

[25] Intel, Intel 64 and IA-32 Architectures Software Developers Manual
– Volume 2 (2A, 2B & 2C): Instruction Set Reference, A-Z. Intel
Corporation, 2025.

[26] K. Jee, V. P. Kemerlis, A. D. Keromytis, and G. Portokalidis, “Shad-
owReplica: Efficient parallelization of dynamic data flow tracking,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, ser. CCS ’13, 2013.

[27] R. Johnson and D. Wagner, “Finding user/kernel pointer bugs with type
inference,” in Proceedings of the 13th Conference on USENIX Security
Symposium - Volume 13, ser. SSYM’04, 2004.

[28] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “Libdft:
Practical dynamic data flow tracking for commodity systems,” in
Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual
Execution Environments, ser. VEE ’12, 2012.

[29] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space
layout permutation (ASLP): Towards fine-grained randomization of
commodity software,” in Proceedings of the 22Nd Annual Computer
Security Applications Conference, 2006.

[30] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,

“Code-pointer integrity,” in USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2014.

[31] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
software diversity,” in Proceedings of the 2014 IEEE Symposium on
Security and Privacy, 2014.

[32] B. Lee, L. Lu, T. Wang, T. Kim, and W. Lee, “From Zygote to Morula:
Fortifying weakened aslr on android,” in Proceedings of the 2014 IEEE
Symposium on Security and Privacy, ser. SP ’14, 2014.

[33] L. Li, J. E. Just, and R. Sekar, “Address-space randomization for
windows systems,” in Proceedings of the 22nd Annual Computer Security
Applications Conference, ser. ACSAC ’06, 2006.

[34] Z. Lin, R. D. Riley, and D. Xu, “Polymorphing software by randomizing
data structure layout,” in Proceedings of the 6th International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment,
ser. DIMVA ’09, 2009.

[35] Long Le, “Exploiting nginx chunked overflow bug, the undisclosed
attack vector,” http://ropshell.com/slides/Nginx chunked overflow the
undisclosed attack vector.pdf.

[36] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “ASLR-Guard:
Stopping address space leakage for code reuse attacks,” in Proceedings
of the 22nd ACM conference on Computer and communications security,
ser. CCS ’15, 2015.

[37] A. J. Mashtizadeh, A. Bittau, D. Mazieres, , and D. Boneh, “Cryp-
tographically enforced control flow integrity,” 2014, arXiv preprint
arXiv:1408.1451.

[38] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque control-flow integrity,” in 22nd Annual Network & Distributed
System Security Symposium, 2015.

[39] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “SoftBound:
Highly Compatible and Complete Spatial Memory Safety for C,” in
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2009.

[40] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer, “CCured:
Type-safe retrofitting of legacy software,” ACM Trans. Program. Lang.
Syst., May 2005.

[41] B. Niu and G. Tan, “Modular control-flow integrity,” in Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2014.

[42] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in Proceedings of the 2012 IEEE Symposium on Security
and Privacy, 2012.

[43] PaX Team, http://pax.grsecurity.net/.
[44] ——, “PaX Address Space Layout Randomization (ASLR),” http://pax.

grsecurity.net/docs/aslr.txt.
[45] J. Seibert, H. Okkhravi, and E. Söderström, “Information leaks without

memory disclosures: Remote side channel attacks on diversified code,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, 2014, pp. 54–65.

[46] J. Seward and N. Nethercote, “Using Valgrind to detect undefined value
errors with bit-precision,” in Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ser. ATEC ’05, 2005.

[47] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R.
Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization,” in IEEE Symposium on Security
and Privacy, 2013.

[48] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary Stirring:
Self-randomizing instruction addresses of legacy x86 binary code,”
in Proceedings of the 2012 ACM Conference on Computer and
Communications Security, 2012.

[49] H. Xu and S. Chapin, “Address-space layout randomization using code
islands,” in Journal of Computer Security. IOS Press, 2009.

[50] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song,
and W. Zou, “Practical control flow integrity and randomization for
binary executables,” in Proceedings of the 2013 IEEE Symposium on
Security and Privacy, 2013.

[51] M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,” in
22nd USENIX Security Symposium, 2013.

15

http://ropshell.com/slides/Nginx_chunked_overflow_the_undisclosed_attack_vector.pdf
http://ropshell.com/slides/Nginx_chunked_overflow_the_undisclosed_attack_vector.pdf
http://pax.grsecurity.net/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

	Introduction
	Contributions
	Organization of the paper

	Overview of RuntimeASLR
	Threat Model
	The RuntimeASLR Approach

	Automated Taint Policy Generation for Pointers
	Realizing multi-run pointer verification
	Multi-thread Support

	Taint Tracking for Pointers
	Pointer Sources
	Syscall Modeling
	Bookkeeping

	Address Space Re-randomization
	Re-randomization Granularity

	Implementation
	Policy Generator
	Instruction Abstraction
	Ambiguous Policy
	Hidden Pointers in SSE Registers
	Mangled Pointers

	Pointer Tracker
	Syscall Handling
	Pointer Scope and Memory Deallocation

	Randomizer
	Recursive Forking

	Evaluation
	Correctness
	Theoretical Analysis
	Memory Analysis

	Security
	Address Space Analysis
	Real Exploit Testing

	Performance
	Performance with Web Benchmarks
	Micro Benchmark of Fork
	Performance of Pointer Tracking

	Discussion
	Soundness of Taint Policy Generation
	Completeness of Taint Policy
	Applicability for General Programs
	Pointer Obfuscation

	Related Work
	Pointer Tracking
	Re-randomization
	Code and Data Diversification
	Fine-grained ASLR and Control-flow Integrity

	Conclusion
	References

