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Abstract
Attacks that exploit out-of-bounds errors in C and C++
programs are still prevalent despite many years of re-
search on bounds checking. Previous backwards compat-
ible bounds checking techniques, which can be applied to
unmodified C and C++ programs, maintain a data struc-
ture with the bounds for each allocated object and per-
form lookups in this data structure to check if pointers
remain within bounds. This data structure can grow large
and the lookups are expensive.

In this paper we present a backwards compatible bounds
checking technique that substantially reduces perfor-
mance overhead. The key insight is to constrain the sizes
of allocated memory regions and their alignment to en-
able efficient bounds lookups and hence efficient bounds
checks at runtime. Our technique has low overhead in
practice—only 8% throughput decrease for Apache—
and is more than two times faster than the fastest pre-
vious technique and about five times faster—using less
memory—than recording object bounds using a splay
tree.

1 Introduction

Bounds checking C and C++ code protects against a wide
range of common vulnerabilities. The challenge has been
making bounds checking fast enough for production use
and at the same time backwards compatible with binary
libraries to allow incremental deployment. Solutions us-
ing fat pointers [24, 18] extend the pointer representation
with bounds information. This enables efficient bounds
checks but breaks backwards compatibility because in-
creasing the pointer size changes the memory layout of
data structures. Backwards compatible bounds checking
techniques [19, 30, 36, 15] use a separate data structure
to lookup bounds information. Initial attempts incurred a
significant overhead [19, 30, 36] (typically 2x–10x) be-
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Figure 1: Allocated memory is often padded to a partic-
ular alignment boundary, and hence can be larger than
the requested object size. By checkingallocation bounds
rather than object bounds, we allow benign accesses to the
padding, but can significantly reduce the cost of bounds
lookups at runtime.

cause looking up bounds is expensive and the data struc-
ture can grow large. More recent work [15] has applied
sophisticated static pointer analysis to reduce the number
of bounds lookups; this managed to reduce the runtime
overhead on the Olden benchmarks to 12% on average.

In this paper we presentbaggy bounds checking, a back-
wards compatible bounds checking technique that re-
duces the cost of bounds checks. We achieve this by
enforcingallocation bounds rather than precise object
bounds, as shown in Figure 1. Since memory allocators
pad object allocations to align the pointers they return,
there is a class of benign out-of-boundserrors that violate
the object bounds but fall within the allocation bounds.
Previous work [4, 19, 2] has exploited this property in a
variety of ways.

Here we apply it to efficient backwards compatible
bounds checking. We use a binary buddy allocator to en-
able a compact representation of the allocation bounds:
since all allocation sizes are powers of two, a single byte
is sufficient to store the binary logarithm of the allocation



size. Furthermore, there is no need to store additional in-
formation because the base address of an allocation with
sizes can be computed by clearing thelog2(s) least sig-
nificant bits of any pointer to the allocated region. This
allows us to use a space and time efficient data struc-
ture for the bounds table. We use a contiguous array
instead of a more expensive data structure (such as the
splay trees used in previous work). It also provides us
with an elegant way to deal with common cases of tem-
porarily out-of-bounds pointers. We describe our design
in more detail in Section 2.

We implementedbaggy bounds checking as a compiler
plug-in for the Microsoft Phoenix [22] code genera-
tion framework, along with additional run time com-
ponents (Section 3). The plug-in inserts code to check
bounds for all pointer arithmetic that cannot be statically
proven safe, and to align and pad stack variables where
necessary. The run time component includes a binary
buddy allocator for heap allocations, and user-space vir-
tual memory handlers for growing the bounds table on
demand.

In Section 4 we evaluate the performance of our sys-
tem using the Olden benchmark (to enable a direct com-
parison with Dhurjati and Adve [15]) and SPECINT
2000. We compare our space overhead with a version
of our system that uses the splay tree implementation
from [19, 30]. We also verify the efficacy of our sys-
tem in preventing attacks using the test suite described
in [34], and run a number of security critical COTS com-
ponents to confirm its applicability.

Section 5 describes our design and implementation for
64-bit architectures. These architectures typically have
“spare” bits within pointers, and we describe a scheme
that uses these to encode bounds information directly in
the pointer rather than using a separate lookup table. Our
comparative evaluation shows that the performance ben-
efit of using these spare bits to encode bounds may not in
general justify the additional complexity; however using
them just to encode information to recover the bounds
for out-of-bounds pointers may be worthwhile.

Finally we survey related work (Section 6), discuss limi-
tations and possible future work (Section 7) and conclude
(Section 8).

2 Design

2.1 Baggy Bounds Checking

Our system shares the overall architecture of backwards
compatible bounds checking systems for C/C++ (Fig-
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Figure 2: Overall system architecture, with our contribu-
tion highlighted within the dashed box.

ure 2). It converts source code to an intermediate repre-
sentation (IR), finds potentially unsafe pointer arithmetic
operations, and inserts checks to ensure their results are
within bounds. Then, it links the generated code with
our runtime library and binary libraries—compiled with
or without checks—to create a hardened executable.

We use thereferent object approach for bounds checking
introduced by Jones and Kelly [19]. Given an in-bounds
pointer to an object, this approach ensures that any de-
rived pointer points to the same object. It records bounds
information for each object in abounds table. This ta-
ble is updated on allocation and deallocation of objects:
this is done by themalloc family of functions for heap-
based objects; on function entry and exit for stack-based
objects; and on program startup for global objects.

The referent object approach performs bounds checks on
pointer arithmetic. It uses the source pointer to lookup
the bounds in the table, performs the operation, and
checks if the destination pointer remains in bounds. If
the destination pointer does not point to the same object,
we mark it out-of-bounds to prevent any dereference (as
in [30, 15]). However we permit its use in further pointer
arithmetic, since it may ultimately result in an in-bounds
pointer. The marking mechanism is described in detail in
Section 2.4.

Baggy bounds checking uses a very compact repre-



sentation for bounds information. Previous techniques
recorded a pointer to the start of the object and its size in
the bounds table, which requires at least eight bytes. We
pad and align objects to powers of two and enforce allo-
cation bounds instead of object bounds. This enables us
to use a single byte to encode bounds information. We
store the binary logarithm of the allocation size in the
bounds table:

e = log2(size);

Given this information, we can recover the allocation
size and a pointer to the start of the allocation with:

size = 1 << e;

base = p & ˜(size-1);

To convert from an in-bounds pointer to the bounds for
the object we require abounds table. Previous solutions
based on the referent object approach (such as [19, 30,
15]) have implemented the bounds table using a splay
tree.

Baggy bounds, by contrast, implement the bounds table
using a contiguous array. The table is small because each
entry uses a single byte. Additionally, we partition mem-
ory into alignedslots with slot size bytes. The bounds
table has an entry for each slot rather than an entry per
byte. So the space overhead of the table is1/slot size,
and we can tuneslot size to balance memory waste be-
tween padding and table size. We align objects to slot
boundaries to ensure that no two objects share a slot.

Accesses to the table are fast. To obtain a pointer to the
entry corresponding to an address, we right-shift the ad-
dress by the constantlog2(slot size) and add the con-
stant table base. We can use this pointer to retrieve the
bounds information with a single memory access, instead
of having to traverse and splay a splay tree (as in previous
solutions).

Note that baggy bounds checking permits benign out-
of-bounds accesses to the memory padding after an ob-
ject. This does not compromise security because these
accesses cannot write or read other objects. They cannot
be exploited for typical attacks such as (a) overwriting a
return address, function pointer or other security critical
data; or (b) reading sensitive information from another
object, such as a password.

We also defend against a less obvious attack where the
program reads values from the padding area that were
originally written to a deleted object that occupied the
same memory. We prevent this attack by clearing the
padding on memory allocation.

Pointer arithmetic operation:

p’ = p + i

Explicit bounds check:

size = 1 << table[p>>slot_size]
base = p & ˜(size-1)

p’ >= base && p’ - base < size

Optimized bounds check:

(pˆp’)>>table[p>>slot_size] == 0

Figure 3: Baggy bounds enables optimized bounds
checks: we can verify that pointerp’ derived from
pointerp is within bounds by simply checking thatp and
p’ have the same prefix with only thee least significant
bits modified, wheree is the binary logarithm of the allo-
cation size.

2.2 Efficient Checks

In general, bounds checking the resultp’ of pointer
arithmetic onp involves two comparisons: one against
the lower bound and one against the upper bound, as
shown in Figure 3.

We devised an optimized bounds check that does not
even need to compute the lower and upper bounds. It
uses the value ofp and the value of the binary logarithm
of the allocation size,e, retrieved from the bounds table.
The constraints on allocation size and alignment ensure
thatp’ is within the allocation bounds if it differs from
p only in thee least significant bits. Therefore, it is suf-
ficient to shiftpˆp’ by e and check if the result is zero,
as shown in Figure 3.

Furthermore, for pointers p’ where
sizeof( * p’) > 1 , we also need to check that
(char * ) p’ + sizeof( * p’) - 1 is within
bounds to prevent a subsequent access to* p’ from
crossing the allocation bounds. Baggy bounds checking
can avoid this extra check ifp’ points to a built-in
type. Aligned accesses to these types cannot overlap
an allocation boundary because their size is a power of
two and is less thanslot size. When checking pointers
to structures that do not satisfy these constraints, we
perform both checks.

2.3 Interoperability

Baggy bounds checking works even when instrumented
code is linked against libraries that are not instrumented.



The library code works without change because it per-
forms no checks but it is necessary to ensure that instru-
mented code works when accessing memory allocated in
an uninstrumented library. This form of interoperabil-
ity is important because some libraries are distributed in
binary form.

We achieve interoperability by using the binary loga-
rithm of the maximum allocation size as the default value
for bounds table entries. Instrumented code overwrites
the default value on allocations with the logarithm of the
allocation size and restores the default value on deallo-
cations. This ensures that table entries for objects al-
located in uninstrumented libraries inherit the default
value. Therefore, instrumented code can perform checks
as normal when accessing memory allocated in a library,
but checking is effectively disabled for these accesses.
We could intercept heap allocations in library code at
link time and use the buddy allocator to enable bounds
checks on accesses to library-allocated memory, but this
is not done in the current prototype.

2.4 Support for Out-Of-Bounds Pointers

A pointer may legally point outside the object bounds in
C. Such pointers should not be dereferenced but can be
compared and used in pointer arithmetic that can eventu-
ally result in a valid pointer that may be dereferenced by
the program.

Out-of-bounds pointers present a challenge for the ref-
erent object approach because it relies on an in-bounds
pointer to retrieve the object bounds. The C standard
only allows out-of-bounds pointers to one element past
the end of an array. Jones and Kelly [19] support these
legal out-of-bounds pointers by padding objects with one
byte. We did not use this technique because it interacts
poorly with our constraints on allocation sizes: adding
one byte to an allocation can double the allocated size in
the common case where the requested allocation size is a
power of two.

Many programs violate the C standard and generate ille-
gal but harmless out-of-bounds pointers that they never
dereference. Examples include faking a base one array
by decrementing the pointer returned bymalloc and
other equally tasteless uses. CRED [30] improved on the
Jones and Kelly bounds checker [19] by tracking such
pointers using another auxiliary data structure. We did
not use this approach because it adds overhead on deal-
locations of heap and local objects: when an object is
deallocated the auxiliary data structure must be searched
to remove entries tracking out-of-bounds pointers to the
object. Additionally, entries in this auxiliary data struc-
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Figure 4: We can tell whether a pointer that is out-
of-bounds by less thanslot size/2 is below or above
an allocation. This lets us correctly adjust it to get a
pointer to the object by respectively adding or subtract-
ing slot size.

ture may accumulate until their referent object is deallo-
cated.

We handle out-of-bounds pointers withinslot size/2
bytes from the original object as follows. First, we mark
out-of-bounds pointers to prevent them from being deref-
erenced (as in [15]). We use the memory protection hard-
ware to prevent dereferences by setting the most signifi-
cant bit in these pointers and by restricting the program
to the lower half of the address space (this is often al-
ready the case for user-space programs). We can recover
the original pointer by clearing the bit.

The next challenge is to recover a pointer to the referent
object from the out-of-bounds pointer without resorting
to an additional data structure. We can do this for the
common case when out-of-bounds pointers are at most
slot size/2 bytes before or after the allocation. Since
the allocation bounds are aligned to slot boundaries, we
can find if a marked pointer is below or above the alloca-
tion by checking whether it lies in the top or bottom half
of a memory slot respectively, as illustrated in Figure 4.
We can recover a pointer to the referent object by adding
or subtractingslot size bytes. This technique cannot
handle pointers that go more thanslot size/2 bytes out-
side the original object. In Section 5.2, we show how
to take advantage of the spare bits in pointers on 64 bit
architectures to increase this range, and in Section 7 we
discuss how we could add support for arbitrary out-of-
bounds pointers while avoiding some of the problems of
previous solutions.

It is not necessary to instrument pointer dereferences.
Similarly, there is no need to instrument pointer equal-
ity comparisons because the comparison will be correct
whether the pointers are out-of-bounds or not. But we
need to instrument inequality comparisons to support



comparing an out-of-bounds pointer with an in-bounds
one: the instrumentation must clear the high-order bit of
the pointers before comparing them. We also instrument
pointer differences in the same way.

Like previous bounds checking solutions [19, 30, 15], we
do not support passing an out-of-bounds pointer to unin-
strumented code. However, this case is rare. Previous
work [30] did not encounter this case in several million
lines of code.

2.5 Static Analysis

Bounds checking has relied heavily on static analysis to
optimize performance [15]. Checks can be eliminated if
it can be statically determined that a pointer is safe, i.e.
always within bounds, or that a check is redundant due to
a previous check. Furthermore, checks or just the bounds
lookup can be hoisted out of loops. We have not imple-
mented a sophisticated analysis and, instead, focused on
making checks efficient.

Nevertheless, our prototype implements a simple intra-
procedural analysis to detect safe pointer operations.
We track allocation sizes and use the compiler’s vari-
able range analysis to eliminate checks that are statically
shown to be within bounds. We also investigate an ap-
proach to hoist checks out of loops that is described in
Section 3.

We also use static analysis to reduce the number of local
variables that are padded and aligned. We only pad and
align local variables that are indexed unsafely within the
function, or whose address is taken, and therefore pos-
sibly leaked from the function. We call these variables
unsafe.

3 Implementation

We used the Microsoft Phoenix [22] code generation
framework to implement a prototype system for x86 ma-
chines running Microsoft Windows. The system consists
of a plug-in to the Phoenix compiler and a runtime sup-
port library. In the rest of this section, we describe some
implementation details.

3.1 Bounds Table

We chose aslot size of 16 bytes to avoid penalizing
small allocations. Therefore, we reserve1/16th of the
address space for the bounds table. Since pages are al-
located to the table on demand, this increases memory

utilization by only 6.25%. We reserve the address space
required for the bounds table on program startup and in-
stall a user space page fault handler to allocate missing
table pages on demand. All the bytes in these pages are
initialized by the handler to the value31, which encom-
passes all the addressable memory in the x86 (an alloca-
tion size of231 at base address0). This prevents out-of-
bounds errors when instrumented code accesses memory
allocated by uninstrumented code.

3.2 Padding and Aligning

We use a binary buddy allocator to satisfy the size and
alignment constraints on heap allocations. Binary buddy
allocators provide low external fragmentation but suffer
from internal fragmentation because they round alloca-
tion sizes to powers of two. This shortcoming is put to
good use in our system. Our buddy allocator implemen-
tation supports a minimum allocation size of 16 bytes,
which matches ourslot size parameter, to ensure that
no two objects share the same slot.

We instrument the program to use our version of
malloc -style heap allocation functions based on the
buddy allocator. These functions set the corresponding
bounds table entries and zero the padding area after an
object. For local variables, we align the stack frames of
functions that contain unsafe local variables at runtime
and we instrument the function entry to zero the padding
and update the appropriate bounds table entries. We also
instrument function exit to reset table entries to 31 for
interoperability when uninstrumented code reuses stack
memory. We align and pad static variables at compile
time and their bounds table entries are initialized when
the program starts up.

Unsafe function arguments are problematic because
padding and aligning them would violate the calling con-
vention. Instead, we copy them on function entry to ap-
propriately aligned and padded local variables and we
change all references to use the copies (except for uses
of va_list that need the address of the last explicit ar-
gument to correctly extract subsequent arguments). This
preserves the calling convention while enabling bounds
checking for function arguments.

The Windows runtime cannot align stack objects to more
than 8K nor static objects to more than 4K (configurable
using the/ALIGN linker switch). We could replace
these large stack and static allocations with heap alloca-
tions to remove this limitation but our current prototype
sets the bounds table entries for these objects to 31.

Zeroing the padding after an object can increase space
and time overhead for large padding areas. We avoid this



overhead by relying on the operating system to zero al-
located pages on demand. Then we track the subset of
these pages that is modified and we zero padding areas in
these pages on allocations. Similar issues are discussed
in [9] and the standard allocator uses a similar technique
for calloc . Our buddy allocator also uses this tech-
nique to avoid explicitly zeroing large memory areas al-
located withcalloc .

3.3 Checks

We add checks for each pointer arithmetic and array in-
dexing operation but, following [15], we do not instru-
ment accesses to scalar fields in structures and we do not
check pointer dereferences. This facilitates a direct com-
parison with [15]. We could easily modify our imple-
mentation to perform these checks, for example, using
the technique described in [14].

We optimize bounds checks for the common case of in-
bounds pointers. To avoid checking if a pointer is marked
out-of-bounds in the fast path, we set all the entries in the
bounds table that correspond to out-of-bounds pointers
to zero. Since out-of-bounds pointers have their most
significant bit set, we implement this by mapping all the
virtual memory pages in the top half of the bounds table
to a shared zero page. This ensures that our slow path
handler is invoked on any arithmetic operation involving
a pointer marked out-of-bounds.

bounds
lookup











mov eax, buf
shr eax, 4
mov al, byte ptr [TABLE+eax]

pointer
arithmetic







char *p = buf[i];

bounds
check















mov ebx, buf
xor ebx, p
shr ebx, al
jz ok

p = slowPath(buf, p)
ok:

Figure 5: Code sequence inserted to check unsafe pointer
arithmetic.

Figure 5 shows thex86 code sequence that we insert be-
fore an example pointer arithmetic operation. First, the
source pointer,buf , is right shifted to obtain the index of
the bounds table entry for the corresponding slot. Then
the logarithm of the allocation sizee is loaded from the
bounds table into registeral . The result of the pointer
arithmetic,p, is xored with the source pointer,buf , and
right shifted byal to discard the bottom bits. Ifbuf
andp are both within the allocation bounds they can only

differ in the log2e least significant bits (as discussed be-
fore). So if the zero flag is set,p is within the allocation
bounds. Otherwise, theslowPath function is called.

TheslowPath function starts by checking ifbuf has
been marked out-of-bounds. In this case, it obtains the
referent object as described in 2.4, resets the most sig-
nificant bit in p, and returns the result if it is within
bounds. Otherwise, the result is out-of-bounds. If the
result is out-of-bounds by more than half a slot, the func-
tion signals an error. Otherwise, it marks the result
out-of-bounds and returns it. Any attempt to derefer-
ence the returned pointer will trigger an exception. To
avoid disturbing register allocation in the fast path, the
slowPath function uses a special calling convention
that saves and restores all registers.

As discussed in Section 3.3, we must addsizeof( * p)
to the result and perform a second check if the pointer
is not a pointer to a built-in type. In this case,buf is a
char * .

Similar to previous work, we provide bounds check-
ing wrappers for Standard C Library functions such as
strcpy andmemcpy that operate on pointers. We re-
place during instrumentation calls to these functions with
calls to their wrappers.

3.4 Optimizations

Typical optimizations used with bounds checking in-
clude eliminating redundant checks, hoisting checks out
of loops, or hoisting just bounds table lookups out of
loops. Optimization of inner loops can have a dramatic
impact on performance. We experimented with hoisting
bounds table lookups out of loops when all accesses in-
side a loop body are to the same object. Unfortunately,
performance did not improve significantly, probably be-
cause our bounds lookups are inexpensive and hoisting
can adversely effect register allocation.

Hoisting the whole check out of a loop is preferable when
static analysis can determine symbolic bounds on the
pointer values in the loop body. However, hoisting out
the check is only possible if the analysis can determine
that these bounds are guaranteed to be reached in every
execution. Figure 6 shows an example where the loop
bounds are easy to determine but the loop may terminate
before reaching the upper bound. Hoisting out the check
would trigger a false alarm in runs where the loop exits
before violating the bounds.

We experimented with an approach that generates two
versions of the loop code, one with checks and one with-
out. We switch between the two versions on loop entry.



In the example of Figure 6, we lookup the bounds ofp
and if n does not exceed the size we run the unchecked
version of the loop. Otherwise, we run the checked ver-
sion.

for (i = 0; i < n; i++) {
if (p[i] == 0) break;
ASSERT(IN_BOUNDS(p, &p[i]));
p[i] = 0;

}

↓

if (IN_BOUNDS(p, &p[n-1])) {
for (i = 0; i < n; i++) {

if (p[i] == 0) break;
p[i] = 0;

}
} else {

for (i = 0; i < n; i++) {
if (p[i] == 0) break;
ASSERT(IN_BOUNDS(p, &p[i]));
p[i] = 0;

}
}

Figure 6: The compiler’s range analysis can determine
that the range of variablei is at most0 . . . n−1. However,
the loop may exit beforei reachesn−1. To prevent erro-
neously raising an error, we fall back to an instrumented
version of the loop if the hoisted check fails.

4 Experimental Evaluation

In this section we evaluate the performance of our sys-
tem using CPU intensive benchmarks, its effectiveness
in preventing attacks using a buffer overflow suite, and
its usability by building and measuring the performance
of real world security critical code.

4.1 Performance

We evaluate the time and peak memory overhead of
our system using the Olden benchmarks and SPECINT
2000. We chose these benchmarks in part to allow a
comparison against results reported for some other so-
lutions [15, 36, 23]. In addition, to enable a more de-
tailed comparison with splay-tree-based approaches—
including measuring their space overhead—we imple-
mented a variant of our approach which uses the splay
tree code from previous systems [19, 30]. This imple-
mentation uses the standard allocator and is lacking sup-
port for illegal out-of-bounds pointers, but is otherwise
identical to our system. We compiled all benchmarks
with the Phoenix compiler using/O2 optimization level

and ran them on a 2.33 GHz Intel Core 2 Duo processor
with 2 GB of RAM.

From SPECINT 2000 we excludedeon since it uses
C++ which we do not yet support. For our splay-tree-
based implementation only we did not runvpr due to
its lack of support for illegal out-of-bounds pointers. We
also could not rungcc because of code that subtracted
a pointer from a NULL pointer and subtracted the result
from NULL again to recover the pointer. Running this
would require more comprehensive support for out-of-
bounds pointers (such as that described in [30], as we
propose in Section 7).

We made the following modifications to some of
the benchmarks: First, we modifiedparser from
SPECINT 2000 to fix an overflow that triggered a bound
error when using the splay tree. It did not trigger an
error with baggy bounds checking because in our runs
the overflow was entirely contained in the allocation, but
should it overlap another object during a run, the baggy
checking would detect it. The unchecked program also
survived our runs because the object was small enough
for the overflow to be contained even in the padding
added by the standard allocator.

Then, we had to modifyperlbmk by changing two lines
to prevent an out-of-bounds arithmetic whose result is
never used andgap by changing 5 lines to avoid an out-
of-bounds pointer. Both cases can be handled by the ex-
tension described in Section 5, but are not covered by the
small out-of-bounds range supported by our 32-bit im-
plementation and the splay-tree-based implementation.

Finally, we modifiedmst from Olden to disable a cus-
tom allocator that allocates 32 Kbyte chunks of mem-
ory at a time that are then broken down to 12 byte ob-
jects. This increases protection at the cost of memory
allocation overhead and removes an unfair advantage for
the splay tree whose time and space overheads are mini-
mized when the tree contains just a few nodes, as well as
baggy space overhead that benefits from the power of two
allocation. This issue, shared with other systems offering
protection at the memory block level [19, 30, 36, 15, 2],
illustrates a frequent situation in C programs that may re-
quire tweaking memory allocation routines in the source
code to take full advantage of checking. In this case
merely changing a macro definition was sufficient.

We first ran the benchmarks replacing the standard allo-
cator with our buddy system allocator to isolate its ef-
fects on performance, and then we ran them using our
full system. For the Olden benchmarks, Figure 7 shows
the execution time and Figure 8 the peak memory usage.

In Figure 7 we observe that some benchmarks in the
Olden suite (mst , health ) run significantly faster with



Figure 7: Execution time for the Olden benchmarks us-
ing the buddy allocator and our full system, normalized
by the execution time using the standard system allocator
without instrumentation.

Figure 8: Peak memory use with the buddy allocator
alone and with the full system for the Olden benchmarks,
normalized by peak memory using the standard allocator
without instrumentation.

the buddy allocator than with the standard one. These
benchmarks are memory intensive and any memory sav-
ings reflect on the running time. In Figure 8 we can
see that the buddy system uses less memory for these
than the standard allocator. This is because these bench-
marks contain numerous small allocations for which the
padding to satisfy alignment requirements and the per-
allocation metadata used by the standard allocator ex-
ceed the internal fragmentation of the buddy system.

This means that the average time overhead of the full sys-
tem across the entire Olden suite is actually zero, because
the positive effects of using the buddy allocator mask the
costs of checks. The time overhead of the checks alone
as measured against the buddy allocator as a baseline is
6%. The overhead of the fastest previous bounds check-
ing system [15] on the same benchmarks and same pro-
tection (modulo allocation vs. object bounds) is 12%,
but their system also benefits from the technique of pool
allocation which can also be used independently. Based
on the breakdown of results reported in [15], their over-
head measured against the pool allocation is 15%, and it
seems more reasonable to compare these two numbers,

Figure 9: Execution time for SPECINT 2000 benchmarks
using the buddy allocator and our full system, normalized
by the execution time using the standard system allocator
without instrumentation.

Figure 10: Peak memory use with the buddy allocator
alone and with the full system for SPECINT 2000 bench-
marks, normalized by peak memory using the standard
allocator without instrumentation.

as both the buddy allocator and pool allocation can be in
principle applied independently on either system.

Next we measured the system using the SPECINT 2000
benchmarks. Figures 9 and 10 show the time and space
overheads for SPECINT 2000 benchmarks.

We observe that the use of the buddy system has little
effect on performance in average. The average runtime
overhead of the full system with the benchmarks from
SPECINT 2000 is 60%.vpr has the highest overhead
of 127% because its frequent use of illegal pointers to
fake base-one arrays invokes our slow path. We observed
that adjusting the allocator to pad each allocation with 8
bytes from below, decreases the time overhead to 53%
with only 5% added to the memory usage, although in
general we are not interested in tuning the benchmarks
like this. Interestingly, the overhead formcf is a mere
16% compared to the 185% in [36] but the overhead of
gzip is 55% compared to 15% in [36]. Such differences
in performance are due to different levels of protection
such as checking structure field indexing and checking
dereferences, the effectiveness of different static analy-
sis implementations in optimizing away checks, and the



Figure 11: Execution time of baggy bounds checking ver-
sus using a splay tree for the Olden benchmark suite, nor-
malized by the execution time using the standard system
allocator without instrumentation. Benchmarksmst and
health used too much memory and thrashed so their
execution times are excluded.

Figure 12: Execution time of baggy bounds checking ver-
sus using a splay tree for SPECINT 2000 benchmarks,
normalized by the execution time using the standard sys-
tem allocator without instrumentation.

different compilers used.

To isolate these effects, we also measured our system us-
ing the standard memory allocator and the splay tree im-
plementation from previous systems [19, 30]. Figure 11
shows the time overhead for baggy bounds versus using a
splay tree for the Olden benchmarks. The splay tree runs
out of physical memory for the last two Olden bench-
marks (mst , health ) and slows down to a crawl, so
we exclude them from the average of 30% for the splay
tree. Figure 12 compares the time overhead against us-
ing a splay tree for the SPECINT 2000 benchmarks. The
overhead of the splay tree exceeds 100% for all bench-
marks, with an average of 900% compared to the average
of 60% for baggy bounds checking.

Perhaps the most interesting result of our evaluation was
space overhead. Previous solutions [19, 30, 15] do not
report on the memory overheads of using splay trees, so
we measured the memory overhead of our system using
splay trees and compared it with the memory overhead
of baggy bounds. Figure 13 shows that our system had

Figure 13: Peak memory use of baggy bounds checking
versus using a splay tree for the Olden benchmark suite,
normalized by peak memory using the standard allocator
without instrumentation.

Figure 14: Peak memory use of baggy bounds checking
versus using a splay tree for SPECINT 2000 benchmarks,
normalized by peak memory using the standard allocator
without instrumentation.

negligible memory overhead for Olden, as opposed to the
splay tree version’s 170% overhead. Clearly Olden’s nu-
merous small allocations stress the splay tree by forcing
it to allocate an entry for each.

Indeed, we see in Figure 14 that its space overhead for
most SPECINT 2000 benchmarks is very low. Neverthe-
less, the overhead of 15% for baggy bounds is less than
the 20% average of the splay tree. Furthermore, the po-
tential worst case of double the memory was not encoun-
tered for baggy bounds in any of our experiments, while
the splay tree did exhibit greater than 100% overhead for
one benchmark (twolf ).

The memory overhead is also low, as expected, compared
to approaches that track meta data for each pointer. Xu
et al. [36] report 331% for Olden, and Nagarakatteet
al. [23] report an average of 87% using a hash-table (and
64% using a contiguous array) over Olden and a subset
of SPECINT and SPECFP, but more than about 260%
(or about 170% using the array) for the pointer intensive
Olden benchmarks alone. These systems suffer memory
overheads per pointer in order to provide optional tem-
poral protection [36] and sub-object protection [23] and



Figure 15: Throughput of Apache web server for varying
numbers of concurrent requests.

Figure 16: Throughput of NullHTTPD web server for
varying numbers of concurrent requests.

it is interesting to contrast with them although they are
not directly comparable.

4.2 Effectiveness

We evaluated the effectiveness of our system in pre-
venting buffer overflows using the benchmark suite
from [34]. The attacks required tuning to have any
chance of success, because our system changes the stack
frame layout and copies unsafe function arguments to lo-
cal variables, but the benchmarks use the address of the
first function argument to find the location of the return
address they aim to overwrite.

Baggy bounds checking prevented 17 out of 18 buffer
overflows in the suite. It failed, however, to prevent the
overflow of an array inside a structure from overwriting a
pointer inside the same structure. This limitation is also
shared with other systems that detect memory errors at
the level of memory blocks [19, 30, 36, 15].

4.3 Security Critical COTS Applications

Finally, to verify the usability of our approach, we built
and measured a few additional larger and security critical

Program KSLOC

openssl-0.9.8k 397
Apache-2.2.11 474
nullhttpd-0.5.1 2
libpng-1.2.5 36

SPECINT 2000 309
Olden 6
Total 1224

Table 1: Source lines of code in programs successfully
built and run with baggy bounds.

COTS applications. Table 1 lists the total number of lines
compiled in our experiments.

We built the OpenSSL toolkit version 0.9.8k [28] com-
prised of about 400 KSLOC, and executed its test suite
measuring 10% time and 11% memory overhead.

Then we built and measured two web servers,
Apache [31] and NullHTTPD [27]. Running Null-
HTTPD revealed three bounds violations similar to, and
including, the one reported in [8]. We used the Apache
benchmark utility with the keep-alive option to com-
pare the throughput over a LAN connection of the in-
strumented and uninstrumented versions of both web
servers. We managed to saturate the CPU by using the
keep-alive option of the benchmarking utility to reuse
connections for subsequent requests. We issued repeated
requests for the servers’ default pages and varied the
number of concurrent clients until the throughput of the
uninstrumented version leveled off (Figures 15 and 16).
We verified that the server’s CPU was saturated at this
point, and measured a throughput decrease of 8% for
Apache and 3% for NullHTTPD.

Finally, we built libpng , a notoriously vulnerability
prone library that is widely used. We successfully ran
its test program for 1000 PNG files between 1–2K found
on a desktop machine, and measured an average runtime
overhead of 4% and a peak memory overhead of 3.5%.

5 64-bit Architectures

In this section we verify and investigate ways to optimize
our approach on 64 bit architectures. The key observa-
tion is that pointers in 64 bit architectures have spare bits
to use. In Figure 17 (a) and (b) we see that current models
of AMD64 processors use 48 out of 64 bits in pointers,
and Windows further limit this to 43 bits for user space
programs. Thus 21 bits in the pointer representation are
not used. Next we describe two uses for these spare bits,
and present a performance evaluation on AMD64.
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Figure 17: Use of pointer bits by AMD64 hardware, Win-
dows applications, and baggy bounds tagged pointers.

5.1 Size Tagging

Since baggy bounds occupy less than a byte, they can fit
in a 64 bit pointer’s spare bits, removing the need for a
separate data structure. Thesetagged pointers are similar
to fat pointers in changing the pointer representation but
have several advantages.

First, tagged pointers retain the size of regular pointers,
avoiding fat pointers’ register and memory waste. More-
over, their memory stores and loads are atomic, unlike fat
pointers that break code relying on this. Finally, they pre-
serve the memory layout of structures, overcoming the
main drawback of fat pointers that breaks their interop-
erability with uninstrumented code.

For interoperability, we must also enable instrumented
code to use pointers from uninstrumented code and vice
versa. We achieve the former by interpreting the de-
fault zero value found in unused pointer bits as maxi-
mal bounds, so checks on pointers missing bounds suc-
ceed. The other direction is harder because we must
avoid raising a hardware exception when uninstrumented
code dereferences a tagged pointer.

We solved this using the paging hardware to map all ad-
dresses that differ only in their tag bits to the same mem-
ory. This way, unmodified binary libraries can use tagged
pointers, and instrumented code avoids the cost of clear-
ing the tag too.

As shown in Figure 17(c), we use 5 bits to encode the
size, allowing objects up to232 bytes. In order to use the
paging hardware, these 5 bits have to come from the 43
bits supported by the operating system, thus leaving 38

bits of address space for programs.

With 5 address bits used for the bounds, we need to
map 32 different address regions to the same mem-
ory. We implemented this entirely in user space using
theCreateFileMapping andMapViewOfFileEx
Windows API functions to replace the process image,
stack, and heap with a file backed by the system paging
file and mapped at 32 different locations in the process
address space.

We use the 5 bits effectively ignored by the hardware to
store the size of memory allocations. For heap alloca-
tions, ourmalloc -style functions set the tags for point-
ers they return. For locals and globals, we instrument the
address taking operator “&” to properly tag the resulting
pointer. We store the bit complement of the size log-
arithm enabling interoperability with untagged pointers
by interpreting their zero bit pattern as all bits set (repre-
senting a maximal allocation of232).

extract
bounds

{

mov rax, buf
shr rax, 26h
xor rax, 1fh

pointer
arithmetic







char *p = buf[i];

bounds
check















mov rbx, buf
xor rbx, p
shr rbx, al
jz ok

p = slowPath(buf, p)
ok:

Figure 18: AMD64 code sequence inserted to check un-
safe arithmetic with tagged pointers.

With the bounds encoded in pointers, there is no need for
a memory lookup to check pointer arithmetic. Figure 18
shows the AMD64 code sequence for checking pointer
arithmetic using a tagged pointer. First, we extract the
encoded bounds from the source pointer by right shifting
a copy to bring the tag to the bottom 8 bits of the register
and xoring them with the value0x1f to recover the size
logarithm by inverting the bottom 5 bits. Then we check
that the result of the arithmetic is within bounds by xor-
ing the source and result pointers, shifting the result by
the tag stored inal , and checking for zero.

Similar to the table-based implementation of Section 3,
out-of-bounds pointers trigger a bounds error to simplify
the common case. To cause this, we zero the bits that
were used to hold the size and save them using 5 more
bits in the pointer, as shown in Figure 17(d).



Figure 19: Normalized execution time on AMD64 with
Olden benchmarks.

Figure 20: Normalized execution time on AMD64 with
SPECINT 2000 benchmarks.

5.2 Out-Of-Bounds Offset

The spare bits can also store an offset that allows us to
adjust an out-of-bounds pointer to recover the address of
its referent object. We can use 13 bits for this offset, as
shown in Figure 17(d). These bits can count slot or even
allocation size multiples, increasing the supported out-
of-bounds range to at least216 bytes above or below an
allocation.

This technique does not depend on size tagging and can
be used with a table instead. When looking up a pointer
in the table, however, the top bits have to be masked off.

5.3 Evaluation

We evaluated baggy bounds checking on AMD64 using
the subset of benchmarks from Section 4.1 that run un-
modified on 64 bits. We measured the system using a
contiguous array against the system using tagged point-
ers (Baggy and Tag in the figure legends respectively).
We also measured the overhead using the buddy alloca-
tor only.

The multiple memory mappings complicated measuring
memory use because Windows counts shared memory

Figure 21: Normalized peak memory use on AMD64
with Olden benchmarks.

Figure 22: Normalized peak memory use on AMD64
with SPECINT 2000 benchmarks.

multiple times in peak memory reports. To overcome
this, we measured memory use without actually tagging
the pointers, to avoid touching more than one address
for the same memory, but with the memory mappings in
place to account for at least the top level memory man-
agement overheads.

Figures 19 and 20 show the time overhead. The average
using a table on 64-bits is 4% for Olden and 72% for
SPECINT 2000—close to the 32-bit results of Section 3.
Figures 21 and 22 show the space overhead. The average
using a table is 21% for Olden and 11% for SPECINT
2000. Olden’s space overhead is higher than the 32-bit
version; unlike the 32-bit case, the buddy allocator con-
tributes to this overhead by 14% on average.

Tagged pointers are 1–2% faster on average than the
table, and use about 5% less memory for most bench-
marks, except a few ones such aspower andcrafty .
These exceptions are because our prototype does not map
pages to different addresses on demand, but instead maps
32 30-bit regions of virtual address space on program
startup. Hence the fixed overhead is notable for these
benchmarks because their absolute memory usage is low.

While we successfully implemented mapping multiple
views entirely in user-space, a robust implementation
would probably require kernel mode support. We feel



that the gains are too small to justify the complex-
ity. However, using the spare bits to store an out-of-
bounds offset is a good solution for tracking out-of-
bounds pointers when using the referent object approach
of Jones and Kelly [19].

6 Related Work

Many techniques have been proposed to detect mem-
ory errors in C programs. Static analysis techniques,
e.g., [33, 21, 7], can detect defects before software ships
and they do not introduce runtime overhead, but they can
miss defects and raise false alarms.

Since static techniques do not remove all defects, they
have been complemented with dynamic techniques. De-
bugging tools such as Purify [17] and Annelid [25] can
find memory errors during testing. While these tools
can be used without source code, they typically slow-
down applications by a factor of 10 or more. Some
dynamic techniques detect specific errors such as stack
overflows [13, 16, 32] or format string exploits [12];
they have low overhead but they cannot detect all spa-
tial memory errors. Techniques such as control-flow in-
tegrity [20, 1] or taint tracking (e.g. [10, 26, 11, 35]) de-
tect broad classes of errors, but they do not provide gen-
eral protection from spatial memory errors.

Some systems provide probabilistic protection from
memory errors [5]. In particular, DieHard [4] increases
heap allocation sizes by a random amount to make more
out-of-bounds errors benign at a low performance cost.
Our system also increases the allocation size but enforces
the allocation bounds to prevent errors and also pro-
tects stack-allocated objects in addition to heap-allocated
ones.

Several systems prevent all spatial memory errors in C
programs. Systems such as SafeC [3], CCured [24],
Cyclone [18], and the technique in Xuet al. [36] asso-
ciate bounds information with each pointer. CCured [24]
and Cyclone [18] are memory safe dialects of C. They
extend the pointer representation with bounds informa-
tion, i.e., they use a fat pointer representation, but this
changes memory layout and breaks binary compatibil-
ity. Moreover, they require a significant effort to port
applications to the safe dialects. For example, CCured
required changing 1287 out of 6000 lines of code for the
Olden benchmarks [15], and an average of 10% of the
lines of code have to be changed when porting programs
from C to Cyclone [34]. CCured has 28% average run-
time overhead for the Olden benchmarks, which is sig-
nificantly higher than the baggy bounds overhead. Xu
et al. [36] track pointers to detect spatial errors as well

as temporal errors with additional overhead, thus their
space overhead is proportional to the number of point-
ers. The average time overhead for spatial protection on
the benchmarks we overlap is 73% versus 16% for baggy
bounds with a space overhead of 273% versus 4%.

Other systems map any memory address within an al-
located object to the bounds information for the object.
Jones and Kelly [19] developed a backwards compatible
bounds checking solution that uses a splay tree to map
addresses to bounds. The splay tree is updated on allo-
cation and deallocation, and operations on pointers are
instrumented to lookup the bounds using an in-bounds
pointer. The advantage over previous approaches using
fat pointers is interoperability with code that was com-
piled without instrumentation. They increase the allo-
cation size to support legal out-of-bounds pointers one
byte beyond the object size. Baggy bounds checking
offers similar interoperability with less time and space
overhead, which we evaluated by using their implemen-
tation of splay trees with our system. CRED [30] im-
proves on the solution of Jones and Kelly by adding sup-
port for tracking out-of-bounds pointers and making sure
that they are never dereferenced unless they are brought
within bounds again. Real programs often violate the
C standard and contain such out-of-bounds pointers that
may be saved to data structures. The performance over-
head for programs that do not have out-of-bounds point-
ers is similar to Jones and Kelly if the same level of run-
time checking is used, but the authors recommend only
checking strings to lower the overhead to acceptable lev-
els. For programs that do contain such out-of-bounds
pointers the cost of tracking them includes scanning a
hash-table on every dereference to remove entries for
out-of-bounds pointers. Our solution is more efficient,
and we propose ways to track common cases of out-of-
bounds pointers that avoid using an additional data struc-
ture.

The fastest previous technique for bounds checking by
Dhurjati et al. [15] is more than two times slower than
our prototype. It uses inter-procedural data structure
analysis to partition allocations into pools statically and
uses a separate splay tree for each pool. They can
avoid inserting some objects in the splay tree when the
analysis finds that a pool is size-homogeneous. This
should significantly reduce the memory usage of the
splay tree compared to previous solutions, but unfortu-
nately they do not report memory overheads. This work
also optimizes the handling of out-of-bounds pointers in
CRED [30] by relying on hardware memory protection
to detect the dereference of out-of-bounds pointers.

The latest proposal, SoftBound [23], tracks bounds for
each pointer to achieve sub-object protection. Sub-object



protection, however, may introduce compatibility prob-
lems with code using pointer arithmetic to traverse struc-
tures. SoftBound maintains interoperability by storing
bounds in a hash table or a large contiguous array. Stor-
ing bounds for each pointer can lead to a worst case
memory footprint as high as 300% for the hash-table
version or 200% for the contiguous array. The average
space overhead across Olden and a subset of SPECINT
and SPECFP is 87% using a hash-table and 64% for the
contiguous array, and the average runtime overhead for
checking both reads and writes is 93% for the hash ta-
ble and 67% for the contiguous array. Our average space
overhead over Olden and SPECINT is 7.5% with an av-
erage time overhead of 32%.

Other approaches associate different kinds of metadata
with memory regions to enforce safety properties. The
technique in [37] detects some invalid pointers derefer-
ences by marking all writable memory regions and pre-
venting writes to non-writable memory; it reports an
average runtime overhead of 97%. DFI [8] computes
reaching definitions statically and enforces them at run-
time. DFI has an average overhead of 104% on the SPEC
benchmarks. WIT [2] computes the approximate set of
objects written by each instruction and dynamically pre-
vents writes to objects not in the set. WIT does not
protect from invalid reads, and is subject to the preci-
sion of a points-to analysis when detecting some out-of-
bounds errors. On the other hand, WIT can detect ac-
cesses to deallocated/unallocated objects and some ac-
cesses through dangling pointers to re-allocated objects
in different analysis sets. WIT is six times faster than
baggy bounds checking for SPECINT 2000, so it is also
an attractive point in the error coverage/performance de-
sign space.

7 Limitations and Future Work

Our system shares some limitations with other solutions
based on the referent object approach. Arithmetic on in-
tegers holding addresses is unchecked, casting an inte-
ger that holds an out-of-bounds address back to a pointer
or passing an out-of-bounds pointer to unchecked code
will break the program, and custom memory allocators
reduce protection.

Our system does not address temporal memory safety
violations (accesses through “dangling pointers” to re-
allocated memory). Conservative garbage collection for
C [6] is one way to address these but introduces its own
compatibility issues and unpredictable overheads.

Our approach cannot protect from memory errors in sub-
objects such as structure fields. To offer such protection,

a system must track the bounds of each pointer [23] and
risk false alarms for some legal programs that use point-
ers to navigate across structure fields.

In Section 4 we found two programs using out-of-bounds
pointers beyond theslot size/2 bytes supported on 32-
bits and one beyond the216 bytes supported on 64-bits.
Unfortunately the real applications built in Section 4.3
were limited to software we could readily port to the
Windows toolchain; wide use will likely encounter occa-
sional problems with out-of-bounds pointers, especially
on 32-bit systems. We plan to extended our system to
support all out-of-bounds pointers using the data struc-
ture from [30], but take advantage of the more efficient
mechanisms we described for the common cases. To
solve the delayed deallocation problem discussed in Sec-
tion 6 and deallocate entries as soon as the out-of-bounds
pointer is deallocated, we can track out-of-bounds point-
ers using the pointer’s address instead of the pointer’s
referent object’s address. (Similar to the approach [23]
takes for all pointers.) To optimize scanning this data
structure on every deallocation we can use an array with
an entry for every few memory pages. A single mem-
ory read from this array on deallocation (e.g. on func-
tion exit) is sufficient to confirm the data structure has
no entries for a memory range. This is the common
case since most out-of-bounds pointers are handled by
the other mechanisms we described in this paper.

Our prototype uses a simple intra-procedural analysis to
find safe operations and does not eliminate redundant
checks. We expect that integrating state of the art analy-
ses to reduce the number of checks will further improve
performance.

Finally, our approach tolerates harmless bound viola-
tions making it less suitable for debugging than slower
techniques that can uncover these errors. On the other
hand, being faster makes it more suitable for production
runs, and tolerating faults in production runs may be de-
sired [29].

8 Conclusions

Attacks that exploit out-of-bounds errors in C and C++
continue to be a serious security problem. We presented
baggy bounds checking, a backwards-compatible bounds
checking technique that implements efficient bounds
checks. It improves the performance of bounds checks
by checking allocation bounds instead of object bounds
and by using a binary buddy allocator to constrain the
size and alignment of allocations to powers of 2. These
constraints enable a concise representation for allocation
bounds and letbaggy bounds checking store this infor-



mation in an array that can be looked up and maintained
efficiently. Our experiments show that replacing a splay
tree, which was used to store bounds information in pre-
vious systems, by our array reduces time overhead by an
order of magnitude without increasing space overhead.

We believebaggy bounds checking can be used in prac-
tice to harden security-critical applications because it has
low overhead, it works on unmodified C and C++ pro-
grams, and it preserves binary compatibility with unin-
strumented libraries. For example, we were able to com-
pile the Apache Web server withbaggy bounds checking
and the throughput of the hardened version of the server
decreases by only 8% relative to an unistrumented ver-
sion.
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