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Abstract—Currently, no major browser fully checks for
TLS/SSL certificate revocations. This is largely due to the fact
that the deployed mechanisms for disseminating revocations
(CRLs, OCSP, OCSP Stapling, CRLSet, and OneCRL) are
each either incomplete, insecure, inefficient, slow to update, not
private, or some combination thereof. In this paper, we present
CRLite, an efficient and easily-deployable system for proactively
pushing all TLS certificate revocations to browsers. CRLite
servers aggregate revocation information for all known, valid TLS
certificates on the web, and store them in a space-efficient filter
cascade data structure. Browsers periodically download and use
this data to check for revocations of observed certificates in real-
time. CRLite does not require any additional trust beyond the
existing PKI, and it allows clients to adopt a fail-closed security
posture even in the face of network errors or attacks that make
revocation information temporarily unavailable.

We present a prototype of CRLite that processes TLS cer-
tificates gathered by Rapid7, the University of Michigan, and
Google’s Certificate Transparency on the server-side, with a
Firefox extension on the client-side. Comparing CRLite to an
idealized browser that performs correct CRL/OCSP checking,
we show that CRLite reduces latency and eliminates privacy
concerns. Moreover, CRLite has low bandwidth costs: it can
represent all certificates with an initial download of 10 MB (less
than 1 byte per revocation) followed by daily updates of 580 KB
on average. Taken together, our results demonstrate that complete
TLS/SSL revocation checking is within reach for all clients.

I. INTRODUCTION

The TLS protocol, coupled with the web’s Public Key
Infrastructure (PKI), is the cornerstone of security for billions
of users and organizations. TLS1 relies on certificates issued
and cryptographically signed by Certificate Authorities (CAs)
to provide integrity, confidentiality, and authentication for web
traffic. To date, most web browsing occurs over HTTPS [18].

One critical, but sometimes overlooked, facet of the web’s
PKI is certificate revocation. When a CA erroneously issues a
certificate [2], or when a certificate’s private key is potentially
compromised [76], it is imperative that the affected certificate
be revoked. Otherwise—if an erroneous or compromised cer-
tificate is not revoked—client software (e.g., web browsers)
will continue to believe that the certificate is valid until
it expires, which may not occur for years [76]. Attackers
could use such certificates to perform effective Man-in-the-
Middle (MitM) and phishing attacks against users. Thus, it
is crucial that certificate owners revoke erroneous or compro-
mised certificates in a timely manner, and that client software

1In this paper, we refer to the more modern TLS protocol, although our
work also applies to the older SSL protocol.

properly checks for revocations. Failing to do so is particularly
worrisome in the wake of large-scale vulnerabilities like the
Debian PRNG bug [75] and Heartbleed [19], [76], which
potentially compromised millions of private keys.

Despite the importance of revocations, many client ap-
plications do not properly check for certificate revocations.
Liu et al. [49] found that recent versions of Chrome only
make Certificate Revocation List (CRLs) or Online Certificate
Status Protocol (OCSP) requests for Extended Validation (EV)
certificates (a very small subset of all certificates); Firefox only
supports revocation checks via OCSP; and no major mobile
browsers check for revocations at all. This unfortunate state
of affairs has several root causes, including latency concerns
(contacting third-parties to perform revocation checks in-
creases connection latencies), bandwidth considerations (some
CRLs are over 70 MB), privacy risks (OCSP checks leak the
user’s browsing behavior), and ambiguity (CRL and OCSP
servers may be temporarily unavailable due to network errors,
or an active attack) [42], [41].

Recent efforts aim to address these problems by mov-
ing from a pull model (wherein clients download revo-
cation information on-demand) to a push model, such as
OCSP Stapling [22], Google’s CRLSets [40], and Mozilla’s
OneCRL [31]. (We review these in detail in § II.) Although
these efforts by browser vendors are a step in the right
direction, they are far from comprehensive: as of January
30, 2017, CRLSet and OneCRL contained 14,436 and 357
revocations, respectively, while we find that there are over
12.7M revoked (but otherwise valid) certificates that were
issued by major CAs (details in § IV). In fact, CRLSet and
OneCRL would have significant difficulty scaling to handle
millions of certificates, because their data formats use 110 and
1,928 bits per revocation, respectively, meaning they would
require between 166 MB and 2.9 GB to store all 12.7M revoca-
tions (see § VII-E). Additionally, CRLSet and OneCRL require
users to place unconditional trust in Google and Mozilla, since
these data structures are not auditable.

In this paper, we present CRLite, a system for proactively
pushing all certificate revocations to browsers on a regular
basis. CRLite is implemented in two parts: a server-side
system that aggregates revocation information for all known,
valid TLS certificates2 on the web and places them in a filter,

2We validate certificates against the roots in the macOS certificate store.



Revocations Update Push Failure Deployable
Covered Bandwidth Cost Speed Model? Private? Auditable? Model Today?

CRL All 29 KB per CRL† 7 days‡ No Yes Yes fail-open Yes
OCSP All 1.3 KB per request† 4 days‡ No No Yes fail-open Yes
CRLSet [40] 14,436 250 KB per day 1 day Yes Yes No fail-open Yes
OneCRL [31] 357 34 KB per day 1 day Yes Yes No fail-open Yes
Rev. Trans. [44] All∗ — — No No Yes fail-open Yes
RevCast [65] All∗ 0 B (421.8bps of FM RDS) 10s of seconds Yes Yes Yes fail-closed No
CRLite All∗ 10 MB initially, 580 KB per day† 1 day Yes Yes Yes fail-closed Yes

TABLE I: Comparison of CRLite to other existing and proposed revocation dissemination systems. ∗: these systems aggregate
revocations for all known certificates on the web. †: these results are averages based on empirical measurements (see § VII).
‡: these results are the median times that clients may cache responses, based on empirical measurements (see § VII).

and a client-side component that downloads filters and uses
them to check for revocations of observed certificates.

CRLite’s filters provide browsers with a precise mapping
of all certificates to their revocation status. We make use of
a filter cascade [74], [64], which is a sequence of compact,
probabilistic data structures (e.g., Bloom filters [6]) without
either false positives or negatives. We rigorously show in
§ III-C how to minimize the size of filter cascades, and we
empirically show they have small incremental updates, as well.

CRLite’s design addresses six challenges:

1) Efficiency. CRLite compresses the revocation status of
all certificates using a filter. The entire data structure
requires only 10 MB to represent the status of over 30M
certificates, achieving a significant size savings over
naïve approaches.

2) Timeliness. CRLite uses delta-updates to keep clients
up-to-date with recent revocations, meaning clients only
need to download the complete filter once. We cre-
ate deltas on a daily basis, which are typically small
(∼580 KB). In contrast, the median CRL has a lifetime
of 7 days, while the median OCSP response of an
Alexa Top-1M website expires after 4 days, meaning that
clients using CRLite have more up-to-date revocation
information than clients that cache traditional revocation
information.

3) Failure Model. Because CRLite contains all revocations
and has no false positives, it allows clients to adopt a
fail-closed security posture. All other deployable revo-
cation dissemination schemes and all modern browsers
that we are aware of adopt a fail-open model, i.e., if
revocation information about a certificate is unavailable,
the client assumes that the certificate is valid.3

4) Privacy. Unlike OCSP, CRLs, or other on-demand re-
vocation checking schemes, users using CRLite do not
reveal their browsing history to third parties.

3Browser vendors choose to “fail-open”—essentially prioritizing availabil-
ity over security—to avoid having to refuse a connection (and cause perceived
unreliability) when the CRL or OCSP server cannot be contacted. [41]

5) Deployability. CRLite is deployable today, requires no
support from CAs or changes to TLS, and can be easily
integrated into modern browsers.4

6) Auditability. Although CRLite relies on a central-
ized system to aggregate and produce filters, clients
do not have to blindly trust it. CRLite provides
cryptographically-signed logs that allow any interested
party to audit each filter, e.g., to check for erroneous
insertions or omissions. We also present an additional
deployment model for CRLite that eliminates the need
for auditing if CAs become part of the filter generation
process (see § VIII).

We present a prototype of our system that uses Spark to
create the filter on the server-side, and a Firefox extension on
the client-side. We rely on certificate data from full IPv4 scans
of the Internet conducted by the University of Michigan [71]
and Rapid7 [60], as well as Google’s Certificate Transparency
logs [45]. As of January 2017, our dataset contains 184M
total certificates, from which we identify 30M valid, unexpired
certificates. From these certificates, we extract 10K unique
Certificate Revocation Lists (CRLs) and 743 unique OCSP re-
sponders, which enable us to check the certificates’ revocation
status. We crawl these each day to produce updated filters.

We perform extensive evaluations on our CRLite prototype
using real data. On the client-side, we show that our Firefox
extension has low CPU overhead (10 milliseconds to check
each certificate chain) and nominal memory usage, and that
it induces an order of magnitude less delay per HTTPS
connection than using CRL and OCSP. Having low delay
is crucial, as browser makers acknowledge that it is their
primary concern related to online revocation checking [40].
Also note that our implementation would be even faster if it
was implemented natively within the browser, rather than a
JavaScript extension.

Table I compares CRLite to six other revocation dissem-
ination schemes. Revocation Transparency is a proposed,
centralized, Merkle Tree-based scheme [45] that is similar to
historical proposals from Micali and others [51], [38], [55],
[52]; RevCast [65] is a system that disseminates certificate
revocations over FM radio. CRLite incorporates the best parts

4Our prototype targets Firefox because it makes TLS APIs available to
extensions. Other browser do not export TLS APIs, and would thus require
additional modification.



of existing systems (e.g., user privacy, no centralization of
trust, a fail-closed security posture, instant deployability) while
using less bandwidth than an average webpage (2.3 MB as of
2016) [27] and covering all revocations. CRLite is also ideally
suited for mobile and resource constrained devices, since it
uses a push model to deliver data (like CRLSet and OneCRL)
while covering all certificates (like CRL and OCSP).

Outline. This paper is organized as follows. In § II, we
discuss background related to the web’s PKI and certificate
revocation. In § III, we detail the design of the filter cascade.
We present the server- and client-side design of CRLite in
§ IV, and evaluate its security properties in § V. We present the
implementation of our prototype in § VI, which we use to eval-
uate CRLite and compare it to other revocation mechanisms
in § VII. In § VIII, we present an alternative design of CRLite
that shows that auditing can be far less expensive provided
modest CA participation. Finally, we conclude in § IX.

II. BACKGROUND

In this section, we briefly overview the web’s PKI, with
a focus on certificate revocation. We also discuss how web
browsers currently implement revocation checking, and survey
recent work on alternate strategies for distributing revocations.

A. The TLS Ecosystem

Authenticity and confidentiality of communication on the
web are provided by HTTPS, which uses a combination of the
TLS protocol and a hierarchical PKI. In the web’s PKI, trusted
CAs are vested with the authority to issue X.509 certificates
that bind identities (i.e., domain names) to cryptographic keys.
These leaf certificates are cryptographically signed by a CA,
forming a signature chain that may include zero or more
intermediate certificates, and eventually terminating at a self-
signed root certificate. Servers present this chain to clients
during the TLS handshake, who must then validate it.

Certificate Validation. As mentioned above, clients must
validate certificates that are presented to them, e.g., by verify-
ing the signatures, looking at the certificates’ expiration dates,
etc. In this work, we focus on the challenges of checking
for certificate revocations, but researchers have identified other
issues related to certificate validation, such as bugs in popu-
lar TLS libraries [8], in browsers [49], and in non-browser
software [29]. This has motivated researchers to develop
novel certificate validation schemes that leverage advanced
cryptographic techniques [17].

Certificate Transparency. Because any CA can issue a
certificate for any domain, there are significant concerns about
CAs improperly issuing certificates (e.g., after a private key
compromise [2]). The Certificate Transparency (CT) project
has created public, auditable, append-only logs of certificates,
with the idea that all newly issued certificates will be added
to the log by CAs. Google is encouraging adoption of CT
by CAs through Chrome policies: in January 2015, Chrome
began requiring that new EV certificates include an SCT
record that is signed by a well-known CT log [43]. In October

2017, Chrome will require all new certificates to contain SCT
records [66], and Firefox is planning to adopt these policies
as well [54].

Measuring the TLS Ecosystem. As HTTPS has grown
in importance, many studies have empirically examined as-
pects of the HTTPS ecosystem. Several studies have broadly
investigated certificates on the web [20], [23], [36] with recent
work demonstrating that IPv4 scans and CT logs are sufficient
to gain broad visibility of valid certificates [73]. Chung et al.
instead examine the hundreds of millions of invalid certificates
that linger on the web [15]. Other work has examined the root
certificates trusted by clients [58], [72] and the costs of HTTPS
security [56]. Lastly, two studies have specifically examined
the security implications of distributing private keys across
Content Delivery Networks (CDNs) [48], [11].

B. TLS Certificate Revocation

Revocation is a crucial component of the web’s PKI.
At any time, the owner of a certificate may request that
their CA revoke the certificate, which produces a pub-
lic, cryptographically-verifiable attestation that the certificate
should no longer be trusted (even if it has not expired). There
are many reasons why a certificate may be revoked, such as
if it uses a weak key [75], but the most important cases occur
when a private key is (potentially) compromised [76], [19],
or when a certificate is issued erroneously. In these cases, an
attacker can misuse the compromised certificate to conduct
MiTM or phishing attacks until it expires. Thus, it is vital that
such certificates be revoked, and that clients check to see if
certificates they are offered in the TLS handshake are revoked.

There are two primary protocols for distributing revocations:

CRLs. A Certificate Revocation List (CRL) is a list of serial
numbers from revoked certificates that is signed by a CA.
CAs are responsible for including a URL in each certificate
they sign that points to the associated CRL. In turn, clients
are responsible for downloading the CRLs associated with
observed certificates to check if they are revoked. CRLs are
signed by the CA to protect their integrity, and contain a
validity period during which they may be cached (up to a
maximum of 10 days [10]).

OCSP. The successor to CRL is OCSP. OCSP is a web
service protocol that allows clients to query a CA for the
revocation status of a single certificate. CAs are responsible
for inserting a URL into each certificate they sign that points
to the corresponding OCSP responder. Similar to CRLs, OCSP
responses are signed by the CA, and contain a validity period
during which they may be cached.

Recent measurement studies demonstrate that revocation is
prevalent in the web’s PKI [49]. More than 99% of valid
certificates available on the web contain a reachable CRL
URL, while 95% include a reachable OCSP responder. Liu
et al. observe that 8% of all valid certificates are revoked (6%
if we focus just on valid EV certificates) [49], with the bulk
of these revocations occurring due to Heartbleed [76], [19].



C. Revocation Checking

Clients are responsible for checking all leaf and intermediate
certificates they are offered during a TLS handshake for
revocations. This can be done by downloading the certificates’
CRLs or contacting their OCSP servers, depending on what in-
formation is provided in the certificates. Alternatively, servers
may push revocation information to the client by “stapling” an
OCSP response to the certificate via the OCSP Stapling TLS
extension [22], although as of 2015, only 3–5% of certificates
on the web were served by hosts that supported stapling [49].

Revocation Checking in Practice. Unfortunately, work
by Liu et al. shows that browsers do an extremely poor
job of checking for revocations [49]. For example, Firefox
no longer supports CRLs, while Chrome only issues online
requests for EV certificates. Most alarmingly, no major mobile
browsers perform any online revocation checks. As a result,
users may end up as victims of MitM or phishing attacks due
to compromised certificates.

Browser vendors have chosen not to implement thorough re-
vocation checking for a variety of reasons. First, downloading
CRLs and making OCSP requests adds delay to the establish-
ment of HTTPS connections. CRLs in particular can become
quite large (Apple has a CRL that is over 76 MB! [49]). Sec-
ond, using OCSP has privacy implications for users, because
OCSP requests enable CAs to passively observe the domains
users browse to. Although stapling addresses OCSP’s privacy
problem, stapling is vulnerable to downgrade attacks: an in-
network attacker can strip the staple from a certificate, which
forces the client to resort to a traditional CRL or OCSP check.

To address stapling downgrade attacks, RFC 7633 defines
the OCSP “must-staple” extension, which allows a certificate
to require that the server provide a stapled OCSP response
during the TLS handshake [34]. Must-Staple effectively ad-
dresses latency, privacy, and fail-open issues, but only for
certificates that include the new extension; it does not apply
to the millions of certificates already in existence. Moreover,
this protocol requires that HTTPS servers and browsers be
upgraded to support it.

Fail-open vs. Fail-closed. No currently-deployed ap-
proaches to disseminating revocations push all revocations
to clients. As a result, clients must sometimes make an
external request to obtain the revocation status for a certificate
(assuming they bother to check at all). However, clients must
decide what to do if this request is not answered (e.g., due to
transient network error, server failure at the CA, or a MitM
attack). All existing systems that we know of adopt a fail-
open model, whereby they accept a certificate if revocation
information cannot be obtained. Browser vendors argue that
choosing this model is necessary, as a fail-closed model would
cause an unacceptable level of failures [41]. However, the fail-
open model provides little additional security, as an attacker
who can filter the client’s traffic can block the revocation status
request and cause a revoked certificate to be accepted.

CRLite aims to sidestep this conundrum by ensuring clients
have have up-to-date revocation information available for all

certificates. As a result, clients need not be faced with a
decision between availability and security.

CRLSet and OneCRL. To mitigate the performance and
privacy issues surrounding CRL and OCSP, browser vendors
have begun pushing partial lists of certificate revocations
directly to users’ browsers. Google’s CRLSet, introduced in
2013, contains between 14K–25K revocations (depending on
the date) [49]; this list is updated daily and pushed to Chrome
browsers. Google’s CRLSet documentation lays out some of
the inclusion/exclusion criteria used to decide which revoca-
tions appear in the list [40], but prior work has shown that
the inclusion criteria remain opaque [49]. Similarly, Mozilla
introduced OneCRL in 2015, and it has grown to include
357 revocations. However, OneCRL only includes revoked
intermediate certificates [31].

Adam Langley, from the Chrome security team, has in-
vestigated the possibility of using compressed, probabilistic
data structures for distributing all revocations to clients [39].
Although Google does use compressed data structures in
other applications (e.g., SafeBrowsing [63]), no browser that
we are aware of has adopted this approach for distributing
revocations.

D. Other Revocation Distribution Schemes

Many classic proposals have been made for alternative
certificate revocation mechanisms, such as Micali’s Certifi-
cate Revocation System [51], multi-certificate revocation [1],
revocation trees [38], [55], [52], or combinations of these
techniques [28], [25]. Recent work has explored extending
certificate transparency initiatives [45], [13] to also incorporate
revocations [44], [62]. Others have focused on scaling up
revocation infrastructure in the face of byzantine failures [77].
Unfortunately, these systems still require clients to perform
online revocation checks, thus adding latency to connections.
Additionally, several of these schemes require clients to query
a central server for every single certificate, which reveals
users’ browsing behavior.

The Perspectives project aims to obviate the need for
revocation (and indeed any form of centralized trust) by
relying on multiple, independent observations to determine the
veracity of certificates [4]. The assumption is that legitimate
certificates will be seen by many users, while fraudulent or
stolen certificates will only be seen by a small subset of
users who are under attack. However, the security guarantees
offered by this approach are probabilistic, and as of 2016, this
initiative has failed to gain traction.

Other approaches have proposed more significant modifica-
tions to existing systems to enable better revocation dissemina-
tion. Chariton et al. propose to distribute revocations through
DNS [12], much like how DANE uses DNS to distribute
certificates [35]. Szalachowski et al. propose to distribute
revocations to middleboxes in the network that observe TLS
handshakes and insert up-to-date revocation information for
observed certificates [68]. However, these systems require
significant buy-in before they will be practical (from CAs and
clients for the former, and from CAs and CDNs for the latter).



In contrast, CRLite is built so that end users can opt-in via a
browser extension today.

Schulman et al. design a system to distribute revocations
through FM radio broadcasts [65]. Although they show that
radio broadcasts are an ideal medium for large-scale dissemi-
nation of revocations, all clients would need to install FM radio
receivers for the scheme to be deployed. Lastly, proposals
like AKI [37], PoliCert [70], ARPKI [3], and PKISN [69]
aim to replace the existing PKI with a new hierarchy that
avoids centralizing trust, is transparent, and supports seamless
revocation. However, as with any clean-slate proposal, future
adoption of these techniques is uncertain because they necessi-
tates changes to CAs, clients, and (in some cases) certificates.
In contrast, one of our goals is to develop a system that
is immediately deployable by not requiring changes to CAs
and certificates. Interestingly, the authors of PKISN suggest
pushing all revocations to clients, but they do not address
the problem of encoding this data such that the size is not
prohibitive for clients [69].

III. FILTER CASCADES

There has been considerable work regarding how best
disseminate certificate revocations. This has largely involved
exploring many different data structures, including lists in
the standard CRL [16], Merkle trees [38], [44], [28], [55],
[25], [1], Bloom filters [49], and variants thereof [39]. The
broadly accepted conclusion amongst this wide-ranging work
has been that the trade-offs between timeliness (getting all new
revocations to clients as quickly as possible) and bandwidth
are too great to be realistic—some going so far as to suggest
eliminating revocation lists altogether [61], [50]. As a result,
today’s browsers are restricted to a tiny subset of the web’s
revocations, often checking no revocations whatsoever [49].

In parallel, there have been impressive efforts to make
publicly available the set of all live certificates on the web.
Notably, the CT project [45] and various Internet-wide scan-
ning efforts [21], [60] have brought us to the point that we
can reasonably assume that we have a nearly complete view
of the entire certificate ecosystem [73]. We demonstrate in this
section how to use this new information to compactly represent
all outstanding revocations.

What stymied prior efforts to create a compact view of
revocations was that, ultimately, there is only so much that an
arbitrary set of millions (or more) objects can be compressed.
We are not subjected to the same constraints. Our insight is that
our data structure need not support queries for any arbitrary
data item—rather it needs to successfully support queries only
for the finite set of unexpired certificates.

A. Insight

To see why this subtle difference is so powerful, we first
recall Bloom filters [6]. A Bloom filter is a probabilistic
data structure that permits inserting arbitrary data items d ∈
{0, 1}∞, and testing for membership of arbitrary data. They
operate by maintaining a bit vector of size m and k hash
functions hi : {0, 1}∞ → Zm for i = 1, . . . , k. To insert a

data item d, one sets each hi(d) bit to one (in a traditional
Bloom filter, there is no deletion). Testing the set membership
of a data item d′ checks bits hi(d′); if any of them are zero,
then d′ is definitively not in the filter, otherwise it may be.
That is, although Bloom filters have no false negatives, they
have some false positive rate 0 < p < 1 determined by the
filter’s size, occupancy, and number of hash functions.

Consider a Bloom filter BF with false positive rate p. How
many false positives can BF have? Because Bloom filters
support insertion and membership queries for arbitrary bit
strings, there are an infinite number of false positives. In other
words, the set of false positives for a Bloom filter is always
larger than the set stored in the filter itself.

However, suppose we knew that all set membership queries
were going to come from a finite set U . In that case, if R ⊆ U
(e.g., the set of all revoked certificates) were stored in BF, then
the expected number of false positives would be p · |U \ R|.
This is a strictly smaller set than the one that BF was supposed
to support membership queries for (U ). Thus, if membership
queries come only from a known, finite set of items, then the
resulting set of false positives will be even smaller.

The key insight is that this small set of false positives can
be stored in another Bloom filter, and so on, until the number
of false positives is zero. In traditional settings, one may not
be able to assume that membership queries will come from
a constrained set. However, because we can now know the
set of virtually all certificates at any time, and because CAs
are increasingly adopting CT, we believe we can at last safely
make this assumption.

B. Filter Cascade Design

This notion of using a sequence of Bloom filters to store
increasingly smaller sets of false positives was originally intro-
duced by Chazelle et al. in what they referred to as Bloomier
filters [14], and refined by subsequent work to develop filter
cascades [74], [64]. For completeness, we describe the design
of a Bloom filter cascade5, and show how it achieves zero
false positives despite being compact.

Suppose that we wish to store a set R ⊆ U of data items, and
that R ∪ S = U .

Insertion into a filter cascade begins by creating a first-level
Bloom filter (BF1) with the optimal size and number of hash
functions to achieve a given false positive rate 0 < p < 1 (we
show how to optimize p at each level in § III-C; for ease of
exposition, assume for now that there is a fixed p across all
levels). Into BF1, we insert each element of R, as normal. If
some data item u is not in BF1, then it is definitively not in
R, but not vice versa. Thus, the set of first-level false positives
(FP1) contains the elements of S that also appear in BF1. In
expectation, |FP1| = p · |S|.

Our next task is to compactly represent this set of false
positives. To this end, we construct another, second-level

5In practice, a filter cascade could be made up of any compact filter with
false positives, such as cuckoo [26], quotient [5], or Golomb [59] filters.
Exploring their trade-offs in CRLite is an interesting area of future work.
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Bloom filter (BF2) and insert each element of FP1. The idea is
that BF2 in essence serves as a “blacklist” to BF1: it contains
the items that should not have been in BF1. Thus, if a data
item u is in BF1 but is not in BF2, then it is definitively in
R. However, BF2 can also have false positives. The set of
second-level false positives (FP2) contains the elements of R
that appear in BF2, and is in expectation of size p · |R|.

These are our two base cases; we show one more inductive
step. If FP2 is nonempty, then we construct a third-level Bloom
filter (BF3) in which we insert each element of FP2. If an
element is in BF1 and BF2 but is not in BF3, then it is
definitively not in R. That is, like with BF1, BF3 serves as
a “whitelist”: elements of this filter represent elements of R
(and therefore the elements ideally would not have been in
BF2). However, unlike BF1, the false positives at this level
(FP3) do not come from the entire set S, but rather only the
members of S that have not already been ruled out by higher-
level filters, i.e., the members of S that are also in BF1, which
is precisely FP1. In expectation, |FP3| = p · |FP1| = p2 · |S|.

This process continues: so long as FPi is nonempty, then we
construct a Bloom filter BFi+1 and insert into it all elements
of FPi−1 for i ≥ 2. Odd-numbered levels represent whitelists
(elements that are in R) and even-numbered levels represent
blacklists (elements that are not). Figure 1 shows an example
with three layers.

Lookup queries in a filter cascade are constrained to U and
take the form: “is u ∈ U in set R?” We emphasize that clients
issuing such queries need not know all elements of the set U ;
it must only be the case that whoever constructed the filter
cascade was aware of all possible values u ∈ U for which it
would subsequently be queried.

Lookup queries take a top-down approach similar to inser-
tions. Recall that Bloom filters provide definitive answers only
for items not stored in the filter, and potentially false positives
otherwise. With filter cascades, we can also provide definitive

answers in the positive when we know that there are no false
positives from the set U .

Putting this together, lookups in a filter cascade begin at
level i = 1 and continue until the first BFi is found where
u 6∈ BFi. At this point, the “is u ∈ U in set R?” can be
answered as follows:
• If i is odd, then u is definitively not in R.
• If i is even, then u is definitively in R.

If no such BFi is found (i.e., if u is in all BFi), then the total
number of levels l in the filter cascade determines the answer:
• If l is odd, then u is definitively in R.
• If l is even, then u is definitively not in R.
Figure 2 shows an example of lookups in a three-layer filter

cascade. Note that each level offers definitive answers when
a data item is not in that level, and the final level is always
definitive.

C. Minimizing Filter Cascade Size
We seek to minimize the size of a filter cascade, so as to

consume as little bandwidth as necessary to keep browsers up-
to-date with revocation data. To this end, we formally analyze
the filter cascade’s size and number of levels, and use our
findings to develop a strategy for setting false positive rates
in a way that minimizes the overall size. To the best of our
knowledge, this is the first size-minimizing analysis done on
filter cascades, and we believe it to have applications beyond
that of certificate revocation.

False Positives and Size. An oft-cited bound on the false
positive probability p for a Bloom filter in which r items are
inserted into a bit-array of size m using k hash functions is

p ≤
(

1− e−rk/m
)k

This bound is “proved” by making the slightly untrue assump-
tion that whether one bit is set in the Bloom filter is indepen-
dent of whether any other bits are set, and approximating 1− 1

m



by e−1/m. But for large values of r and m, it is very close to
a rigorous bound proved by Goel and Gupta [30], which we
will turn to later. The number of hash functions, k, must be
integral, as must m and n. Putting aside the issue of integrality
for the moment, for a given p, the size of the Bloom filter is
minimized by setting k = m ln 2

r = log2
1
p in which case the

size is given by

m =
r ln 1

p

(ln 2)2
≈ 1.44r log2

1

p

This formula is accurate provided that m and r are large and
(most importantly) log2(1/p) is close to integral.

Normally, when using a Bloom filter, one chooses p as
a design constraint: it represents a trade-off between the
uncertainty the system can accommodate and the cost in
space it can afford. However, in filter cascades, there is no
uncertainty: there will ultimately be no false positives, and
thus p only affects the overall size and number of levels.

What, then, is the correct strategy for setting false positive
rates in a filter cascade to minimize the overall size?

Lower Bounds. Before answering this question, we pause
to examine a lower bound. Let r = |R|, s = |S|, and
n = r + s. The number of bits needed to communicate R
is at least log2

(
n
r

)
. Applying Sterling’s approximation for n!

(
√

2πn
(
n
e

)
≤ n! ≤ e

√
n
(
n
e

)
), this gives us a lower bound of

r log2

n

r
+ (n− r) log2

n

n− r
+

1

2
log2

n

rs
+ log2

e

2π
(1)

When r � n, the second term approaches r/ ln 2 ≈ 1.44r
and the third term approaches −(1/2) log2 r. The fourth term
is about −1.2, so that the dominant terms in Eq. (1) are
r log2

n
r and 1.44r. The lower bound can be met if both parties

share an ordered list of all n certificates. Unfortunately, when
representing real certificates, we cannot assume a globally
known ordered list. However, as we show next, with the right
choice of false positive rates, filter cascades can be constructed
using 1.44r log n

r + 4.2r bits (or perhaps even less).

False Positive Strategy. As the following analysis shows,
a strategy of using one false positive probability, p1, at the
first level, and a second false positive probability, p, at all
subsequent levels produces a filter cascade whose size is
competitive with the lower bound6. The simplicity of the
strategy makes it straightforward to implement and analyze.

Observe that the size of a Bloom filter at the first level
is a function of r and the desired false positive probability,
but does not depend on s. Thus, if r is less than s we have
some leverage, as we can reduce the number of elements in
S using a Bloom filter whose size is based on the smaller
value r. We set the false positive probability at the first level
to bring the expected number of elements in S down to about
r. In particular, we choose p1 = r

√
p/s, so that the expected

number of false positives among the s non-revoked certificates

6Note that prior work on filter cascades assumes a single false positive rate
for all levels [74], [64], and thus has slightly worse space utilization.

is r
√
p. The

√
p factor is included in the formula for p1 so

that at all subsequent levels, the ratio between the expected
number of elements inserted to the number that are not inserted
is always the same,

√
p, which simplifies the analysis.

As a running example, for all levels after the first let p =
1/2 and k = 1, so that p1 = r/

√
2s and the expected number

of false positives at the first level is r/
√

2. The size of the
first level is 1.44r log2(s/r

√
p), which, for p = 1/2, is at

most 1.44r log2
n
r + .72r. The first level is the only one that

requires Ω(r log(n/r)) bits and the leading constant of 1.44
is small. After the first level, the expected number of elements
remaining in R∪S is O(r) (i.e., (1+1/

√
2)r in our example),

so only O(r) additional bits will needed.
We now analyze the size of all the levels after the first. The

achieved false positive rate at each level is a random variable
that depends on the random hash function chosen at that level.
These variables are independent, so the expectation of their
product is equal to the product of their expectations. Hence,
at level i+1, the expected number of items to be inserted into
the Bloom filter is r(

√
p)i, and the expected number of items

not to be inserted but for which false positives might occur is
r(
√
p)i−1. The total expected size over all levels after the first

is then given by
∞∑
i=1

1.44r(
√
p)i log2

1

p
=

1.44r
√
p log2

1
p

1−√p
(2)

For p = 1/2, the sum comes to 3.48r. Hence, in our example
the expected total cost over all levels is 1.44r log2

n
r + 4.2r.

Although we have not paid particular attention to integrality
constraints, by choosing p = 1/2 and k = 1 in our example
we have taken care of the most important such constraint.

Simulations. We close this section by empirically eval-
uating the size and lookup times of filter cascades using
simulation. For a variety of values of r and s, we conduct
a systematic search through the possible values of p1 and p
to try to minimize the total side of the filter cascade. In this
empirical analysis we insist that m, n, r, s, and the number of
hash functions at each level be integral. To calculate expected
Bloom filter size, we use the following bound due to Goel and
Gupta [30], which holds for m > 1 and is derived rigorously,
making no independence assumptions or approximations:

p ≤
(

1− e−(r+ 1
2 )k/(m−1)

)k
We find that, in practice, the optimal p tends to be very nearly
1/2 when r � s. In estimating the expected number of levels,
we apply the bound derived in Appendix A.

Figure 3a shows that the overall size of a filter cascade is
determined primarily by the number of elements in R. This
is because, as discussed above, the size of the filter cascade
is dominated by the size of the first Bloom filter, into which
each element of R must be inserted.

Figures 3b and 3c show the expected number of hash func-
tions that need to be computed when looking up an element
of R or S, respectively. We make two key observations: First,
lookup times increase the smaller |R| is relative to |S|; when
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Fig. 3: Simulation results of a filter cascade. The size and expected lookup time are functions of the occupancy of both the
stored set (R) and its complement (S). Numbers annotating lines represent |R|.

there are 35M total provisioned items, it takes ∼19 hashes to
look up an element of R when |R|= 1,024, but only ∼5 hashes
when |R|= |S|. This is because p1 = r

√
p/s and therefore the

number of hash functions in the first filter is proportional to
log s/r. Second, it takes fewer expected lookups for elements
of S than for R: typically 1.5–3.1 fewer hashes in expectation.
This is because elements of S can be ruled out in the first level,
with a smaller false positive rate (p1), while every element of
R must be checked in the first two levels, at least.

Broadly, these empirical results demonstrate how promising
filter cascades are for certificate revocation: Their size is
determined predominantly by R, and therefore will not grow
considerably with the more prevalent, non-revoked certificates
S. Moreover, lookup times for elements of S are faster,
which is encouraging because non-revoked certificates are
encountered more frequently.

IV. SYSTEM DESIGN

In this section, we present the design of CRLite. This sys-
tem applies recent advances in Certificate Transparency [45],
along with filter cascades, to achieve complete and universal
dissemination of certificate revocation information. At a high
level, we aggregate all revocation information for every known
certificate, compactly represent them in a filter cascade, and
provide a means by which clients can publicly audit us.
We begin this section by describing our goals, assumptions,
and threat model. Then, we discuss the CRLite protocol
from the perspective of the server and client, respectively. In
subsequent sections, we describe the implementation, analysis,
and empirical evaluation of CRLite that collectively show that
it is effective and practical to deploy today.

A. Goals

Our primary objective is to develop a system that quickly
and efficiently pushes all available revocations to web
browsers. To make widespread adoption possible and desir-
able, our system must:
• Not require changes to CAs, certificates, or websites.

• Be incrementally deployable and incur minimal changes
to clients.

• Protect client privacy.
• Offer security guarantees that are no worse (and hopefully

much stronger) than existing revocation schemes.
• Not increase (and ideally reduce) page-load times and

bandwidth consumption as compared to existing revoca-
tion checking schemes.

We are far from the first to propose these goals, but prior
efforts have been unable to achieve all of these properties
in tandem (see § II). As we will demonstrate, the advent of
CT [45] puts them within grasp, at last.

B. Threat Model and Assumptions

Fundamentally, an attack against CRLite seeks at least one
of three outcomes: (1) to make a valid certificate appear
revoked, (2) to make a revoked certificate to appear valid, or
(3) to harm client’s user experience by delaying or halting a
user’s ability to obtain revocation information.

We operate within a set of assumptions that are standard
in today’s web. We assume an active attacker that is able to
manipulate a victim’s web traffic, e.g., via a man-in-the-middle
(MitM) attack or blocking traffic. However, we make standard
cryptographic assumptions: particularly that the attacker is
unable to forge signatures without access to a principal’s
private key. Additionally, we make two assumptions that are
standard in the web’s PKI: First, we assume that clients trust
a common set of root certificates [58] to be benign and
uncompromised. Second, we assume that clients’ clocks are
loosely synchronized, so that they may check the expiration
dates of certificates and of the data we disseminate, to within
the order of about a day. Finally, like with the OCSP Must-
Staple option [33], we assume that each CA’s revocation
information is available to our aggregation server at least once
every 12 hours to ensure that clients are up-to-date to within
a 24-hour period.

Our design uses a logically centralized aggregator that is re-
sponsible for obtaining all certificates (e.g., from CT logs) and
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Fig. 4: Server-side pipeline of CRLite. Each day, this process constructs a new filter cascade, delta update to the previous day’s
filter cascade, and an audit log. Example statistics are given as of January 30, 2017.

their corresponding revocation information. We assume CT
servers and scanning techniques like ZMap [21] to be trusted,
i.e., that they distribute full views of the HTTPS ecosystem
to the best of their ability. We assume that aggregators can
misbehave by asserting that a valid certificate is revoked or
that a revoked certificate is valid. We describe in this section
a public audit procedure that involves no participation from
an aggregator but results in a proof of misbehavior.

C. Server-Side Operation

The server-side aggregator is responsible for collecting raw
data and producing filters and auditable logs for clients. We
present an overview of the aggregator’s operation in Figure 4.

Obtaining Raw Certificates. To create the filter of revoked
certificates, CRLite first needs a list of all valid certificates.
VanderSloot et al. [73] show that >99% coverage of all TLS
certificates known to exist on the web can be obtained by
using two sources of certificates: full IPv4 scans on port 443,
and Google’s CT logs. Thus, we adopt these data sources for
CRLite. In the future, if CRLite becomes popular, it would
be trivial to extend our certificate dataset by allowing CAs or
other interested parties to submit missing certificates, similar
to Google’s CT logs [45]. Indeed, a logical place to deploy an
aggregator would be at a popular CT site.

As shown in Figure 4, CRLite takes as input certificates
from University of Michigan’s IPv4 scans (covering October
2013 to February 2014) [71], Rapid7’s IPv4 scans (covering
February 2014 to January 2017) [60], and Google’s CT log
(from the Pilot server) [45]. Rapid7 conducts new scans on
a roughly weekly basis, which CRLite automatically down-
loads and adds to its database. Similarly, CRLite mirrors the
transparency log on a daily basis. In total, these data sources
contain 184M unique certificates (though as we will show,
most of these are invalid [15]).

Validating Certificates. The next step in our pipeline
is cleaning the certificate data. Specifically, CRLite validates
all certificates by looking for non-expired, well-formed leaf
and intermediate certificates that cryptographically chain to a
trusted root from the macOS key store. This process is incre-
mental, i.e., CRLite performs full cryptographic validation on
new certificates gathered during the last 24 hours, and clears

recently expired certificates from its database. As of January
2017, our database contains 30M valid certificates.

Obtaining All Revocations. To collect revocations, CRLite
extracts CRL and OCSP responders from all valid certifi-
cates. To obtain revocation information for all certificates as
efficiently as possible, we adopt the following approach: if
a certificate has a CRL URL, we extract it; otherwise, we
extract its OCSP responder and serial number. As of January
2017, 10K unique CRLs cover 18M of the valid certificates,
leaving 12M certificates for which CRLite must query an
OCSP responder.7 Note that 99% of the OCSP-only certificates
are issued by Let’s Encrypt [46].8

CRLite downloads all extracted CRLs and queries respective
OCSP responders for the revocation status of the OCSP-
only certificates. As of January 30, 2017, there are 12.7M
revoked certificates in our database. Finally, CRLite constructs
the set of non-revoked certificates by subtracting the revoked
certificates from the set of valid certificates.

Filter Cascade Construction. The next step is to construct
a filter cascade. Recall from § III that this data structure stores
some set R in a way that any query from the set R ∪ S will
result in a definitive, accurate answer (i.e., without any false
positives or negatives). In CRLite’s scenario, R is the set of
revoked certificates and S the set of non-revoked certificates.

In practice, the sets of revoked and valid certificates change
over time: new certificates are added, while existing certificates
can expire or be revoked. CRLite produces a fresh filter
cascade each day that incorporates these changes. However,
we also observe that the certificate universe is expanding over
time, as HTTPS becomes more widely adopted. To account for
this, we provision the filter cascade to hold δr · |R| and δs · |S|
certificates, for some δr, δs > 1, but only perform insertions
for certificates in R and S. We choose δr, and δs based on
the estimated growth rate of R and S over some reasonable
time frame, so that the we only need to reparameterize the
filter periodically (monthly in our case). This simplifies the

7Note that 163 valid certificates exist in our database that contain neither
a CRL nor an OCSP responder; these certificates are particularly dangerous,
as they can never be revoked.

8We obtained permission from the Let’s Encrypt operators to send such a
high volume of OCSP requests to their servers.



production of delta updates, which we describe next. As we
show in § VII-A, the size for the full filter is only 10 MB.

Delta Updates. Although the size of our filter cascade is
quite reasonable (see § VII-A), it would still be onerous for
clients if they had to download fresh copies of the entire filter
each day (especially clients subject to data caps). Furthermore,
as we show in § VII-B, |R| and |S| only fluctuate by a few
percent day-to-day under typical conditions (the exception
being events like Heartbleed), meaning that relatively few bits
in the filter are changing.

To address this issue and exploit the common-case dynamics
of the certificate ecosystem, CRLite produces delta updates
that allow clients to incrementally update their copy of the
filter. As shown in Figure 4, CRLite compares each day’s
filter to the previous day’s filter to produce the delta update;
conceptually, we can think of this as a bitwise XOR of the
Bloom filters at each level (in practice we use the efficient
bsdiff tool, which is essentially diff optimized for binary data).
We demonstrate empirically in § VII-B that these deltas tend to
be sparse (a small percentage of certificates change on a daily
basis). Finally, the server signs the delta update and makes
it available to clients. Clients that are d days out-of-date can
simply download and apply the most recent d delta updates to
their filter (or the latest full filter, whichever is smaller). As we
show in § VII-B, the mean size for delta updates is 580 KB.

Audit Log. The last file produced by CRLite is an audit log.
The audit log is designed to address the issue of trust, i.e., how
can clients be sure that the CRLite server is constructing filters
correctly? The audit log contains (1) copies of all CRLs and
OCSP responses that were used to construct the corresponding
filter cascade, and (2) copies of all certificates included in
the whitelist. Recall that each CRL, OCSP response, and
certificate is signed by its CA, and the audit log as a whole is
signed by the CRLite server. Using this data, a third-party can
cryptographically verify the integrity of the inputs for a given
filter, build a local copy of the filter cascade, and then compare
it to the filter provided by the server. If the filters do not
match, then the CRLite server incorrectly omitted or inserted
a revocation into the filter. Furthermore, the third-party can
verify that all (serial number, URL) tuples in the whitelist are
not revoked in the corresponding CRLs/OCSP responses. In
§ VIII, we describe an alternate design that shows with modest
CA participation, we can remove the need for audits.

Hosting. CRLite makes filters, delta updates, and audit
logs available to clients via a standard web server. In practice,
these files could easily be hosted on a cloud-storage service
like Amazon S3 or on a Content Delivery Network (CDN), as
is common with CRL and OCSP servers today. After several
weeks, the system automatically deletes stale files.

We emphasize that none of the server operations described
here require participation from CAs, websites, or CT servers.
As a result, anyone could run a CRLite aggregator today.
That said, we believe that those who operate CT servers are a
logical place for deployment; they already have (virtually) all
certificates [73] and they are already subject to audits.

D. Client-Side Operation

The client-side component of CRLite is responsible for
downloading the filter, updating it daily, and performing
revocation checks for observed certificates against the filter.

False Positives. CRLite uses filter cascades which do
not suffer from false positives yet remain compact. This
addresses one of the primary concerns that drove the design of
CRLSet [40] and the reluctance to incorporate Bloom filters
in Chrome [39], [42].

However, there are two corner cases that require more
attention. First, certificates created and deployed between
updates to the filter cascade may result in a false positive
(if they are valid) or a false negative (if they are created and
revoked in this small window). This can be easily remedied
with the timestamps already present in X.509 certificates: the
NotBefore date in a certificate denotes the day and time at
which clients should consider the certificate valid. So long
as CAs set this correctly, then a client could know not to
apply filter cascade, and to instead fall back on traditional
methods (or request a delta update). Although falling back to
CRL/OCSP may seem to obviate the benefits of CRLite, we
note that only 0.005% of certificates in our dataset are created
in any given 24-hour window.

Second, enterprise clients are sometimes configured with
private root certificates that are used to issue internal certifi-
cates. CRLite’s client-side component only checks a leaf cer-
tificate in the filter cascade if the certificate’s chain terminates
in a root used by CRLite. This behavior is appropriate, as
when constructing the filter cascade, CRLite would not have
considered an internal certificate to be in U (since it would be
invalid from CRLite’s perspective).

E. Summary

At this point, CRLite fulfills three of the goals in § IV-A:
• CRLite requires no active participation from CAs or

websites, and no modification to certificates.
• CRLite operates as a browser plugin, thereby requiring

only minor, incremental modifications to clients.
• In CRLite, almost all revocation checks are local, which

preserves users’ privacy.
With regard to the final two goals: in § V, we show how
CRLite is resilient to attacks that are the root causes for poor
revocation checking today [49]. Similarly, in § VII, we evalu-
ate CRLite and show that it offers dramatically lower latency
revocation checks than online mechanisms, while consuming
bandwidth that is comparable to today’s best schemes.

V. SECURITY ANALYSIS

We analyze CRLite’s security against various attacks.

MitM. CRLite signs and timestamps all files that are
made available to clients, which prevents MitM attackers from
serving falsified or stale filters or delta updates to clients.
We assume that CRLite’s public key is securely distributed to
clients through out-of-band mechanisms, such as via browser
extension repositories and app stores.



Forcing Fail-open. Consider an alternative form of MitM
attack wherein a user joins an adversarial network, such as
at a coffee shop with a shared access point. An attacker can
perform ARP spoofing or DNS injection to force a client’s
traditional revocation checks (e.g., OCSP) to fail to connect.
In this setting, today’s browsers will fail-open, i.e., they will
assume that certificates are not revoked. In fact, it is because
of this perceived necessity to fail-open that has led to very low
rates of revocation checking in modern browsers [41], [49].

The primary benefit of CRLite from the client’s perspective
is that it can obtain and cache the day’s revocations while in a
safe network, such as at home or work. Later, in an adversarial
network, an attacker’s attempts to block access to OCSP and
CRL servers has no effect, since the revocation information is
already resident on the user’s machine. In other words, with
CRLite, clients can adopt a fail-closed security posture.

The sole exception to this scenario occurs if there is a
certificate that is issued, compromised, and revoked within
24-hours after the daily filter is produced. In this case, CRLite
clients will fall-back to traditional online revocation checks,
because the certificate is newborn. However, the preconditions
for mounting this attack (identifying a newborn cert, compro-
mising it, and mounting a MiTM attack within 24-hours) make
it challenging to execute.

DoS. In practice, CRLite filters should be hosted on DoS-
resilient infrastructure, like a CDN. This makes it extremely
difficult for an attacker to prevent clients from updating their
filters by DoS-ing the hosting provider.

However, assume that a powerful attacker could block
access to the filter hosting provider by DoSing it. In this case,
all clients’ filters will slowly become stale. OCSP and CRL
servers (and HTTPS websites themselves) are also susceptible
to such attacks; CRLite is at no greater risk. In fact, CRLite
offers stronger security than traditional revocation mechanisms
because of clients’ ability to cache all historical revocations.
As a result, clients would only miss the delta updates during
the time of the attack; because CRLite clients update roughly
once per day, the DoS attack would have to be prolonged to
have profound impact (by comparison, the recent massive at-
tacks on the root DNS servers lasted less than two hours [53]).

Backdated Certificate. It is possible for a CA to issue
a certificate c on day d but not release it publicly until day
d′, where d′ � d. If a CRLite client observes c on day d′, it
will erroneously believe that c should be present in the filter,
since its Not Before date is in the past. However, since c was
unknown to the aggregator at the time of filter construction, c
could generate a false positive against the filter. Additionally,
if c were revoked prior to d′, it would generate a false negative.
In essence, this scenario violates our assumption that the
universe of certificates U known to the aggregator is complete.

In practice, this eventuality is unlikely to happen to today,
and will be impossible in the future, thanks to CT. As we
mention in § II-A, Chrome will require all new certificates
to contain SCT records [66] signed by a well-known CT log
as of October 2017. Crucially, to obtain an SCT for a new

certificate, the issuing CA must submit it to a CT log and then
wait 24 hours for the log to incorporate the new certificate [45].
In effect, the requirement that certificates be present in CT
logs for 24 hours before browsers will validate them precludes
the backdated certificate scenario outlined above. VanderSloot
et al. have shown that 90.5% of all known valid certificates
are already present in CT logs [73], and Chrome’s validation
requirements ensure that this will reach 100% soon.

Rogue Aggregator. In theory, a buggy or malicious
CRLite aggregator could produce filters that omit revocations
or falsely claim that valid certificates are revoked. To prevent
this, CRLite produces signed audit logs that allow distrusting
third-parties to recreate the filters from scratch, and compare
them to the filters produced by the server. Auditing allows an
investigator to detect the following types of rogue behaviors:
• Omit a CRL or OCSP response. All known, valid

certificates must be covered by a CRL or OCSP response
in the audit log.

• Modify a certificate, CRL, or OCSP response. All three
objects are signed by their respective CAs, which can be
independently validated by clients.

• Equivocate. Filters and their associated audit logs are
timestamped and signed by the aggregator. If two clients
receive filters with the same timestamp that are different,
then one of the filters must be incorrect (which one can
be determined using the audit log).

The only portion of the audit log that requires external
information to verify is the list of valid certificates. In theory, a
rogue aggregator could pretend that a target revoked certificate
does not exist and not include its revocation information in the
log.9 This would lead CRLite clients to believe that the target
certificate is not revoked. Fortunately, CRLite uses public
information to construct the list of valid certificates, meaning
that auditors can also collect this data and independently verify
the set of valid certificates present in an audit log. We expect
the process of verifying the list of valid certificates to become
easier over time as more CAs adopt Certificate Transparency.

In practice, we envision that most CRLite clients will not
audit filters since it is an expensive process (the auditor must
download the audit log, obtain the universe of valid certificates,
and then perform computations that take 10 minutes or more
on a 32-core server). Instead, the goal of the audit log is
to allow researchers, CAs, and companies (e.g., Google and
Mozilla) to act as a check against misbehaving or malicious
CRLite servers. CRLite’s audit log is a significant improve-
ment over existing schemes like CRLSet and OneCRL that are
not auditable.

VI. IMPLEMENTATION

We have developed a prototype implementation of CRLite
that produces new filters, delta updates, and audit logs once
per day on a 12-node Apache Spark cluster. Raw certificate

9Note that this omission attack is only possible if the target certificate is
OCSP-only or uses a unique CRL. If other certificates reference the target’s
CRL, then it will be included in the log.
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processing, CRL crawling, and filter creation take less than 4
hours to perform. Making ∼12M requests to OCSP responders
takes ∼11 hours. Since performing HTTP requests requires
no special infrastructure and our data processing hardware is
relatively modest, the barrier of entry to deploying a CRLite
aggregator is quite low.

We use the Murmerhash3 function in our implementation
because it is designed for speed. We evaluated other hash
functions (e.g., the DOM Webcrypto SHA functions) but none
were faster in practice.

To demonstrate that CRLite is feasible on the client side,
we have implemented a proof-of-concept Firefox extension.
After installation, the extension downloads the latest daily
filter, and keeps it up-to-date by downloading and applying
delta updates each day. Furthermore, the extension inspects
each leaf and intermediate certificate presented to the browser,
and kills the corresponding TLS connection if the certificate
hits the filter cascade. Our prototype does not attempt to alter
Firefox’s default OCSP checking behavior, although this could
be achieved through deeper integration with the browser.

As a performance optimization, our Firefox extension in-
cludes a Least Recently Used (LRU) cache of recent lookups
in the filter cascade. In practice, users tend to visit popular
websites repeatedly, thus subsequent visits to these sites only
require an LRU lookup, as opposed to a (relatively slower)
filter cascade lookup. The LRU is cleared each time the filter
cascade is updated.

We chose to implement our prototype for Firefox because
it offers low-level APIs for inspecting TLS certificate chains.
Unfortunately, these APIs are deprecated [57]: Chrome, Edge,
and Firefox are adopting the WebExtensions API, which does
not have TLS APIs. In the future, we envision that CRLite
should be integrated directly into browsers and cryptographic
libraries, similar to how CRLSet and OneCRL are integrated
into Chrome and Firefox. Fortunately, this integration can
occur incrementally, i.e., there is no requirement that all clients
adopt CRLite for the system to function or provide benefits.

Our implementation demonstrates that it is feasible to de-
ploy CRLite in today’s web without requiring buy-in from CAs
or websites. In § VIII, we describe a slightly altered design that
shows that CA participation could remove the necessity for
audits. However, our primary focus is on what can be achieved

immediately, so in the following sections, we evaluate the
security and the performance of CRLite as described thus far.

VII. EVALUATION

In this section, we evaluate our CRLite prototype. First, we
parameterize our filter cascade by choosing the revoked and
non-revoked certificate capacity, as well as the false positive
rates. Second, we investigate the size of filters and delta
updates for CRLite using empirical and simulated data. Third,
we benchmark our client-side implementation of CRLite for
Firefox. Fourth, we use data-driven simulations to compare
the overhead of CRL, OSCP, and CRLite. Finally, we compare
CRLite to CRLSet and OneCRL.

A. Bloom Filter Parameters

We begin by selecting the parameters for CRLite’s filter cas-
cade. For this analysis, we leverage data on all valid certificates
and all revocations that we gathered between November 17,
2016 and January 30, 2017.

To maintain stable parameters for the filter cascade and
minimize disruption for CRLite clients, we choose |R| and
|S| at the beginning of each month based on (1) the number
of revoked and non-revoked certificates at that time, and (2)
the rate of change in the certificate universe. For example,
on January 1, 2017 there were 12M revoked and 30M non-
revoked certificates. To leave additional room for both sets to
grow, we set r = |R| = 13M and s = |S| = 35M. Assuming
that the sets of certificates do not outgrow r and s during
January, CRLite clients will only need to download delta
updates; otherwise the filter cascade must be reparameterized,
and clients will need to download a new complete filter.

After choosing the capacities, we must calculate the optimal
false positive rates p1 and p. Given r and s, we empirically
locate the value of p (and p1 = r

√
p/s, as given in § III-C)

that minimize the size of the filter cascade. For example, when
r = 13M and s = 35M, p1 = 0.2652 and p = 0.5099.

Figure 5 shows the sizes of all the daily filters we generate
between November 17, 2016 and January 30, 2017. During
this time interval, the number of revoked certificates remains
very stable ∼12M, while the number of valid non-revoked
certificates grows from 24M to 32M. Thus, in keeping with the
strategy outlined above, we reparameterize the filter cascade



on November 17 (r= 13M, s= 30M), December 1 (r= 13M,
s= 35M), and January 1 (r= 13M, s= 35M). Despite the
growth in overall certificates, the sizes of the daily filters
remains very stable, varying between 9 MB and 10 MB.

B. Delta Updates

Next, we examine the size of delta updates to the CRLite fil-
ter. Recall that the CRLite server produces a new filter cascade
each day, and then computes a delta update between the new
filter and the previous day’s filter. This delta update contains
a compressed bitwise diff between each corresponding level
of the filter cascade.

Figure 5 shows the sizes of all the delta updates we generate
between November 17, 2016 and January 30, 2017. Their
sizes vary between 176 KB and 1 MB, with an average size of
580 KB. These daily updates are quite modest, and are even
feasible for mobile users with restrictive data caps (e.g., 2 GB
of bandwidth per month). In § VII-D, we compare the sizes of
delta updates to the cost of performing traditional revocation
checks using CRL and OCSP.

Figure 6 further examines the sizes of delta updates as a
function of percentage change in the certificate universe day-
to-day. The points show the relationship based on our mea-
sured data. However, since we do not observe days with large
changes in the universe (e.g., due to an event like Heartbleed),
we show a line of best-fit based on linear regression.

As expected, Figure 6 shows that delta update sizes grow as
the change rate increases. Under normal circumstances, delta
updates are an order of magnitude smaller than a full filter. In
the worst case scenario, when the certificate universe changes
by 0.1% in 24 hours, delta updates can grow up to 10 MB.
In this case, clients are better served by simply downloading
a fresh filter. However, events of this size are extremely rare:
for example, CloudFlare revoked 19,384 certificates in one day
immediately after HeartBleed [76].

C. Microbenchmarks

We now analyze the overhead of our Firefox implementa-
tion of CRLite. Using Firefox’s built-in profiler, we observe
that CRLite uses 11.9 MB of memory for the filter cascade
parameters given above. Most of the memory usage comes
from the JavaScript ArrayBuffer objects containing the binary-
encoded filters, which demonstrates that CRLite’s memory
requirements almost perfectly mirror the size of the filter.

We also measured the CPU overhead of our CRLite exten-
sion. As we describe in the next section, we can simulate a
normal user’s browsing behavior by browsing websites from
the Alexa Top-1M using a Zipf distribution. After visiting
1K sites we observed that, on average, it took CRLite 10
milliseconds to verify a chain of certificates. Note that this
includes the time to parse the ASN.1 certificates (since
Firefox’s API only provides unparsed certificates) and check
them against the filters. However, a simple 300-element LRU
cache in the extension reduces the average lookup time to 6
milliseconds. In practice, if CRLite was integrated directly into
the browser both overheads would be significantly lower, since

the certificate would already be parsed, and the code would
be native (i.e., not JavaScript). However, even as an extension,
the delay induced by CRLite is low in absolute terms, and two
orders of magnitude lower than traditional CRL and OCSP
checks (which we examine in the next section).

D. Comparison with CRLs and OCSP

In this section, we compare CRLite with CRLs and OCSP.
We ask the questions: how much delay would a typical
user experience per day while browsing the web under each
revocation checking strategy? and how many bytes would a
typical user download per day while browsing under each
strategy? We assume that users are using an ideal browser
that performs revocation checks on all observed certificates.

Experimental Setup. To answer these questions, we con-
duct data-driven simulations that mimic a typical user’s brows-
ing behavior. We adopt the browsing model from Burklen et
al. [9], which gives empirically-validated statistical distribu-
tions and associated parameters that describe users’ brows-
ing behavior. Specifically, our simulated users visit domains
from the Alexa Top-1M based on a Zipf distribution, view
pages following a Pareto distribution (exponent = 1.3, range
= 10–310 seconds), and leave domains following a Pareto
distribution (exponent = 3.0). When a simulated user visits a
domain that uses HTTPS, their browser checks all certificates
for revocations using one of the following three strategies:
• OCSP and CRL: This browser checks for revocations

using OCSP or CRL, but prioritizes OCSP if it is avail-
able. This strategy approximates how modern browsers
actually behave [49].

• CRL Only: This browser only checks for revocations
using CRL. The rationale behind this strategy is that
it (a) prioritizes privacy over network performance by
eschewing OCSP, and (b) potentially ends up avoiding
future CRL requests, as CRLs contain information for a
large number of certificates.

• CRLite: This browser uses CRLite. We assume the
browser already has the filter downloaded, and only pays
the cost of delta updates each day.

When our simulated user visits a domain, the simulator
actually contacts that domain, performs a TLS handshake, and
validates the certificates. In the case of CRLs and OCSP, the
simulator contacts the relevant CAs and records the time to
complete the requests, as well as the size of the CRL/OCSP
responses. Additionally, the simulator caches CRLs and OCSP
responses for their validity period, and uses cached informa-
tion to fulfill future requests whenever possible. In the case
of CRLite, the simulated user either incurs a 10 millisecond
delay to check the chain in the filter cascade, or a 6 millisecond
delay if the certificate is in the LRU cache (see § VII-C).

To make our simulator tractable, it assumes a simplified
model of the web where pages do not embed HTTPS content
from third parties. Thus, our results should be viewed as a
conservative lower bound on the amount of traffic and delay
that users will incur as they browse.
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Results. We conducted 100 runs of our simulator for each
revocation checking strategy, during which each simulated user
visited 1,000 domains drawn from the Alexa Top-1M.10

We first examine total network delay in Figure 7. We
observe that the browsers that check CRLs and OCSP accrue
an order of magnitude more delay than the CRLite user,
which makes sense given that each CRL/OCSP check involves
network requests. Although network requests have two orders
of magnitude more latency than CRLite (recall that each filter
check takes <10 milliseconds), caching eliminates the need for
many network requests. Interestingly, we observe that some of
the CRL users experience lower delay than the OCSP users;
this occurs when a user gets lucky and downloads a CRL
that happens to cover many of the domains they browse in
the future. However, we also see that the CRL users can get
extremely unlucky and experience very high delay if they
download several large, slow CRLs. Overall, CRLite is the
clear winner, and avoids the high latency penalty that makes
browser vendors eschew online revocation checking [40].

Figure 8 presents the 5th and 95th percentile total down-
loaded bytes for the simulated users as they browse. For the
CRLite user, the amount of downloaded bytes is independent
from the number of domains visited, since they only download
the delta update, and they never encounter newborn certificates
that would trigger on online revocation check. Conversely, the
OCSP and CRL users accumulate more downloaded bytes as
they contact more CAs, although the distributions eventually
level-off due to caching effects, i.e., they are highly likely to
visit popular sites repeatedly.

Figure 8 demonstrates how much browsing is necessary to
amortize the cost of downloading the CRLite delta update as
compared to other revocation checking strategies. A browser
that prioritizes OCSP downloads 1.0 MB of data after visiting
∼1000 domains. In contrast, the CRL-only browser hits this
benchmark after visiting only ∼20 domains. Thus, from the
standpoint of minimizing network traffic, OCSP is arguably
the most efficient strategy. However, among the two privacy-
preserving strategies, CRLite is the clear winner.

10Note that the sequence of domains for a given simulated user will almost
certainly contain duplicate domains.

E. Comparison with CRLSet and OneCRL

Finally, we briefly compare CRLite to CRLSet and
OneCRL. By construction, CRLite provides much greater
coverage of revocations: as of January 30, 2017, CRLite
contains 12.7M revocations, versus 14,436 and 357 in CRLSet
and OneCRL. Similarly, because CRLite uses a filter cascade,
it is able to achieve much greater information density. We
observe that CRLite uses 6.6 bits per revocation, while CRLSet
uses 110 bits per revocation, and OneCRL uses 1,928 bits
per revocation (since it uses XML-formatted text). We can
extrapolate that CRLSet and OneCRL would require 166 MB
and 2.9 GB, respectively, to store 12.7M revocations.

VIII. CRLITE WITHOUT AUDITING

We have presented a design of CRLite that decreases the
amount of data that clients need to download to stay up-to-
date on revocation information, without requiring any buy-in
or active participation from CAs. The benefit of not requiring
CA participation is that CRLite is deployable today. However,
the tradeoff is that it centralizes trust in the aggregator, thereby
necessitating third-party audits.

In this section we consider alternative CRLite designs that
involve active participation from CAs. We show that, with a
small amount of CA work, it is possible to achieve nearly
equal-sized filters without centralizing trust.

Assumptions. We assume that there is a set of N CAs
participating in CRLite, and that participating clients know
this set and each of the CAs’ public keys. We further assume
that there is an entity who aggregates the CAs’ revocation
information; as a result, we assume this aggregator knows the
N CAs, but we do not assume that it is trusted either by CAs
or clients. (In practice, the CAs themselves could take turns
serving this role.) Finally, we assume a well-known global
set of CRLite parameters, including the number of levels in
the filter cascade, the size of each level, and the set of hash
functions. These parameters can be adjusted over time as the
certificate ecosystem evolves.

An Interactive Protocol. We present a protocol wherein
CAs directly interact with the aggregator. Due to lack of space,
we elide details of how to format the messages, which would
be critical (though not complicated) in practice.



The aggregator performs most of its tasks as normal: it
collects all certificates and revocations (participating CAs
could facilitate this, but it is not necessary), and then it creates
the filter cascade and delta update for the day. Next, instead
of creating an audit log, the aggregator sends the latest filter
cascade Fcurr, the previous day’s Fprev, and the latest delta
update ∆ to all of the included CAs.

Each CA Ci verifies two things: First, that the delta update
is correct, i.e., Fcurr = Fprev⊕∆. Second, and most important,
Ci verifies that its certificates are properly accounted for. If
Ci has revoked certificates Ri and non-revoked certificates Si,
then Ci verifies that lookups for any r ∈ Ri in Fcurr return
true, and lookups for any s ∈ Si return false. If any of these
fail, then Ci aborts. Otherwise, Ci generates signature σi of
〈Fcurr,Fprev,∆〉, and sends it to the aggregator.

The aggregator then distributes to all clients Fcurr or ∆ (as
needed), as well as all σi’s that it received. For each CA that
provided a valid signature, clients need not perform audits:
Ci’s signature attests that the filter cascade is complete with
respect to Ci. In the event that a CA Cfail does not provide
valid signatures (e.g., due to failure), clients would still have
to perform audits as described in § IV to verify the filter’s
completeness. However, this does not prevent clients from
using the filter for all certificates signed by Ci 6= Cfail.

This protocol results in nearly as few bytes sent as the
standard CRLite. In particular, it comprises the same-sized
filter cascade; what differs is the number of signatures. In a
naïve construction, we result in N signatures, one from each
CA. However, novel multi-signature schemes can be applied to
reduce this: such a scheme allows N participants to separately
sign a common message M and for a separate party to com-
pute a multi-signature that is the size of a single signature. For
instance, Boldyreva demonstrated an elegant multi-signature
scheme based on bilinear maps [7]. The common message
in this application is 〈Fcurr,Fprev,∆〉. Thus, the aggregator
could combine the signatures to obtain aggregate signature
σ?, thereby reducing the number of signatures from N to 1.
Additionally, the aggregator would need to send a list of CAs
that failed to contribute signatures (normally none should fail).

In this scheme, the aggregator need not be trusted to deliver
this information. So long as the client knows the set of CAs
that are supposed to be included in the CRLite (which we
assumed above, or could be explicitly included with the filter),
it will be able to detect any modifications to the filter cascade
or delta updates. In other words, clients must verify aggregate
signatures, but they need not perform costly audits.

Related Constructions. Two recent schemes also propose
aggregating signatures. CoSi [67] assigns a witness set to
observe and attest to the messages from some “authority” (e.g.,
a CA), and scalably aggregates their attestations to clients. Our
construction differs in that the original data authorities (CAs)
do the “witnessing,” and rather than detect equivocation [47],
each CA verifies its own subset of the filter cascade. As a
result, misbehavior in our protocol is detectable immediately.
Another recent system, RevCast [65], also proposes using

compact multi-signatures to represent certificate revocation.
Whereas RevCast simply concatenates their lists of revoked
certificates, we perform the space-saving operation of inserting
them into a filter cascade. This is what requires us to use
an interactive protocol, whereas RevCast is able to operate
non-interactively. We speculate that a non-interactive variant
of CRLite may be possible with novel cryptographic mecha-
nisms (fully homomorphic signatures [32] appear particularly
promising); this is an interesting area of future work.

IX. CONCLUSION

Software that leverages TLS is currently caught between a
rock and a hard place with respect to certificate revocation. On
one hand, revocation checking is critical for security: without
it, users are vulnerable to MitM and phishing attacks that
leverage compromised certificates. On the other hand, existing
online mechanisms for revocation checking like CRLs and
OCSP are slow, leak browsing information, and fail to offer
strong security in practice (since an attacker can block access
to the revocation servers, causing existing clients to fail-open).
Stopgap solutions like CRLSet and OneCRL increase security,
but do not obviate the need for online revocation checks or
fundamentally solve the fail-open issue.

Thanks to efforts such as Certificate Transparency [45]
and various active scanning projects [21], [60], the possi-
bility of having virtually all HTTPS certificates is a reality.
CRLite leverages this bounty by (a) having a centralized
aggregator collect revocation status for every known certificate
and (b) representing them compactly using a filter cascade
data structure. Surprisingly, the size of this representation is
quite reasonable (10 MB for the entire structure, plus 580 KB
per day for updates), making it practical to distribute to all
clients. CRLite also includes procedures for publicly auditing
aggregators to ensure they do not leave out or extraneously
put in any revocations (we analyze various attacks in §V).

We develop a prototype implementation of CRLite, and
show that it offers high performance and low overhead. Most
importantly, CRLite enables clients to adopt a fail-closed
security posture because the filter is guaranteed to not contain
false positives or negatives (for any certificates created or
revoked >24 hours ago). CRLite requires no work on the part
of CAs, no changes to certificates, no modifications to the TLS
protocol, and is suitable for resource-constrained clients.

We believe that CRLite shows that it is now worthwhile to
reinvestigate the trade-offs of complete and universal delivery
of revocation information. As a service to the community, we
make our code available at https://www.securepki.org.
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APPENDIX A
ANALYSIS OF FILTER CASCADE LEVELS

Here, we extend our analysis from § III-C to rigorously
determine the expected number of hashes applied to each
certificate and the expected number of levels in the filter
cascade. Note that very few certificates survive to the last level
of the filter cascade.

We model the removal of certificates from consideration as
a coin-flipping process. Recall that we seek to store some set
R, that all queries come from some “universe” U , and that
R ∪ S = U . For each set element, whether originally in R
or S, there is a coin flipping process that proceeds in rounds.
The coin for an element is flipped whenever it is among those
that are not being inserted into the Bloom filter at a particular
level. These are the levels at which a false positive may occur
for the element. Hence, for any element, a coin-flipping round
occurs every other level. With probability 1− p1 or 1− p, the
outcome is “heads” indicating that the element can be removed
from consideration and no more flips are necessary. Otherwise
the flip is “tails” and the process continues. Assuming that our
hash functions choose which bits to set for different elements
independently, every coin flip is independent.

Levels per Certificate. We begin by analyzing the expected
number of levels at which an individual certificate is inserted
or checked for a false positive. Let Xi be a random variable
indicating the number of rounds until heads is flipped for the
ith coin. For an element in R, it is easy to show that E[Xi] =
1/(1 − p). As an example, for p = 1/2, E[Xi] = 2. For an
element in S, the formula is slightly more complicated because
the probability of heads in the first round is 1−p1, and in later
rounds 1 − p. Thus E[Xi] = (1 − p1) + p1(1 + 1/(1 − p)).
This quantity is smaller than the number of rounds for an
element in R, assuming p1 < p. For an element in R, the
number of levels, Yi, at which the certificate is inserted or
checked is twice the number of rounds, i.e., Yi = 2Xi, so that
E[Yi] = 2/(1 − p). As an example, for p = 1/2, E[Yi] = 4.
For an element in S, the number of levels is given by Yi =
2Xi − 1, hence E[Yi] = 2(1− p1) + 2p1(1 + 1/(1− p))− 1.
Again, for p1 < p, the expected number of levels is smaller
for an element of S than for an element of R. Note that the
expressions for E[Xi] and E[Yi] are actually upper bounds,
because an element of R need not be considered further if all
of the elements of S have been removed from consideration,
and vice versa.

Hashes per Certificate. At each level, multiple hash
functions may be applied to a certificate. Let k1 denote the
number of hash functions used in the Bloom filter at level
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1, and let k denote the number of hash functions used in
each Bloom filter at all levels after 1. Let Zi denote the
number of hash functions applied to the ith certificate. For
any element, whether in R or S, Zi = k1 + k(Yi − 1). Hence
E[Zi] = k1 + k(E[Yi]− 1). As an example, for p = 1/2 and
k = 1, for an element of R we have E[Zi] = k1 + 3. (For an
element of S, E[Zi] is smaller.)

Levels in Filter Cascade. Finally, we would like to bound
the expected number of levels in the entire filter cascade, i.e.,
the expected number of levels required until every element
has flipped heads. Eisenberg [24] states a bound that we can
immediately apply to the expected number of even-numbered
levels needed before all elements of R are removed from con-
sideration. Suppose that N coins are being flipped in rounds,
where in each round, each coin has probability 1−p of flipping
heads. As before, let Xi denote the number of rounds until the
ith coin flips heads. We are interested in the maximum, over
all coins, of the number of rounds needed to flip heads, i.e.,
in the random variable X = max(X1, . . . , XN ). The bound
from [24] is

HN

ln 1
p

≤ E[X] ≤ 1 +
HN

ln 1
p

, (3)

where HN is the N th harmonic number, i.e., HN =
∑N

i=1 1/i.
For large N , HN is very close to lnN+0.577. Let XR denote
the number of even-numbered levels needed. Then applying
the bound from Inequality (3) with N = r = |R|, yields

E[XR] ≤ 1 + (ln r + 0.577)/ ln(1/p).

For the elements of S a slightly messier analysis is required
because at the first level these elements suffer false positives
with probability p1, and at all subsequent odd levels with
probability p. But for the sake of the analysis, let us begin
by assuming that the false positive probability (the probability
of flipping tails) in every round is p. Then the bound from
Inequality (3) can be applied with N = s = |S|. Note that
in this coin-flipping process, the probability that an element
survives the first i rounds, flipping tails i times, is pi. Suppose
now that we modify the coin-flipping process so that in

the first round the probability of tails is p1, in the next
b(ln p1)/(ln p)c−1 rounds the probability of tails is 1, and in
all subsequent rounds the probability of tails remains p. Here
we assume that p1 < p. Observe that after this modification to
the process, the expected number of rounds can only decrease
because the probability that any element survives i rounds,
for any i, can only decrease. Hence, applying Inequality (3)
with N = s, the expected number of rounds in the modified
process is at most 1 + (ln s+ 0.577)/ ln(1/p).

Now we modify the process again by removing the rounds
in which the false positive probability is 1. Removing these
rounds does not affect what happens in any other rounds. The
probability that there are no false positives in the first round
(and thus that there is only one level) is (1 − p1)s. Hence,
the expected number of rounds in this final process is reduced
by (1 − (1 − p1)s)(b(ln p1)/(ln p)c − 1). Note that this final
process is now identical to the process implemented in the
odd levels of our filter cascade. Let XS denote the number
of odd-numbered levels needed to remove all elements of S
from consideration. Then

E[XS ] ≤ 1 +
ln s+ 0.577

ln(1/p)
− (1− (1−p1)s)

(⌊
ln p1
ln p

⌋
− 1

)
.

Building the filter cascade ends when either all of the
elements in R have been removed from consideration, or all
of the elements in S have been removed from consideration,
whichever comes first. Hence, the total number of levels,
XT , is min(2XS − 1, 2XR). Because the expectation of the
minimum of two random variables is at most the minimum of
the expectations, we have

E[XT ] ≤ min(2E[XS ]− 1, 2E[XR]).

High Probability Bounds. It is also straightforward to
prove a high probability bound. The probability that a coin is
flipped tails i times in a row is pi. Thus, the probability that
there is any coin that has been flipped tails i times in a row is
at most Npi. If we want 99% confidence that at most i rounds
are needed, we set Npi = 0.01, and then solve for i.


