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Abstract. We describe a method for remotely detecting intentional
packet drops on the Internet via side channel inferences. That is, given
two arbitrary IP addresses on the Internet that meet some simple re-
quirements, our proposed technique can discover packet drops (e.g., due
to censorship) between the two remote machines, as well as infer in which
direction the packet drops are occurring. The only major requirements
for our approach are a client with a global IP Identifier (IPID) and a tar-
get server with an open port. We require no special access to the client
or server. Our method is robust to noise because we apply intervention
analysis based on an autoregressive-moving-average (ARMA) model. In
a measurement study using our method featuring clients from multiple
continents, we observed that, of all measured client connections to Tor
directory servers that were censored, 98% of those were from China, and
only 0.63% of measured client connections from China to Tor directory
servers were not censored. This is congruent with current understandings
about global Internet censorship, leading us to conclude that our method
is effective.

1 Introduction

Tools for discovering intentional packet drops are important for a variety of ap-
plications, such as discovering the blocking of Tor by ISPs or nation states [1].
However, existing tools have a severe limitation: they can only measure when
packets are dropped in between the measurement machine and an arbitrary re-
mote host. The research question we address in this paper is: can we detect
packet drops between two hosts without controlling either of them and without
sharing the path between them? Effectively, by using idle scans our method can
turn approximately 1% of the total IP address space into conscripted measure-
ment machines that can be used as vantage points to measure IP-address-based
censorship, without actually gaining access to those machines. We can achieve
this because of information flow in their network stacks.

This is the extended version of a paper from the 2014 Passive and Active Measure-
ments Conference (PAM), March 10th–11th, 2014, Los Angeles, California.
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Antirez [2] proposed the first type of idle scan, which we call an IPID idle
port scan. In this type of idle scan an “attacker” (which we will refer to as the
measurement machine in our work) aims to determine if a specific port is open
or closed on a “victim” machine (which we will refer to as the server) without
using the attacker’s own return IP address. The attacker finds a “zombie” (client
in this paper) that has a global IP identifier (IPID) and is completely idle. In this
paper, we say that a machine has a global IPID when it sends TCP RST packets
with a globally incrementing IPID that is shared by all destination hosts. This
is in contrast to machines that use randomized IPIDs or IPIDs that increment
per-host. The attacker repeatedly sends TCP SYN packets to the victim using
the return IP address of the zombie, while simultaneously eliciting RST packets
from the zombie by sending the zombie SYN/ACKs with the attacker’s own
return IP address. If the victim port that SYN packets are being sent to is open,
the attacker will observe many skips in the IPIDs from the zombie. Nmap [3] has
built-in support for antirez’s idle scan, but often fails for Internet hosts because
of noise in the IPID that is due to the zombie sending packets to other hosts.
Our method described in this paper is resistant to noise, and can discover packet
drops in either direction (and determine which direction). Nmap cannot detect
the case of packets being dropped from client to server based on destination IP
address, which our results demonstrate is a very important case.

Two other types of idle scans were presented by Ensafi et al. [4], including
one that exploits the state of the SYN backlog as a side channel. Our method
is based on a new idle scan technique that can be viewed as a hybrid of the
IPID idle scan and Ensafi et al.’s SYN backlog idle scan. Whereas Ensafi et al.’s
SYN backlog idle scan required filling the SYN backlog and therefore causing
denial-of-service, our technique uses a low packet rate that does not fill the SYN
backlog and is non-intrusive. The basic insight that makes this possible is that
information about the server’s SYN backlog state is entangled with information
about the client’s IPID field. Thus, we can perform both types of idle scans
(IPID and SYN backlog), to detect drops in both directions, and our technique
overcomes the limitations of both by exploiting the entanglement of information
in the IPID and treating it as a linear intervention problem to handle noise
characteristic of the real Internet.

This research has several major contributions:

– A non-intrusive method for detecting intentional packet drops between two
IP addresses on the Internet where neither is a measurement machine.

– An Internet measurement study that shows the efficacy of the method.
– A model of IPID noise based on an autoregressive-moving-average (ARMA)

model that is robust to autocorrelated noise.

Source code and data are available upon request, and a web demonstration
version of the hybrid idle scan is at http://spookyscan.cs.unm.edu. The types
of measurements we describe in this paper raise ethical concerns because the
measurements can cause the appearance of connection attempts between arbi-
trary clients and servers. In China there is no evidence of the owners of Internet

http://spookyscan.cs.unm.edu
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Fig. 1. Three different cases that our method can detect. MM is the measurement
machine.

hosts being persecuted for attempts to connect to the Tor network, thus our
measurements in this paper are safe. However, we caution against performing
similar measurements in other countries or contexts without first evaluating the
risks and ethical issues. More discussion of ethical issues is in Section 7.

The rest of the paper is structured as follows: After describing the implemen-
tation of our method in Section 2, we present our experimental methodology for
the measurement study in Section 3. This is followed by Section 4, which de-
scribes how we analyze the time series data generated by a scan using an ARMA
model. Results from the measurement study are in Section 5, followed by dis-
cussions of related work in Section 6 and ethical issues in Section 7, and then
the conclusion.

2 Implementation

In order to determine the direction in which packets are being blocked, our
method is based on information flow through both the IPID of the client and
the SYN backlog state of the server, as shown in Figure 1. Our implementation
queries the IPID of the client (by sending SYN/ACKs from the measurement
machine and receiving RST responses) to create a time series to compare a base
case to a period of time when the server is sending SYN/ACKs to the client
(because of our forged SYNs). We assume that the client has global IPIDs and
the server has an open port.

Global IPIDs were explained in Section 1. The SYN backlog is a buffer that
stores information about half-open connections where a SYN has been received
and a SYN/ACK sent but no ACK reply to the SYN/ACK has been received.
Half-open connections remain in the SYN backlog until the connection is com-
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Fig. 2. Example IPID difference time series’ for three separate experiments that lead
to detection of the Server-to-client-dropped case. Note the high amount of noise in
the third experiment. Our ARMA modeling is able to detect this case correctly even
in the presence of such high noise.

pleted with an ACK, aborted by a RST or ICMP error, or the half-open con-
nection times out (typically between 30 and 180 seconds). The SYN/ACK is
retransmitted some fixed number of times that varies by operating system and
version, typically three to six SYN/ACKs in total. This SYN backlog behav-
ior on the server, when combined with the global IPID behavior of the client,
enables us to distinguish three different cases (plus an error case):

– Server-to-client-dropped: In this case SYN/ACKs are dropped in transit
from the server to the client based on the return IP address (and possibly
other fields like source port), and the client’s IPID will not increase at all
(except for noise). See Figure 2.

– No-packets-dropped: In the case that no intentional dropping of packets
is occurring, the client’s IPID will go up by exactly one. See Figure 3. This
happens because the first SYN/ACK from the server is responded to with a
RST from the client, causing the server to remove the entry from its SYN
backlog and not retransmit the SYN/ACK. Censorship that is stateful or
not based solely on IP addresses and TCP port numbers may be detected as
this case, including filtering aimed at SYN packets only. Also, if the packet
is not dropped, but instead the censorship is based on injecting RSTs or
ICMP errors, it will be detected as this case. Techniques for distinguishing
these other possibilities are left for future work.
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Fig. 3. Example IPID difference time series’ for three separate experiments that lead
to detection of the No-packets-dropped case. Note the high amount of noise in the
second experiment. Our ARMA modeling is able to detect this case correctly even in
the presence of such high noise.
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Fig. 4. Example IPID difference time series’ for three separate experiments that lead
to detection of the Client-to-server-dropped case.
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– Client-to-server-dropped: In this case RST responses from the client to
the server are dropped in transit because of their destination IP address
(which is the server). When this happens the server will continue to retrans-
mit SYN/ACKs and the client’s IPID will go up by the total number of
transmitted SYN/ACKs including retransmissions (typically three to six).
See Figure 4. This may indicate the simplest method for blacklisting an IP
address: null routing.

– Error: In this case networking errors occur during the experiment, the IPID
is found to not be global throughout the experiment, a model is fit to the
data but does not match any of the three non-error cases above, the data is
too noisy and intervention analysis (see Section 4) fails because we are not
able to fit a model to the data, and/or other errors.

Noise due to packet loss and delay or the client’s communications with other
machines may be autocorrelated. The autocorrelation comes from the fact that
the sources of noise, which include traffic from a client that is not idle, packet
loss, packet reordering, and packet delay, are not memoryless processes and of-
ten happen in spurts. The accepted method for performing linear intervention
analysis on time series data with autocorrelated noise is ARMA modeling [5],
which we describe in Section 4.

3 Experimental Setup

All measurement machines were Linux machines connected to a research network
with no packet filtering. Specifically, this network has no stateful firewall or egress
filtering for return IP addresses.

One measurement machine was dedicated to developing a pool of both client
and server IP addresses that have the right properties for use in measurements.
Clients were chosen by horizontally scanning China and other countries for ma-
chines with global IPIDs, then continually checking them for a 24-hour period
to cull out IP addresses that frequently changed global IPID behavior (e.g., be-
cause of DHCP), went down, or were too noisy. A machine is considered to have a
global IPID if its IPID as we measure it by sending SYN/ACKs from alternating
source IP addresses and receiving RSTs never incrementing outside the ranges
[−40, 0) or (0, 1000] per second when probed from two different IP addresses.
This range allows for non-idle clients, packet loss, and packet reordering. It is
possible to build the time series in different ways where negative IPID differences
are never observed, but in this study our time series was the differences in the
client’s IPIDs in the order in which they arrived at the measurement machine.
Our range of [−40, 0) or (0, 1000] is based on our observations of noise typical of
the real Internet. The IPID going up by 0 is a degenerate case and means the
IPID is not global.

Servers were chosen from three groups: Tor directory authorities, Tor bridges,
and web servers. The ten Tor directory authorities were obtained from the Tor
source code and the same ten IPs were tested for every day of data. Three Tor
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bridges were collected daily both through email and the web. Every day seven
web servers were chosen randomly from the top 1000 websites on the Alexa Top
1,000,000 list [6]. All web server IPs were checked to make sure that they stood
up for at least 24 hours before being selected for measurement. Furthermore,
we checked that the client and server were both up and behaving as assumed
between every experiment (i.e., every five minutes).

A round of experiments was a 24-hour process in which measurements were
carried out on the two measurement machines. Each 24-hour period had 22 hours
of experiments and 2 hours of down time for data synchronization. For each mea-
surement period on each of the two machines performing direct measurements,
ten server machines and ten client machines from the above process were cho-
sen for geographic diversity: 5 from China, 2 from countries in Asia that were
not China, 1 from Europe, and 2 from North America. IP addresses were never
reused except for the Tor directory authorities, so that every 24-hour period was
testing a set of 20 new clients, 10 new servers, and the 10 directory authorities.

For each of the twenty clients and twenty servers geographical information
provided by MaxMind was saved. MaxMind claims an accuracy of 99.8% for
identifying the country an IP address is in [7]. For each of the twenty server
machines, a series of SYN packets was used to test and save its SYN/ACK
retransmission behavior for the analysis in Section 4.

Every hour, each of our two main measurement machines created ten threads.
Each thread corresponded to one client machine. Each thread tested each of the
ten server IP addresses sequentially using our idle scan based on the client’s
IPID. No forged SYNs were sent to the server during the first 100 seconds of a
test, and forged SYNs with the return IP address of the client were sent to the
server at a rate of 5 per second for the second 100-second period. Then forged
RST packets were sent to the server to clear the SYN backlog and prevent
interference between sequential experiments. A timeout period of sixty seconds
was observed before the next test in the sequence was started, to allow all other
state to be cleared. Each experiment lasted for less than five minutes, so that
ten could be completed in an hour. Every client and server was involved in
only one experiment at a time. Each client/server pair was tested once per hour
throughout the 24-hour period, for replication and also to minimize the effects
of diurnal patterns. Source and destination ports for all packets were carefully
chosen and matched to minimize assumptions about what destination ports the
client responds on. Specifically, source ports for SYN packets sent to the server
(both forged SYNs and SYNs with the measurement machine’s IP address as the
return IP address for testing) were chosen from the same range as the destination
ports for SYN/ACKs send to the client (always strictly less than 1024). We did
not find it necessary to hold the source port for SYN/ACKs sent to the client
to be always equal to the open port on the server, but this is possible.
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4 Analysis

In this section, we set out our statistical model for our time series data. We
then describe our process for outlier removal and for statistically testing if and
in which direction packet drops are occurring.

We model each time series y1, . . . , yn as a linear regression with ARMA er-
rors, a combination of an autoregressive-moving-average (ARMA) model with
external linear regressors. ARMA models are used to analyze time series with
autocorrelated data and are themselves a combination of two models, an autore-
gressive (AR) model and a moving-average (MA) model.

An AR model of order p specifies that every element of a time series can be
written as a constant plus the linear combination of the previous p elements:

yt = c+ zt + φ1yt−1 + · · ·+ φt−pyt−p

where zt is a white noise series. An MA model of order q specifies that every
element of a time series can be written as a constant plus the linear combination
of the previous q white-noise terms:

yt = c+ zt + θ1zt−1 + · · ·+ θt−qzt−q

Intuitively, each element is linearly related to the previous random “shocks” in
the series. An ARMA(p, q) model combines an AR model of order p and an MA
model of order q:

yt = c+ zt +

p∑
i=1

φiyt−i +

q∑
i=1

θizt−i

We use a linear regression with ARMA errors to model our time series data.
This specifies that every element in a time series can be written as a constant
plus the linear combination of regressors x1, . . . , xr with an ARMA-modeled
error term:

yt = c+

r∑
i=1

βixit + et,

et = zt +

p∑
i=1

φiet−i +

q∑
i=1

θizt−i

We use the regressors xi for intervention analysis, i.e., for analyzing our
experimental effect on the time series at a specific time.

For each experiment, we pick regressors according to which times the server
(re)transmits SYN/ACK’s in response to SYN’s. For a server that (re)transmits
r SYN/ACK’s in response to each SYN, we have r regressors. We call time t1 the
time of the first transmission in response to the first of our forged SYN’s, and
we call ti+1 the time the server would send the ith retransmission in response
to that SYN. Then we define regressor xi as the indicator variable

xij =

{
1 if ti ≤ j and either j < ti+1 or i = r

0 otherwise
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Fig. 5. For a server that retransmits r − 1 SYN/ACK’s, each case can be
expressed as the linear combination of regressors x1, . . . , xr; shown is when
r = 3 with SYN/ACK transmissions responding to the first forged SYN
occurring at t1, t2, and t3. C→S indicates client-to-server, and S→C indicates
server-to-client.

In other words, x1 is zeros until the time the server transmits the first SYN/ACK
then ones until the server begins retransmitting SYN/ACK’s. The remaining xi
are zeros until the time the server would begin retransmitting its ith SYN/ACK
then ones until if/when the (i+1)th SYN/ACK’s would begin being retransmit-
ted. This definition allows us to model any of the possible level shifts in any case
of packet drop as a linear combination of all xi. See Figure 5 for an illustration.

We choose ARMA orders p and q by performing model selection over time
series elements y1, . . . , yt1 . We find the p ≤ 7 and q ≤ 7 for the ARMA(p, q)
model that maximizes the corrected Akaike information criterion, a metric which
rewards models that lose less information but penalizes models overfitted with
too many parameters [8]. It is given by

AICC = −2 lnL+ 2k +
2k(k + 1)

n− k − 1
,

where here the number of parameters k is p+q+2 and where L is the estimated
maximum likelihood over all φi and θi.

After p and q are chosen, we then simultaneously fit all φi, θi, and βi of our
linear regression model with ARMA errors over the entire time series y1, . . . , yn
corresponding to the estimated maximum likelihood.

After fitting parameters, we remove outliers that might be caused by, e.g.,
spikes in network traffic that may hamper our analysis. We use the λ̂2,T test
statistic proposed by Chang et. al [9] with significance α = 0.05. After removing
outliers, we iteratively refit the φi, θi, and βi parameters and test for outliers
until no additional outliers are removed.

For intervention analysis, we use hypothesis testing over the value of βr to
determine if packets are dropped and in which direction. If we send s forged
SYN’s, without noise, we would expect βr to equal one of the following: 0 for
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the case where packets are dropped from the server to client, s for the case where
no packets are dropped, or rs for the case where packets are dropped from the
client to server. One might pick two thresholds, k1 = s/2 in between the first two
cases and threshold k2 = (1 + r)s/2 between the last two cases; however, for the
second threshold, we instead choose k′2 = min(2s, k2) to be more robust to, e.g.,
packet loss. Then we determine the case by a series of one-sided hypothesis tests
performed with significance α = 0.01 according to the following breakdown:

– Server-to-client-dropped if we reject the null hypothesis that βr ≥ k1.

– No-packets-dropped if we reject the null hypotheses that βr ≤ k1 and
that βr ≥ k′2.

– Client-to-server-dropped if we reject the null hypothesis that βr ≤ k′2.

– Error if none of the above cases can be determined.

5 Results

Table 1 shows results from 5 days of data collection, where S → C is Server-to-
client-dropped, None is No-packets-dropped, C → S is Client-to-server-
dropped, and Error is Error. CN is China, Asia-CN is other Asian countries,
EU is Europe, and NA is North America. For server types, Tor-dir is a Tor
directory authority, Tor-bri is a Tor bridge, and Web is a web server.

Client,Server S → C (%) None (%) C → S (%) Error (%)

CN,Tor-dir 2200 (73.04) 19 (0.63) 504 (16.73) 289 (9.59)
Asia-CN,Tor-dir 0 (0.00) 1171 (96.38) 1 (0.08) 43 (3.54)

NA,Tor-dir 1 (0.07) 1217 (90.69) 49 (3.65) 75 (5.59)
EU,Tor-dir 2 (0.28) 695 (97.89) 2 (0.28) 11 (1.55)
CN,Tor-bri 1012 (58.91) 565 (32.89) 31 (1.80) 110 (6.40)

Asia-CN,Tor-bri 0 (0.00) 626 (80.88) 9 (1.16) 139 (17.96)
NA,Tor-bri 0 (0.00) 657 (78.21) 30 (3.57) 153 (18.21)
EU,Tor-bri 0 (0.00) 313 (78.25) 9 (2.25) 78 (19.50)
CN,Web 28 (2.15) 995 (76.30) 36 (2.76) 245 (18.79)

Asia-CN,Web 1 (0.17) 569 (97.43) 1 (0.17) 13 (2.23)
NA,Web 0 (0.00) 606 (93.37) 0 (0.00) 43 (6.63)
EU,Web 0 (0.00) 305 (90.24) 0 (0.00) 33 (9.76)

All Web 29 (1.01) 2475 (86.09) 37 (1.29) 334 (11.62)
All Tor-bri 1012 (27.12) 2161 (57.90) 79 (2.12) 480 (12.86)
All Tor-dir 2203 (35.09) 3102 (49.40) 556 (8.85) 418 (6.66)

Table 1. Results from the measurement study.

Our expectation would be to observe Server-to-client-dropped for clients
in China and Tor servers because of Winter and Lindskog’s observation that the
SYN/ACKs are statelessly dropped by the “Great Firewall of China” (GFW)
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based on source IP address and port [10]. We would expect to see No-packets-
dropped for most web servers from clients in China, unless they host popular
websites that happen to be censored in China. Similarly, in the expected case we
should observe No-packets-dropped for clients outside of China, regardless of
server type. We expect a few exceptions, because censorship happens outside of
China and because the GFW is not always 100% effective. In particular, Tor
bridges are not blocked until the GFW operators learn about them, and some
routes might not have filtering in place. Our results are congruent with all of
these expectations.

In 5.9% of the client/server pairs we tested, multiple cases were observed in
the same day. In some cases it appears that noise caused the wrong case to be
detected, but other cases may be attributable to routes changing throughout the
day [11]. That the data is largely congruent with our expectations demonstrates
the efficacy of the approach, and some of the data points that lie outside our
expectations have patterns that suggest that a real effect is being measured,
rather than an error. For example, of the 28 data points where web servers were
blocked from the server to the client in China, 20 of those data points are the
same client/server pair.

38% of the data we collected does not appear in Table 1 because it did
not pass liveness tests. Every 5-minute data point has three associated liveness
tests. If a server sends fewer than 2.5 SYN/ACKs in response to SYNs from
the measurement machine, a client responds to less than 3

5 of our SYN/ACKs,
or a measurement machine sending thread becomes unresponsive, that 5-minute
data point is discarded.

Two out of the ten Tor directory authorities never retransmitted enough
SYN/ACKs to be included in our data. Of the remaining eight, two more account
for 98.8% of the data points showing blocking from client to server. These same
two directory authorities also account for 72.7% of the Error cases for directory
authorities tested from clients in China, and the case of packets being dropped
from server to client (the expected case for China and the case of the majority
of our results) was never observed for these two directory authorities.

When Winter and Lindskog [10] measured Tor reachability from a virtual
private server in China, there were eight directory authorities at that time. One
of the eight was completely accessible, and the other seven were completely
blocked in the IP layer by destination IP (i.e., Client-to-server). In our re-
sults, six out of ten are at least blocked Server-to-client and two out of ten
are only blocked Client-to-server (two had all results discarded). Winter and
Lindskog also observed that Tor relays were accessible 1.6% of the time, and we
observed that directory authorities were accessible 0.63% of the time. Our results
have geographic diversity and their results can serve as a ground truth because
they tested from within China. In both studies the same special treatment of
directory authorities compared to relays or bridges was observed, as well as a
small percentage of cases where filtering that should have occurred did not.

To evaluate the assumption that clients with a global IPID are easy to find
in a range of IP addresses that we desire to measure from, take China as an
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example. On average, 10% of the IP addresses in China responded to our probes
so that we could observe their IPID, and of those 13% were global. So, roughly
1% of the IP address space of China can be used as clients for measurements
with our method, enabling experiments with excellent geographic and topological
diversity.

6 Related Work

Related work directly related to idle scans [2,3,4] was discussed in Section 1.
Other advanced methods for inferring remote information about networks have
been proposed. Qian et al. [12] demonstrate that firewall behavior with respect
to sequence numbers can be used to infer sequence numbers and perform off-path
TCP/IP connection hijacking. Chen et al. [13] use the IPID field to perform ad-
vanced inferences about the amount of internal traffic generated by a server, the
number of servers in a load-balanced setting, and one-way delays. Morbitzer [14]
explores idle scans in IPv6.

iPlane [15] sends packets from PlanetLab nodes to carefully chosen hosts,
and then compounds loss on specific routes to estimate the packet loss between
arbitrary endpoints without access to those endpoints. This does not detect IP-
address-specific packet drops. Our technique, in contrast, can be used to detect
intentional drops of packets based on IP address and requires no commonali-
ties between the measurement machine’s routes to the server or client and the
routes between the server and client. Queen [16] utilizes recursive DNS queries
to measure the packet loss between a pair of DNS servers, and extrapolates from
this to estimate the packet loss rate between arbitrary hosts. Reverse traceroutes
can be performed by forging return IP addresses and using the IP options for
recording routes and timestamps [17]. De A. Rocha et al. [18] present a method
for estimating average variance and delay based on forged return IP addresses
and the IPID field.

Dainotti et al. [19] analyze several Internet disruption events that were
censorship-related using various data sources from both the control and data
planes. Flach et al. [20] present a method for detecting cases where routing de-
cisions are not solely based on destination IP address. In general, understanding
reachability and routing issues on the Internet is an important problem, and we
assert that idle scans are a promising general approach to perform these kinds
of measurements.

7 Discussion of Ethical Issues

The main ethical concerns with the measurements presented in this paper arise
from the fact that we are essentially creating traffic between a client and server,
where the client is typically inside a domain where access to the server might
be blocked. Simply creating such traffic may have negative consequences for the
owner/operator of the client machine. A separate ethical concern is raised by the
measurements themselves, because we are sending SYN packets at a relatively
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high rate, some of them forged, with no intention of completing a connection
with the server.

Regarding the creation of traffic between the client and server, assuming that
the path from the measurement machine to the server does not go through the
censor’s Internet infrastructure, then the traffic generated between the client and
server that the censor can see is only SYN/ACKs from the server to the client
and RSTs from the client to the server. Nonetheless, if this information is re-
ported to authorities in an aggregated form, such as netflow records or aggregate
bandwidth numbers, then it could appear that the client is communicating with
the server. Thus we strongly recommend that the measurements we present in
this paper not be carried out without a full understanding of the context and
ethical considerations specific to the country being studied. China has no history
of persecuting Internet users for attempting to connect to evasion technologies
such as the Tor network. China’s basic approach to censorship and surveillance
on the Internet is to have these functions carried out by companies (see, e.g.,
Crandall et al. [21]), with the government only stepping in when the companies
fail to do an adequate job [22]. For more information about Internet controls in
China, see the Open Net Initiative’s country profile [23].

Regarding the fact that we are sending SYN packets to the server at a rela-
tively high rate with no intention of completing a connection, note that the rate
we are sending SYN packets (5 per second) is not enough to create a denial-
of-service condition on any modern network stack. Modern network stacks have
mechanisms for preventing their SYN backlogs from being filled except at very
high rates, and, even if the SYN backlog is full, modern operating systems typ-
ically have SYN cookies [24] turned on by default. Causing the SYN backlog to
fill is still a potential denial-of-service when SYN cookies are enabled, because
SYN cookies are never retransmitted and often exclude important features such
as the scaled flow control window. Fortunately, our hybrid idle scan, unlike the
SYN backlog idle scan of Ensafi et al. [4], does not require the SYN backlog to
be full before information is leaked about the SYN backlog state. For an inter-
esting discussion about ethical issues related to port scans in general, we refer
the reader to Durumeric et al. [25].

8 Conclusion

We have presented a method for detecting intentional packet drops (e.g., due
to censorship) between two almost arbitrary hosts on the Internet, assuming
the client has a globally incrementing IPID and the server has an open port.
Our method can determine which direction packets are being dropped in, and is
resistant to noise due to our use of an ARMA model for intervention analysis. Our
measurement results are congruent with current understandings about global
Internet censorship, demonstrating the efficacy of the method.
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