
The End is Nigh: Generic Solving of Text-based CAPTCHAs

Elie Bursztein
Google

elieb@google.com

Jonathan Aigrain
Stanford University

jonathan.aigrain@gmail.com

Angelika Moscicki
Google

moscicki@google.com

John C. Mitchell
Stanford University

jcm@cs.stanford.edu

Abstract
Over the last decade, it has become well-established

that a captcha’s ability to withstand automated solving
lies in the difficulty of segmenting the image into
individual characters. The standard approach to solving
captchas automatically has been a sequential process
wherein a segmentation algorithm splits the image into
segments that contain individual characters, followed
by a character recognition step that uses machine
learning. While this approach has been effective against
particular captcha schemes, its generality is limited by
the segmentation step, which is hand-crafted to defeat the
distortion at hand. No general algorithm is known for the
character collapsing anti-segmentation technique used by
most prominent real world captcha schemes.

This paper introduces a novel approach to solving
captchas in a single step that uses machine learning to
attack the segmentation and the recognition problems si-
multaneously. Performing both operations jointly allows
our algorithm to exploit information and context that is
not available when they are done sequentially. At the same
time, it removes the need for any hand-crafted component,
making our approach generalize to new captcha schemes
where the previous approach can not. We were able to
solve all the real world captcha schemes we evaluated ac-
curately enough to consider the scheme insecure in prac-
tice, including Yahoo (5.33%) and ReCaptcha (33.34%),
without any adjustments to the algorithm or its parame-
ters. Our success against the Baidu (38.68%) and CNN
(51.09%) schemes that use occluding lines as well as
character collapsing leads us to believe that our approach
is able to defeat occluding lines in an equally general
manner. The effectiveness and universality of our results
suggests that combining segmentation and recognition
is the next evolution of catpcha solving, and that it su-
persedes the sequential approach used in earlier works.
More generally, our approach raises questions about how
to develop sufficiently secure captchas in the future.

1 Introduction

Many websites use CAPTCHAs [39], or Completely
Automated Public Turing tests to tell Computers and
Humans Apart, to block automated interaction with their
sites. For example, GMail uses captchas 1 to block access
by automated spammers, eBay uses captchas to improve
its marketplace by blocking bots from flooding the site
with scams, and Facebook uses captchas to limit creation
of fraudulent profiles used to spam honest users or cheat
at games. The most widely used captcha schemes use
combinations of distorted characters and obfuscation
techniques that humans can recognize but that may be
difficult for automated scripts. Captchas are sometimes
called reverse Turing tests, because they are intended to
allow a computer to determine whether a remote client is
human or machine.

Due to the proficiency of machine learning algo-
rithms at recognizing single letters, it has become
well-established that a captcha’s ability to withstand
automated solving lies in the difficulty of segmenting the
image into individual characters [12, 10]. The standard
approach to solving captchas automatically has been a
sequential process wherein a segmentation algorithm
splits the image into segments that contain individual
characters, followed by a character recognition step that
uses machine learning [13]. This is known as the segment
then recognize approach. While this approach has been
effective against particular captcha schemes [15, 4], its
generality is limited by the segmentation step, which
is hand-crafted to defeat the distortion at hand. No
general algorithm is known for the character collapsing
anti-segmentation technique used by most prominent real
world captcha schemes. This technique is called negative
kerning. It is a variant of the object occlusion problem,
which is a difficult problem in computer vision.

1For readability purposes, we will write the acronym in lowercase.

1



This paper introduces a novel approach to solving
captchas in a single step that uses machine learning to
attack the segmentation and the recognition problems
simultaneously. Performing both operations jointly
allows our algorithm to exploit information and context
that is not available when they are done sequentially. At
the same time, we remove the need for any hand-crafted
component, making our approach generalize to new
captcha schemes where the previous approach can not.

We were able to solve all the real-world captcha
schemes that we evaluated (section 7) with accuracy
considerably above the 1% threshold necessary [10]
to consider a captcha scheme insecure. Our algorithm
is able to achieve a 38.68% recognition rate on Baidu
2011, 55.22% on Baidu 2013, 51.09% on CNN, 51.39%
on eBay, 22.67% on ReCaptcha 2011, 22.34% on
ReCaptcha 2013, 28.29% on Wikipedia, and 5.33% on
Yahoo without any tuning. Our algorithm also recognizes
occluding lines in a generic manner, and its success
against the Baidu (38.68%) and CNN (51.09%) schemes
indicates that it is in fact well-suited to deal with them.

The effectiveness and universality of our results
suggests that combining segmentation and recognition
is the next evolution of automated catpcha solving, and
that it supersedes the sequential approach used in earlier
works. After comparing the accuracy of our algorithm
with the accuracy of humans in section 7, we suggest
that purely text based captchas may be nearing their
end, and provide early steps toward rethinking how
reverse Turing tests can be performed securely (section 9).

The reminder of the paper is organized as follows: We
start by discussing research ethics in section 2. Section 3
summarizes the previous approach and its limitations.
Then in section 4, we describe how we assembled our
dataset of real-world captchas. The core of our algorithm
is presented in section 5. We discuss optimizations in
section 6. We report the performance against real-world
schemes in section 7. Ways to improve the algorithm are
discussed in section 8. We speculate on what the future
holds for captchas in 9. Further related work is discuss
in 10, with our contributions summarized in section 11.

2 Ethics

This work is a joint collaboration between Google and
Stanford University. The results were validated by
Stanford University. While we disclose an attack in this
paper for which we don’t have an easy solution, we
believe that attracting attention to the issue outweighs the
risk of malefactors taking advantage of this work.

In particular, our algorithm is complex and more costly
to reproduce than employing cheap manual labor to solve
captchas [38]. We believe that providing details about
how such a result can be achieved will enable the industry
and academia to advance the state of the art in reverse
Turing tests. Specially now that concurrent work with
similar results were announced but without any of the
technical detailed to reproduce their results [26]. We
also note that we gave early notice of this technique to
the companies whose captchas were evaluated in this
publication.

3 Background

In this section we discuss the previous approach used to
break captchas and its limitations.

Negative kerning, also known as character collapsing,
uses negative space between characters to resist segmen-
tation by ensuring that each character is occluded by its
neighbors. Figure 1 shows a typical captcha that uses
negative kerning. This technique is usually supplemented
with noise, distortions, and randomization to prevent
side channel attacks, for example to prevent an attacker
from making educated guesses where to cut if a captcha
always contains the same number of letters. [10].

Figure 1: Example of a Yahoo captcha that uses the nega-
tive kerning

As of 2013, negative kerning is considered the most
secure method for preventing segmentation because it has
successfully withstood years of attacks. Almost all of
the most prominently used captcha schemes rely on it,
as discussed in section 4. The other method of choice to
prevent segmentation, which seems to have fallen out of
fashion after a successful wave of attacks [47], is to use
occluding lines.

The standard approach to solving captchas auto-
matically has been a sequential process wherein a
segmentation algorithm splits the image into segments
that contain individual characters, followed by a character
recognition step that uses machine learning [13]. This
approach, known as the segment then recognize approach
and illustrated in figure 2, works equally well on image
and audio captchas (see [37, 13, 43, 47, 9, 8, 15]).

2



Pre-processing Segmentation Post-segmentation Recognition Post-processing

Image Matrix Segments matrices Segments matrices Potential answer

Final answerCaptcha

Original Pre-processing Segmentation Post-segmentation

425A
Recognition

Figure 2: The segment then recognize approach illustrated

Over the last decade, it has become well-
established [12, 10] that a captcha’s ability to withstand
automated solving lies in the difficulty of segmenting the
image into individual characters rather than recognizing
the characters themselves. A seminal work from
2005 demonstrated that machine learning algorithms
consistently outperform humans for single character
recognition [12]. Thus the innovation in automated
captcha solving shifted from optical character recogni-
tion (OCR) to solving computer vision problems such as
object occlusion in order to segment characters. To date,
no general algorithm for character segmentation is known.

Previous work related to automated captcha solving
falls roughly into two categories: The first type of attack
uses side-channel information unrelated to the distortion
itself, e.g., dictionary attacks [6, 4]. We do not dwell
on this type of attack because it is usually trivial for the
defender to patch, and because the goal of this work is to
treat captchas in a generic manner.

The second type of attack focuses on finding weak-
nesses in the distortion algorithms of particular captcha
schemes. One example of a precisely tuned segmentation
algorithm is [15], where the authors used a complex
image preprocessing phase that relies on character
alignment, morphological segmentation with three-color
bar character encoding and heuristic recognition to break
reCaptcha 2011. While it was very effective against
reCaptcha 2011, it does not generalize to other captcha
schemes that use similar distortion techniques. Similarly
in 2013, a group or researchers examined hollow captcha
specifically and were able to solve all of them using an
extended segment then recognize approach that involves
9 consecutive steps [21]. Our single step approach yields
results that are 4.22% more accurate on the Baidu 2013
scheme. We compare in depth our results with previous
work in Section 7.

To date, research in captcha solving has followed the
familiar exploit-patch cycle where the attacker finds a
flaw in a particular anti-segmentation technique, and the
defender patches it or moves on to a new one. The limita-
tion of the segment then recognize approach has been the
attacker’s ability to find new flaws. As we will show in our
evaluation (section 7), our work overcomes this limitation
by segmenting and recognizing the captcha simultane-
ously, thus removing the need for manually discovered
heuristics to segment captchas.

4 Dataset

Following the methodology of [10], we created a corpus
of real-world captchas to evaluate the effectiveness of our
algorithm. We focused on unbroken real-world captcha
schemes, and ended up creating our corpus from the
schemes depicted in Figure 3.

Baidu (2011)

Baidu (2013)

eBay 

ReCaptcha (2011)

ReCaptcha (2013)

Wikipedia

Yahoo

CNN 

Figure 3: Examples of the captchas of the schemes we
evaluated

3



Unsurprisingly, all of them rely at least to some
extent on negative kerning to prevent segmentation. The
captchas were directly downloaded from their respective
websites and annotated via Mechanical Turk [28], with
IRB approval.

Since 2011, some of those schemes, namely Baidu
and ReCaptcha, have evolved. To keep our algorithm
evaluation relevant to the state of the art in captcha design,
we extended our corpus to include the new versions of
Baidu and ReCaptcha in 2013.

As visible in figure 3, Baidu and ReCaptcha evolved in
two radically different ways: Baidu decided to use hollow
letters whereas ReCaptcha introduced more aggressive
distortions. As discussed in section 7, our success rate
decreased on the new version of ReCaptcha compared to
the previous version. On the other hand, surprisingly, its
accuracy significantly increased on the newer version of
Baidu.

5 Algorithm

In this section we provide an overview of our algorithm
and describe its major components. Then we discuss the
reinforcement learning process that is central to the accu-
racy of our algorithm. Finally, we explain how to handle
occluding lines in a generic manner since it is a natural
extension of our algorithm. We leave the discussion of
optimizations and trade-offs that can be applied to the
algorithm for the next section.

5.1 Algorithm overview
The main idea is to use a machine learning algorithm to
score all possible ways to segment a captcha and decide
which combination is the most likely to be the correct one.
Analyzing all the possible segmentation paths allows the
algorithm to find the path (set of segments) that globally
maximizes the recognition rate. We contrast this with the
segment then recognize approach where an uninformed
segmentation algorithm passes at most a small number
of possible segmentations to an independent recognition
algorithm.

Cut-points 
detector Slicer Scorer Arbiter

Figure 4: Overview of the algorithm’s four components

As depicted in figure 4, the algorithm is composed of
four components: the Cut-point Detector that finds all
the potential ways to segment a captcha, the Slicer that is
responsible for extracting the segments and combining
them into a graph, the Scorer that performs OCR on the
segments and assigns a recognition confidence score to
each one of them, and the Arbiter that is responsible for
processing the scores and determining what are the most
likely letters.

l i e b e k i n e d l i e b ei

l i e b e

Slicer

Scorer

Arbitrer

Figure 5: Illustration of how the algorithm works

Figure 5 illustrates the graph representation that we
use to keep track of all possible segmentations at once.
This structure is what enables us to simultaneously solve
the recognition and segmentation problems. A concrete
example of the algorithm’s output while operating on a
Yahoo captcha is shown in Figure 6. We now describe
each component in turn.

Cut-point detector: The cut-point detector is responsible
for finding all the possible cuts along which to segment
a captcha into individual characters. The potential cuts
are found by examining the second derivative of the curve
generated by following the bottom pixels of the captcha,
and the curve generated by following the top pixels of
the captcha. An example of this step is shown in figure 6
in the second image from the top. We use the inflection
points as potential end points for each cut. These are
marked in red for the top line and in blue for the bottom
one. Each cut is constructed by connecting the inflection
points - one from the top, and one from the bottom.

4



Inflection
points

Potential
cuts

Compatible cut
with start

Best
shards

Answer 4 c z 8 j y a z

Figure 6: Example of the algorithm successfully applied
to a Yahoo captcha

As is shown in the center image in figure 6, this
procedure generates a large number of cuts that will be
processed later by the slicer. We emphasize that this
technique is purely geometric and is designed to be
simple; no specific tuning is necessary. In section 6, we
discuss changing the number of cuts to make a trade-off
between speed and accuracy.

Slicer: The slicer applies some heuristics to extract the
meaningful potential segments based on the cut points
and builds the graph in figure 5. A potential segment
is considered meaningful if the two cuts that define
its left and right boundaries are sufficiently far apart
(90% of the width of the smallest character observed in
training), yet not too far apart (110% of the width of the
largest character seen in training). The selection process
is illustrated in the second image from the bottom in
figure 6. As is visible in the figure, even for the first
character we end up with a large number of potential
segments, each of which will generate even more
subsequent potential segments because we use them as
right boundary for the next one. This exponential number
of segments caused early versions of our algorithm to be
very slow (but still computationally feasible). During the
early phase of research, it was not uncommon that a 12
letter long captcha took up to 9 hours of computation. We
have since improved performance, discussed in section 6.

Scorer: The scorer traverses the graph of potential
segments, applies OCR to each potential segment, and
assigns a recognition confidence score. It uses a modified
version of KNN [16] to perform the OCR. KNN works
by computing how far each potential segment is from
the k closest known (learned) examples to decide the
most likely character depicted in the potential segment.
Segments are processed at the pixel level, as this has
been demonstrated to be the best approach for text
recognition [31]. The fact that it is easy to produce a
mathematically sound score from the recognition process
was one of three factors that led us to settle on KNN. The
other two factors were noise resistance and computational
speed given our feature set domain.

The noise resistance arises from using a relatively
small k (less than 10) in our KNN to identify the nearest
neighbors. This is essential in our case because most
of the potential segments generated by the slicer are
meaningless and belong to the garbage class. If we had
used a margin based classifier (e.g. SVM), we would
have had to compensate for this bias at the expense of
accuracy due to the class contiguity hypothesis [34].
Our brief experimentation with an SVM linear classifier
supports this assumption.

Using a simple metric distance produced a poor
recognition rate, so we modified our distance function.
We realized that the problem was assigning an equal
weight to each pixel regardless of its position in the
segment or its grayscale value. It turns out that pixels
on the edge of segments are less meaningful than pixels
in the center precisely because they are shared between
characters that have been collapsed together.

We achieved very good results on all captcha schemes
by assigning higher weight to pixels nearer the center of
the segment, and to darker ones. While this approach
is adequate, we believe that the algorithm could be
improved by learning the weights from the data itself. We
discuss this idea in more detail in section 8.

Arbiter: The final component of our algorithm is the
arbiter that selects the final value for the captcha. The
arbiter uses an ensemble learning approach [19] where
each sequence of segments has a vote weighted by the
recognition score confidence. This is very similar to the
random forests algorithm except that trees are replaced
with paths in our case. Similarly, random features are
replaced by multiple segmentations of the same set of
characters.

5



Ensemble learning, while deceptively simple, is very
robust to noise and leverages the fact that there is not
one but multiple ways to segment an occlusion based
captcha that will yield the correct answer. The Condorcet
theorem [40] implies that combining paths yields better
predictive performance than could be obtained from a
single path in isolation. In our experience, the right voting
approach is critical to the algorithm’s success. While this
approach is accurate, it is also very slow to the point of
being impractical, which is why we discuss trade-offs that
can be applied to make the algorithm orders of magnitude
faster while retaining most of its accuracy in Section 6.

5.2 Reinforcement learning
The traditional way to train a character classifier is to
provide a set of labeled captchas already segmented
and let the classifier learn to recognize each char-
acter from those segments using the labels. This
process assumes that the classifier is given the cor-
rect number of segments - one for each letter in the
captcha. In the segment then recognize approach, this
assumption holds because the segmentation is handled
by a vision algorithm that is not part of the classifier itself.

In our case, this assumption does not hold. Our
algorithm produces a huge number of segments, most of
which are garbage, and many paths in the graph that do
not correspond to valid segmentations at all. To overcome
this, we use a reinforcement learning approach where the
human fills an entirely different role: instead of providing
the classifier with labeled examples of valid segments, the
algorithm asks the human to annotate segments that have
been misclassified, and then learns from the feedback.
The algorithm is able to initiate the learning process
because the first two components of the algorithm (the
cut-point detector and the slicer) are fully unsupervised.

A K E
Needs human judgment

Figure 7: The algorithm asks for feedback when a seg-
ment surrounded by two correctly classified segments is
misclassified

In a nutshell, our reinforcement learning works as fol-
lows: during training, the algorithm processes a set of
labeled captchas and isolates the captchas that were not
successfully recognized. For the failed captchas, the al-
gorithm asks for human feedback when a segment sur-
rounded by two correctly classified segments is misclassi-
fied (see figure 7). In those cases, the algorithm needs the
human expertise because the misclassification could be
due either to improper segmentation, or to bad recognition
and the algorithm is unable to tell them apart by itself.
Examples of improper segmentation and bad recognition
are shown in figure 8. If the error was due to improper
segmentation, the segment is discarded. If the error was
due to a recognition error, the segment is added to the
classifier training set. When all the cases are reviewed,
the algorithm is retrained with the enriched dataset. In
practice, even a single round of reinforcement learning
is enough to significantly improve accuracy, as summa-
rized in table 3. The number of cases requiring manual
intervention was small enough where we performed the
corrections ourselves.

Bad segmentation Bad recognition

4
1
t

4
o
7

:

:

:

:

:

:

Figure 8: Examples of misclassification due to bad seg-
mentation and bad recognition

5.3 Occluding lines
The last fundamental hurdle we needed to overcome to
produce a fully generic algorithm was to deal with occlud-
ing lines. While not as popular as negative kerning, lines
are used by some captcha providers. For example Baidu
2011 (figure 9) uses both lines and negative kerning to
defend against automated solvers.

Without the line class With the line class
Baidu 8.78% 17.27%

Table 1: Impact of adding a line class on the recognition
rate for the Baidu scheme without iterative learning

6



Initially we struggled with lines and unsuccessfully
tried numerous approaches, including an independent line
removal algorithm based on a soft margin classifier. In
the end the solution was surprisingly simple: we added a
new character class to the scorer for line segments. For
example, we were able to increase our recognition rate
by 8.49% on the Baidu 2011 scheme when this class is
added, as reported in table 1. Although the solution is
simple, the reasons why it works are not. First, we believe
adding a class is effective because of how our algorithm
is designed; the KNN algorithm permits discontinuous
character classes, which allows many different shapes of
line to fall into the same class. Secondly, the cut point
detector uses the second derivative to find potential cuts,
which is well suited for ignoring flat parts. This is espe-
cially clear in figure 9; there are very few cut points on
the line itself.

Inflection
points

Potential
cuts

Compatible cut
with start

Best
shards

Cuts
optimization

Answer

iterative:

full:

iterative:

full: a 6 y k - -
a 6 y k - -

Figure 9: Example of adding a line class to the classifier,
illustrated on a Baidu captcha. The ”-” in the answer
represents the line class

6 Optimizations

In this section we discuss optimizations that make the
algorithm run faster at the expense of accuracy. Drasti-
cally reducing the computation time with a limited loss of
accuracy was necessary to make our algorithm practical.
We note that all heursitics proposed in this section apply
equally well to all types of distortions, and thus do not
impact the generality of our approach.

6.1 Reducing the number of cuts
Since the computation time is directly related to the num-
ber of potential segments, our first optimization was to
come up with heuristics to reduce the number of cut points
considered by the cut point detector. This optimization
works by pruning near-duplicate and improbable cuts
from the set of potential cut points. First, we removed all
the cuts that have an angle > 30o. Then we examined the
ratio of white pixels to black pixels to eliminate cut lines
that pass through too many black pixels, since they are
most likely cutting through the middle of a letter. Finally
we compared the pixel intensities of the left and right
boundaries to estimate whether the cut marks a transition
between two letters. As illustrated in figure 10, when
these heuristics are applied, the number of potential cuts
decreases visibly.

Inflection
points

Potential
cuts

Compatible cut
with start

Best
shards

Answer 4 c z 8 j y a z

Cuts
optimization

Figure 10: Example of the cut point reduction heuristic
applied to a Yahoo captcha

As a more quantitive example, the number of segments
considered on Baidu 2011 decreased by a factor of 8,
as reported in table 2. We chose to use the Baidu 2011
corpus to evaluate this optimization because the Baidu
captchas are the shortest and therefore the fastest, with
only 4 letters. As reported in the table, with this optimiza-
tion accuracy dropped from 21.05% to 17.39% (-3.6%).
However, we also observe close to a 63x speed up. The
time spent per captcha decreases from 246 seconds to
3.9 seconds. We ran this experiment without the rein-
forcement learning in order to produce a fair accuracy
comparison, since the set of segments that the algorithm
asks a human to evaluate will differ due to the optimiza-
tion.

7



Recognition Time Segments
Baidu all cuts 21.05% 246s 8820
Baidu pruned cuts 17.27% 3.9s 1192

Table 2: Algorithm recognition rate (recognition), average
solve time (time) and average number of segments (seg-
ments) with and without the cut point reduction heuristic

6.2 Sequential recognition
The computational cost of our algorithm increases
exponentially with the length of the captcha, to the point
of becoming prohibitive on long captchas such as the
Yahoo scheme. As explained in section 5, the complexity
is due to generating the graph of all possible segment
combinations and then evaluating all paths.

To mitigate this problem, we developed a version of
the algorithm that makes local decisions for character
recognition rather than looking at the entire captcha. As
depicted in figure 11, we found out that the best approach
when making a local decision is to consider a window of
two letters at a time. Considering two characters at a time
yielded significantly better results than looking at one or
three characters at a time. To make a local decision, the
algorithm attempts all possible cuts for a given window
and keeps the pair of letters and cuts that maximizes the
recognition score for the pair. Making a local decision is
of course suboptimal and prone to errors that don’t affect
the global approach, but in practice accuracy decreased
by less than 5% in all cases.

4cz8jyaz 4cz8jyaz4cz8jyaz 4cz8jyaz

4cz8jyaz 4cz8jyaz4cz8jyaz 4cz8jyaz

Sequential recognition

Right-left recognition

Figure 11: The sequential and right-left recognition pro-
cesses

Improving the sequential approach We discovered
that the accuracy of the solver depends heavily on the
position of the character in the captcha as shown in
figures 12 and 13. The closer a character is to the center
of the captcha, the less accurate the algorithm is. We also
observed that the sequential recognition approach is less
accurate on the right side of the captcha than on the left
side. This is particularly true for long captchas such as
the Yahoo scheme (figure 13).

Full algorithm recognition rate per letter
Sequential recognition rate per letter
Left - Right recognition rate per letter

R
ec

og
ni

tio
n 

ra
te

 fo
r B

ai
du

40%

50%

60%

70%

Letter position
1 2 3 4

Figure 12: Recognition rate per letter for the each learning
approach on the Baidu 2011 scheme

This observation led us to the idea of performing the
sequential recognition from both directions and then
combining the two recognition scores to improve the
overall accuracy, as illustrated in figure 11. We call this
the left-right approach. Figures 13 and 12 show that
this approach greatly increases the accuracy on the right
side of the captcha and often improves the overall accu-
racy compared to the simple sequential approach (table 3).

Sequential rate per letter
Left - Right rate per letter
Accuracy of the left most char

R
ec

og
ni

tio
n 

ra
te

 fo
r Y

ah
oo

30%

40%

50%

60%

70%

Letter position
1 2 3 4 5 6 7 8

Figure 13: Recognition rate per letter for the various
approaches for the Yahoo! scheme.

Moving from a global recognition to a local one
significantly improved the speed of our algorithm. For
example, it reduced the computation time for an eBay
captcha from 35.79 seconds down to 2.36 seconds, which
is a 15x speed up on top of the gains from the cut-point
elimination heuristic. These optimizations allowed us to
run our algorithm over large corpuses of captchas and
made our approach practical.

8



Reinforcement learning Simple learning Previous Work
Full L-R L-R Time Seq. Full L-R Seq Accuracy Delta Ref.

Baidu (2011) 38.68% 33.42% 3.94 s 36.58% 17.27% 16.55% 16.69% 5% +33.6% [10]
Baidu (2013) 55.22% 54.38% 1.9 s 54.38% - - - 51% +4.22% [21]
CNN - 51.09% 4.9 s 48.54% - 46.40% 45.96% 16% +35.09% [10]
eBay 51.39% 47.92% 2.31 s 48.61% 39.43% 40.14% 36.29% 43% +11.4% [10]
ReCaptcha (2011) 22.67% 21.74% 7.16 s 19.25% 19.86% 18.25% 17.10% 40.4% -17.73% [15]
ReCaptcha (2013) 22.34% 19.22% 4.59 s 19.74% 20% 14.61% 12.77%
Wikipedia - 28.29% - 26.36% - 27.02% 26.24% 25% +3.3% [10]
Yahoo - 3.67% 7.95 s 5.33% - 2.72% 2.29%

Table 3: Recognition rates for real-world schemes. Full denote the full algorithm, L-R denote the Left-Right algorithm
, Seq denote the Sequential algorithm, ”L-R time” for the time the Left-Right algorithm takes to solve a captcha on
average.

7 Evaluation

In this section we report how our algorithm performed
against real-world captchas schemes. Table 3 summarizes
our results. Following the best practices proposed
in [10], our evaluation was performed on a test set of
approximately 1000 captchas for each captcha scheme
that were not used during training. The evaluation was
performed on a core-i5M laptop. The algorithm was
trained the same way once for each scheme without
changing any of the algorithm’s parameters.

We ran the algorithm with and without the various
optimizations described earlier to evaluate how they
impact recognition rate. All results include the cut-point
elimination heuristic.

For certain cases the recognition rates are not available
because the computational cost of running the algorithm
was prohibitive on our test set (over 24 hours of
computation). We compare our results to previous work
when the data is available in column Ref. To establish
a fair comparison between the various schemes we
normalized the number of examples per character to
26, which in practice meant a very small training set of
well under 1000 captchas in all cases. We believe that
normalizing the number of examples per character results
in a more accurate comparison because different schemes
use different character sets.

Our algorithm was able to solve every scheme
with accuracy significantly above the 1% success rate
necessary to deem a captcha scheme insecure [10]. The
algorithm in its best configuration is able to achieve
38.68% on Baidu 2011, 55.22% on Baidu 2013, 51.39%
on eBay, 51.09% on CNN, 22.67% on ReCaptcha 2011,
22.34% on ReCaptcha 2013, 28.29% on Wikipedia,

and 5.33% on Yahoo. On average the reinforcement
learning provides a 6.7% accuracy improvement. Using
the sequential decision instead of the global decision
decreases accuracy on average by 3.42%, the left-right
only decreases it by 1.75%. In terms of speed, the algo-
rithm takes on average 6.22s to process a captcha, which
makes it not only practical, but indeed comparable to
the speed at which humans are able to solve captchas [11].

While still in its infancy, our algorithm in most cases
outperforms previous work that relies on manually
generated segmentation algorithms. More importantly,
our approach does not suffer from the brittleness inherent
in attacks manually tuned against particular distortions.
For instance our approach outperforms [10] and [21].
While [15] outperforms our algorithm on reCaptcha 2011,
the authors acknowledge that their approach is not able to
solve the CNN captcha scheme whereas our algorithm
solves both without modification or tuning. Overall there
is no previous work that is effective against the breadth
of captchas schemes presented in this paper. This leads
us to believe that a unified approach is likely to replace
the segment then recognize approach.

7.1 Learnability
Figure 14 shows how overall accuracy improves as a
function of the number of training examples per character.
We confirm the findings of [10] that it does not take very
many examples to achieve a sufficient accuracy rate. This
figure also shows that the left-right approach does not
seem to require more examples than the global one.

9



Baidu
Baidu left-right
ebay
eBay left-right
ReCaptcha
ReCaptcha left-right

R
ec

og
ni

tio
n 

ra
te

0%

10%

20%

30%

Number of examples per class
1 2 3 4 5 10 15 20

Figure 14: Recognition rate as a function of the number
of example in each class.

7.2 Human accuracy
To complete our investigation of negative kerning, we
also quantified human accuracy compared to the accuracy
of our algorithm at different levels of distortion. We
ran an experiment, with IRB approval, on Internet users
using Amazon Mechanical Turk [28]. We asked Turkers
to solve 2000 captchas for each kerning that ranged
from 0 pixels to -7 pixels (16 000 captchas total). The
captchas were 6 characters long, drawn at random from
the character set a-z and use the Arial font in 20px. We
discarded captchas that were solved too quickly (< 4s)
or to slowly (> 15s) as they were most likely not honest
attempts to solve the captcha. We ran our algorithm on
those 8 kerning variations as well.

Figure 15 shows the result of the experiment. The gap
between human and machine accuracy for negative kern-
ing based distortion is too narrow to be used reliably as a
reverse Turing test. Driving the algorithm’s recognition
rate close to 0% using solely this type of distortion will
lead to a horrendous human recognition rate (< 20%).
We acknowledge that fully understanding human vs.
machine ability to process distortion is a fascinating
problem in its own right, and we leave it to future
work. Nevertheless this experiment supports our claim
that devising effective text-based captchas is very difficult.

8 Areas of improvement

While our algorithm produces good results, it is just the
first rough implementation of the new holistic approach.
This section highlights some of the most promising
directions for improvement.

Human accuracy
Breaker accuracy (left-right)

Ac
cu

ra
cy

0%

20%

40%

60%

80%

100%

Spacing between letters
0px -1px -2px -3px -4px -5px -6px -7px

Figure 15: Human and Algorithm accuracy vs. spacing
between letters in pixel

Learn the KNN weights The current implementation
uses a single manually chosen set of weights for the KNN
distance computation that performed well on our corpus.
We believe that automatically learning those weights
for each captcha scheme would improve accuracy,
particularly for schemes that use unusual fonts or specific
distortions. We believe that it is possible to accomplish
this fully unsupervised, similar to the cut-point detector
and slicer phases of our algorithm.

Improve cut-point elimination As discussed in sec-
tion 6.1, we rely on a set of heuristics to remove unlikely
cut lines to increase the speed of the algorithm. As our
evaluation suggests, this heuristic generates a drop in ac-
curacy (-3.6% on Baidu). Finding a better set of heuristics
that are both generic and more precise is an open question.

Additional Occlusion As pointed out earlier, Baidu and
CNN captcha schemes use occluding lines with low
curvature. While our results on these captcha schemes
are very good and our algorithm properly detects lines
(see section 5.3), future work should investigate in depth
how various types of lines, e.g., sine waves that have a
high curvature, impact the recognition rate. It should also
consider other types of occlusion, e.g., blobs. To date, we
have not found real world captcha schemes that employ
this type of occlusion; perhaps occlusion of this type
presents usability challenges that make it impractical for
humans.

Explore deep neural networks A primary contribution
of this work is to empirically demonstrate the effec-
tiveness of performing segmentation and recognition
simultaneously. Accordingly, we have considered other
algorithms that are able to process captchas in a holistic
manner.

10



In particular, with collaborators, we have experimented
with deep convolutional neural networks, similar to those
in [29]. These experiments have confirmed the benefits
of a unified approach, and have achieved captcha-solving
results that equal or improve upon those presented in this
paper. For certain ReCaptcha data sets, these new results
show such dramatic improvement in accuracy, while using
large-scale training sets, that they suggest that deep neural
networks may hold a substantial advantage over humans
for solving text-based captchas [23].

9 The future of captchas

When captchas were invented, the community realized
that with the passage of time one of two things would
happen: either captchas would remain an invaluable
way to differentiate humans and computers, or very high
quality OCR would become readily available [29]. We
believe that our approach of solving the segmentation
and recognition problems in a single step ushers in
the latter. This breakthrough not only affects the way
solvers are designed, but also forces us to reconsider
from ground up how reverse Turing tests should be done.
This is a very complex open question that is generally
outside the scope of this work, but we have gleaned some
insights on potential promising directions for developing
next-generation reverse Turing tests, both from this work
and from our experience at Google.

Moving to a more complex domain The first potential
direction is simply to find a more difficult problem in
computer vision. Incorporating video or requiring the user
to perform a higher order cognitive task such as circling or
rotating an object [24] are examples. A significant amount
of work has been produced on alternative captchas of this
type [36, 20, 17]. However, many proposals do not meet
a high enough standard of universal accessibility, since
reverse Turing tests must be solvable by any human.

For example, English language comprehension is
clearly not a general reverse Turing test. Past experience
has shown that finding a better common denominator
than text transcription that is also difficult for machines is
elusive. A good example is the Asirra captcha, depicted
in figure 16, which asked users to distinguish between
cats and dogs. Less than a year after its release it was
successfully broken using a classifier trained to recognize
image textures [22]. More recently, the MintEye captcha
scheme [3], that relies on ”undistorting” an image
(figure 17) was broken by a very simple attack based on
Sobel operators that only required 23 lines of Python [2].

Figure 16: Example of the Asirra captcha that asks users
to distinguish between cats and dogs

On the other hand, casting the problem of text
transcription into a more complex domain (video) has
also proven difficult. NuCaptcha attempted to do this, and
was broken by two different teams [7, 45] using different
approaches. Mitra et. al. have suggested using emergent
images as an alternative way to encode information
in video that might be robust against computer vision
algorithms [36]. Whether there exist situations where the
human brain is definitively able to process information
more efficiently than machines remains an open question.

Recently game-based captchas have been devel-
oped [1], however implementing this idea as proven to
be difficult, as the game captcha schemes for the leading
game captcha provider ”Are you a human” have been
broken [42].

Figure 17: Example of the MintEye captcha that ask users
to ”undistort” an image.

Using cognitive behavior Another direction to expand
the space in which reverse Turing tests operate is to con-
sider how the test is solved in addition to the underlying
difficulty of the problem. For example, our experiment
with Mechanical Turk shows that human solving time is
very predictable for random strings, as visible in figure 18.
We observe that the brain has a ”start-up” time of 2.6s dur-
ing which scientists believe the brain performs something
akin to Gabor filters [18] to preprocess shapes. Then the
brain takes 0.97s to process each character.

11



so
lv

in
g 

tim
e 

(s
)

0

5

10

15

20

25

30

35

captcha length (number of characters)
5 10 15 20 25 30

Linear: 2.596 + 0.9709*x
Exponential: 5.219exp(0.06834x)

Figure 18: Human solving time increases linearly with
the length of the captcha

This linear relation between the length of a captcha and
the time it takes to process is quite apparent in figure 18.
Clearly solving time is not a good reverse Turing test
since it is easy for machines to fake, but other examples
might exist, especially for captcha schemes that require a
prolonged user engagement.

Leveraging reputation. In addition to considering how
a reverse Turing test is solved, captcha providers could
consider the identity of the solver, for example the IP
address, the geographic location, etc. If a good enough
proof of identity can be established, providers can use
this reputation to adapt the difficulty of the reverse Turing
test. This opens the door to easier tests for users in good
standing, which will alleviate the captcha burden. It also
empowers providers to challenge suspicious solvers more
aggressively, and serves as a signal that is entirely orthog-
onal to the difficulty of the reverse Turing test, which will
in turn result in a higher quality anti-abuse system. On the
other hand, employing such a risk-based strategy requires
a great deal of knowledge about network behavior and
a large user base, which makes it feasible only for large
providers.

10 Related Work

Alternate captcha schemes In [20] the authors proposed
the Asirra captcha scheme, which was broken within
a year [22]. In [27] the authors proposed using a 3D
model as captcha. In [5] the authors proposed animated
captchas. In [36] the authors present the concept of
emergent images, and propose to use animated emergent
images as captcha. In [24] the authors proposed using the
task of rotating images as a captcha.

NuCaptcha was one of the first to deploy video
captchas [30], and was first broken first by [7] with
motion tracking and shortly after by a second group using
a variant of this technique [45].

Captcha solving In [13] the authors propose using
machine learning classifiers to attack captchas. In [12]
the same authors study how efficient statistical classifiers
are at recognizing captcha letters. Almost a decade ago,
the authors of [13] mentioned in the discussion section
that unifying the segmentation and recognition steps
was a promising direction. However until this work this
direction was not explored and we are not aware of any
prior work that successfully applied this idea to captcha
solving. In [47] the authors were able to solve the 2008
Microsoft captcha using the segment then recognize
approach. In [44] the author proposes using an erode
and dilate filter to segment captchas. [46] is one of
the first papers to propose the use of histogram-based
segmentation techniques against captchas. Yan et al.
where able to devise heuristics to segment the easy
version of reCaptcha 2010 [4]. In [6] the authors were
able to break an older version of reCaptcha that used
English words with a dictionary attack. In [8], the authors
successfully applied the segment then recognize approach
to audio captcha schemes. In 2011 [10] the authors
successfully attacked numerous captchas schemes using
an improved version of the segment then recognize
approach, but failed to break reCaptcha. In 2012, the
authors of [15] used a complex image preprocessing
phase that relies on character alignment, morphological
segmentation with three-color bar character encoding
and heuristic recognition to crack the reCaptcha 2011.
In 2013 the authors of [21] looked at hollow captchas
specifically.

Machine learning algorithms The perceptron, the sim-
plest neural network, has been used as a linear classifier
since 1957 [41]. Convolutive neural networks, which
are considered to be the most efficient neural networks
to recognize letters, were introduced in [32]. Space dis-
placement neural network that attempt to recognize digits
without segmentation were introduced in [35]. Support
vector machines were introduced in [14]. The KNN algo-
rithm is described in detail in [16]. Recently deep belief
networks, which aim at mimicking the human brain, have
emerged has the best way to classify complex data such
as images [25, 29]. While still in their infancy, deep belief
networks represent a major break thought that yield unpar-
alleled accuracy. The use of a bag of features to recognize
objects in images is a very active field. The closest work
to ours in this area is by [33], where the authors try to
segment and categorize objects using this approach.

12



11 Conclusions

This paper introduces a novel approach to solving
captchas in a single step that uses machine learning to
attack the segmentation and the recognition problems
simultaneously. Performing both operations jointly
allows our algorithm to exploit information and context
that is not available when they are done sequentially. At
the same time, we remove the need for any hand-crafted
component, making our approach generalize to new
captcha schemes where the previous approach can not.

We were to solve many prominent real-world captcha
schemes that use both negative kerning and occluding
lines without any modification to the algorithm. Improv-
ing on the best previous results, our algorithm was able to
achieve a 38.68% recognition rate on Baidu 2011, 55.22%
on Baidu 2013, 51.09% on CNN, 51.39% on eBay,
22.67% on ReCaptcha 2011, 22.34% on ReCaptcha 2013,
28.29% on Wikipedia, and 5.33% on Yahoo. The breadth
of distortions our algorithm is able to solve shows that it
is a general solution for automatically solving captchas.
Based on our experience, we also provide suggestions
on how reverse Turing tests might be improved going
forward.

The effectiveness and universality of our results sug-
gests that combining segmentation and recognition is the
next evolution of catpcha solving, and that it supersedes
the sequential approach used in earlier works. With these
advances, it seems that purely text-based captchas are
likely to have declining utility; significant effort may be
needed to rethink the way we perform reverse Turing
tests.

Acknowledgment

We thank Aleksandra Korolova, Matthieu Martin, Celine
Fabry and our anonymous reviewers for their comments
and suggestions. This work was partially supported by
the National Science Founda- tion, the Air Force Office
of Scientific Research, and the Office of Naval Research.

References

[1] Are you human ? http://areyouahuman.
com/.

[2] Breaking the minteye image captcha in 23
lines of python. Blog post http://www.
jwandrews.co.uk/2013/01/breaking-
the-minteye-image-captcha-in-23-
lines-of-python/.

[3] Minteye captcha. website: http://www.
minteye.com/, 2013.

[4] A. S. E. Ahmad, J. Yan, and M. Tayara. The robust-
ness of google captchas. Technical report, Newcas-
tle University, 2011.

[5] E. Athanasopoulos and S. Antonatos. Enhanced
captchas: Using animation to tell humans and com-
puters apart. In IFIP International Federation for
Information Processing, 2006.

[6] P. Baecher, N. Büscher, M. Fischlin, and B. Milde.
Breaking recaptcha: A holistic approach via shape
recognition. In Future Challenges in Security and
Privacy for Academia and Industry, pages 56–67.
Springer, 2011.

[7] E. Bursztein. How we broke the nucaptcha video
scheme and what we propose to fix it. blog post
http://elie.im/blog/security/how-
we-broke-the-nucaptcha-video-
scheme-and-what-we-propose-to-
fix-it/, February 2012.

[8] E. Bursztein, R. Bauxis, H. Paskov, D. Perito,
C. Fabry, and J. C. Mitchell. The failure of noise-
based non-continuous audio captchas. In Security
and Privacy, 2011.

[9] E. Bursztein and S. Bethard. Decaptcha: breaking
75% of eBay audio CAPTCHAs. In Proceedings of
the 3rd USENIX conference on Offensive technolo-
gies, page 8. USENIX Association, 2009.

[10] E. Bursztein, M. Martin, and J. Mitchell. Text-based
captcha strengths and weaknesses. In Proceedings of
the 18th ACM conference on Computer and commu-
nications security, CCS ’11, pages 125–138, New
York, NY, USA, 2011. ACM.

[11] E. Bursztein, A. Moscicki, C. Fabry, S. Bethard,
D. Jurafsky, and J. C. Mitchell. Easy does it: More
usable captchas. CHI, 2014.

[12] K. Chellapilla, K. Larson, P. Simard, and M. Czer-
winski. Computers beat humans at single charac-
ter recognition in reading based human interaction
proofs (hips). In CEAS, 2005.

[13] K. Chellapilla and P. Simard. Using machine learn-
ing to break visual human interaction proofs (HIPs).
Advances in Neural Information Processing Systems,
17, 2004.

[14] C. Cortes and V. Vapnik. Support-vector networks.
Machine learning, 20(3):273–297, 1995.

13

http://areyouahuman.com/
http://areyouahuman.com/
http://www.jwandrews.co.uk/2013/01/breaking-the-minteye-image-captcha-in-23-lines-of-python/
http://www.jwandrews.co.uk/2013/01/breaking-the-minteye-image-captcha-in-23-lines-of-python/
http://www.jwandrews.co.uk/2013/01/breaking-the-minteye-image-captcha-in-23-lines-of-python/
http://www.jwandrews.co.uk/2013/01/breaking-the-minteye-image-captcha-in-23-lines-of-python/
http://www.minteye.com/
http://www.minteye.com/
http://elie.im/blog/security/how-we-broke-the-nucaptcha-video-scheme-and-what-we-propose-to-fix-it/
http://elie.im/blog/security/how-we-broke-the-nucaptcha-video-scheme-and-what-we-propose-to-fix-it/
http://elie.im/blog/security/how-we-broke-the-nucaptcha-video-scheme-and-what-we-propose-to-fix-it/
http://elie.im/blog/security/how-we-broke-the-nucaptcha-video-scheme-and-what-we-propose-to-fix-it/


[15] C. Cruz-Perez, O. Starostenko, F. Uceda-Ponga,
V. Alarcon-Aquino, and L. Reyes-Cabrera. Break-
ing recaptchas with unpredictable collapse: heuristic
character segmentation and recognition. In Pattern
Recognition, pages 155–165. Springer, 2012.

[16] B. Dasarathy. Nearest Neighbor ({NN})
Norms:{NN} Pattern Classification Techniques.
1991.

[17] R. Datta. Imagination: A robust image-based
captcha generation system. In ACM Multimedia
Conf., 2005.

[18] J. G. Daugman et al. Uncertainty relation for res-
olution in space, spatial frequency, and orientation
optimized by two-dimensional visual cortical filters.
Optical Society of America, Journal, A: Optics and
Image Science, 2(7):1160–1169, 1985.

[19] T. G. Dietterichl. Ensemble learning. The handbook
of brain theory and neural networks, pages 405–408,
2002.

[20] J. Elson, J. Douceur, J. Howell, and J. Saul. Asirra:
A captcha that exploits interest-aligned manual im-
age categorization. In 4th ACM CCS, 2007.

[21] H. Gao, W. Wang, J. Qi, X. Wang, X. Liu, and
J. Yan. The robustness of hollow captchas. In Pro-
ceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 1075–
1086. ACM, 2013.

[22] P. Golle. Machine learning attacks against the asirra
captcha. In ACM CCS 2008, 2008.

[23] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud,
and V. Shet. Multi-digit number recognition from
street view imagery using deep convolutional neural
networks. arXiv preprint arXiv:1312.6082, 2013.

[24] R. Gossweiler, M. Kamvar, and S. Baluja. What’s
up captcha? a captcha based on image orientation.
In World Wide Web, 2009.

[25] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast
learning algorithm for deep belief nets. Neural com-
putation, 18(7):1527–1554, 2006.

[26] R. Hof. Ai startup vicarious claims milestone in
quest to build a brain: Cracking captcha. http:
//www.forbes.com/sites/roberthof/
2013/10/28/ai-startup-vicarious-
claims-milestone-in-quest-to-
build-a-brain-craking-captcha/,
November 2013.

[27] M. Hoque, D. Russomanno, and M. Yeasin. 2d
captchas from 3d models. In IEEE SoutheastCon
2006, 2006.

[28] A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing
user studies with mechanical turk. In CHI ’08: Pro-
ceeding of the twenty-sixth annual SIGCHI confer-
ence on Human factors in computing systems, pages
453–456, New York, NY, USA, 2008. ACM.

[29] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen,
G. S. Corrado, J. Dean, and A. Y. Ng. Building
high-level features using large scale unsupervised
learning. In ICML, 2011.

[30] Leapmarketing. Video-based captchas now available
for sites and blogs. http://www.prnewswire.
com/news-releases/video-based-
captchas-now-available-for-sites-
and-blogs-97471319.html, 2008.

[31] Y. Lecun. The mnist database of handwritten digits
algorithm results. http://yann.lecun.com/
exdb/mnist/.

[32] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[33] B. Leibe, A. Leonardis, and B. Schiele. Robust
object detection with interleaved categorization and
segmentation. International Journal of Computer
Vision, 77(1):259–289, 2008.

[34] C. D. Manning, P. Raghavan, and H. Schütze. In-
troduction to information retrieval, volume 1. Cam-
bridge University Press Cambridge, 2008.

[35] O. Matan, C. Burges, and J. Denker. Multi-digit
recognition using a space displacement neural net-
work. Advances in Neural Information Processing
Systems, pages 488–488, 1993.

[36] N. J. Mitra, H.-K. Chu, T.-Y. Lee, L. Wolf, H. Yeshu-
run, and D. Cohen-Or. Emerging images. ACM
Transactions on Graphics, 28(5), 2009. to appear.

[37] G. Mori and J. Malik. Recognizing objects in adver-
sarial clutter: Breaking a visual captcha. In CVPR
2003, pages 134–144, 2003.

[38] M. Motoyama, K. Levchenko, C. Kanich, D. Mc-
Coy, G. Voelker, and S. Savage. Re: CAPTCHAs–
Understanding CAPTCHA-solving services in an
economic context. In Proceedings of the 19th
USENIX conference on Security, pages 28–28.
USENIX Association, 2010.

14

http://www.forbes.com/sites/roberthof/2013/10/28/ai-startup-vicarious-claims-milestone-in-quest-to-build-a-brain-craking-captcha/
http://www.forbes.com/sites/roberthof/2013/10/28/ai-startup-vicarious-claims-milestone-in-quest-to-build-a-brain-craking-captcha/
http://www.forbes.com/sites/roberthof/2013/10/28/ai-startup-vicarious-claims-milestone-in-quest-to-build-a-brain-craking-captcha/
http://www.forbes.com/sites/roberthof/2013/10/28/ai-startup-vicarious-claims-milestone-in-quest-to-build-a-brain-craking-captcha/
http://www.forbes.com/sites/roberthof/2013/10/28/ai-startup-vicarious-claims-milestone-in-quest-to-build-a-brain-craking-captcha/
http://www.prnewswire.com/news-releases/video-based-captchas-now-available-for-sites-and-blogs-97471319.html
http://www.prnewswire.com/news-releases/video-based-captchas-now-available-for-sites-and-blogs-97471319.html
http://www.prnewswire.com/news-releases/video-based-captchas-now-available-for-sites-and-blogs-97471319.html
http://www.prnewswire.com/news-releases/video-based-captchas-now-available-for-sites-and-blogs-97471319.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


[39] M. Naor. Verification of a human in the loop or
identification via the turing test. Available electron-
ically: http://www.wisdom.weizmann.ac.
il/˜naor/PAPERS/human.ps, 1997.

[40] L. Rokach. Pattern classification using ensemble
methods, volume 75. World Scientific, 2009.

[41] F. Rosenblatt. The perceptron: a perceiving and rec-
ognizing automation (projet PARA), Cornell Aero-
nautical Laboratory Report. 1957.

[42] Spamtech. Cracking the areyouahuman captcha.
http://spamtech.co.uk/software/
bots/cracking-the-areyouhuman-
captcha/, 2012.

[43] J. Tam, J. Simsa, S. Hyde, and L. von Ahn. Breaking
audio captchas. In Advances in Neural Information
Processing Systems, 2008.

[44] J. Wilkins. Strong captcha guidelines v1. 2. Re-
trieved Nov, 10:2010, 2009.

[45] Y. Xu, G. Reynaga, S. Chiasson, J.-M. Frahm,
F. Monrose, and P. van Oorschot. Security and us-
ability challenges of moving-object captchas: De-
coding codewords in motion. In Usenix Security,
2012.

[46] J. Yan and A. Ahmad. Breaking visual captchas
with naive pattern recognition algorithms. In ACSAC
2007, 2007.

[47] J. Yan and A. El Ahmad. A Low-cost Attack on a
Microsoft CAPTCHA. In Proceedings of the 15th
ACM conference on Computer and communications
security, pages 543–554. ACM, 2008.

15

http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.ps
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.ps
http://spamtech.co.uk/software/bots/cracking-the-areyouhuman-captcha/
http://spamtech.co.uk/software/bots/cracking-the-areyouhuman-captcha/
http://spamtech.co.uk/software/bots/cracking-the-areyouhuman-captcha/

	1 Introduction
	2 Ethics
	3 Background
	4 Dataset
	5 Algorithm
	5.1 Algorithm overview
	5.2 Reinforcement learning
	5.3 Occluding lines

	6 Optimizations
	6.1 Reducing the number of cuts
	6.2 Sequential recognition

	7 Evaluation
	7.1 Learnability
	7.2 Human accuracy

	8 Areas of improvement
	9 The future of captchas
	10 Related Work
	11 Conclusions

