
The Morris Worm

HILARIE

ORMAN

Purple Streak

PUBLISHED BY THE IEEE COMPUTER SOCIETY � 1540-7993/03/$17.00 © 2003 IEEE � IEEE SECURITY & PRIVACY 35

O n the evening of 2 November 1988, a brush fire
got out of control on the Internet and set at least
one computer in 20 on fire, figuratively speak-
ing. This was due to an event that was either the

Internet’s first mobile agent experiment or a new entry in
the annals of computer vandalism: the infamous Morris
worm. The work of Robert Tappan Morris, a Cornell
graduate student in computer science, the worm caused
those connected to the Internet much consternation.

System administrators at sites infected by the Morris
worm spent at least a day fighting what initially was a mys-
terious enemy. By early in the morning on 3 November,
Unix-based computers had slowed down to only a small
percentage of their usual capabilities and email was bogged
down in a hopeless mire. As the day wore on, the little in-
formation available about the problem was not comfort-
ing: a software worm was using the sendmail program for
Unix systems (an omnibus application dealing with many
aspects of email sending and receiving, especially the In-
ternet SMTP email protocol) and the C compiler to repli-
cate. It loaded code from other computers into itself, and
it had more than one method of invasion. No one was sure
if it did anything else, if it would do anything else to their
computers, or whether it was the work of a single person
or a group of attackers.

Today, the Morris worm is remembered as the first of
many such attacks, as what might have been a wake-up
call to system administrators and security researchers, and
as the first certain signal to those who still held utopian
beliefs about the Internet, that it was not to be a friendly
place. What is the Morris worm’s legacy to computer se-
curity from a 15-year perspective? In this article, I con-
sider two areas: the development of defensive measures

and understanding what, if anything,
distinguishes a destructive from a non-
destructive worm.

The immediate reactions in 1988 to the massive as-
sault on user accounts all over the Internet now seem cu-
riously naïve. Posters to the RISKS Digest (www.
risks.org), a forum on computer risks, were outraged that
a student had done such a thing. Many called for an em-
phasis on computer ethics. Was this an example of mis-
chief or research, or had someone confused the two?

This was a time of transition for the Internet, and
while the Morris worm might not have been a watershed
event, it did mark an uneven boundary between the
largely trusting Internet of the time and the heteroge-
neous, dangerous world-wide Internet of today. Since
then, firewall and antivirus protection industries have
emerged and matured, and a new generation of security
experts in industry and academia has come of age. How
much influence did the Morris worm have on them and
how Internet security is now approached?

Setting the stage
Computer security on the Internet has never been any-
thing but a vague intention. There is no formal model of
secure operation for the Internet or the applications using
it, and there is a long history of vulnerabilities in core ap-
plications. This was certainly true in 1988, although most
sites probably had seen many cases of unauthorized access
of some kind, and Unix systems had become favorite tar-
gets. The Unix operating system (OS) was the first to
have Internet protocols and services built in as native ser-
vices that facilitated research in networked computer ser-
vices, and thousands of systems were running that soft-

The Morris Worm:
A Fifteen-Year Perspective

The Morris worm was the first worm to hit the Internet and

caused a disruption never seen before. In the 15 years

since its appearance, have we learned our lessons about

computer security?

The Morris Worm

ware or its derivatives in 1988.1 Security had not been a
major consideration in the Internet’s or Unix’s original
design, and the Unix networking extensions set no new
standards in the area. As the years passed, knowledge
about subverting Unix access permissions abounded and
spread. The number of loopholes, and their varieties, had
begun to look unmanageable to many system administra-
tors and computer-security experts. Two camps devel-
oped, one hoping to fix all the problems, and another ad-
vocating keeping one step away from the Internet.

The US Department of Defense (DoD) was an early
adopter of the Internet and its protocols, having funded
the technology’s development for years. Their concerns
about security caused them to separate their network, the
Milnet, from the Internet, maintaining only a handful of
well-controlled points where packets could traverse the
two systems. The packet-exchange points were origi-
nally meant to strictly limit network services, but in 1988
there were no controls in place.

Larger sites were moving away from having one om-
nibus computer connected directly to the Internet, han-
dling all users’ computational and communication needs.
This change was slowly coming about through the intro-
duction of low-cost desktop machines and local area net-
work (LAN) technology. An emerging configuration in-
volved connecting one machine to both the Internet and
the LAN and sending all network communications
through it to hide the desktop machines’ insecure aspects.

However, not all sites could afford such a separation,
and not all sites wanted a two-step process to use the In-
ternet. Connecting a Unix workstation directly to the In-
ternet had several advantages in terms of resilience and
load-reduction. Furthermore, network services could be
individually tailored, with some users testing experimen-
tal network services.

Many in the field were already aware of computing’s
darker side because computer viruses had become a seri-
ous problem—though not on Unix systems. Infections
on DOS diskettes, especially in the boot sector, had be-
come notorious and all too common. Many Unix users
dismissed this as a “hygiene” problem that mainly af-
flicted DOS users who shared game programs frequently.
Unix was largely a programmer’s environment, not that
of a game player. Users accepted that there was a degree of
risk inherent in Internet connections, but the advantages
of email and newsgroups were appealing, and the ease of
remote machine access was invaluable to many cooperat-
ing developers. This was the unsettled environment that
the Morris worm entered.

Why a worm?
To some people, the idea of an Internet worm is exciting.
They delight in the thought of every computer on the In-
ternet spending part of its time running their program. A
few hundred times each second, perhaps, computers

around the world would run their secret application and no
one would know. This might have been the main intent be-
hind the Morris worm. No one had yet done this; no one
knew if it were possible; but they were about to find out.

The Morris worm appears to have been designed to
be ubiquitous and unnoticed. Although it achieved nei-
ther goal, it is an interesting example of how a relatively
simple program with no outright intent to disrupt opera-
tions can cause widespread havoc through its secondary
effects. Possibly the first denial-of-service (DoS) attack
ever seen on the Internet, the Morris worm brings to the
fore some interesting questions about graph connectivity
among networked systems.

Certainly no one had any idea how fast a worm could
spread between Internet systems. Fred Cohen, in his doc-
toral work at USC, had shown that software sharing led
to rapid infection rates on single systems and between sys-
tems with shared software, but that rarely, if ever, involved
self-propagating applications. Although propagation-rate
models existed, they depended on the software-inter-
change frequency between machines, and this parameter
was not relevant to most Internet systems because of their
limited use of shared software. To estimate the spread rate
for a new kind of attack, an analogous parameter for the
Internet had to be determined, and the degree of con-
nectivity between systems on the Internet based on that
parameter had to be measured. Little was known about
such a parameter. Notably, some systems exchanged little
more than email, which seemed a safe way to share infor-
mation via the Internet in those days. Many assumed that
systems connected only by email were isolated from
worms. The Morris worm’s lightening-fast spread
proved that this was terribly wrong. Looking at its design,
we can see why it was so effective and resilient, in spite
of—or perhaps because of—its flaws.

Worms and graphs
Because we do not know the Morris worm’s true in-
tended purpose, it is useful to invent the problem that it
might have been trying to “solve.” Based on MIT’s exam-
ination of the code as reported in Eugene Spafford’s Pur-
due technical report (see Eugene Spafford’s The Internet
Worm Program: An Analysis at ftp://coast.cs.purdue.edu/
pub/doc/mor r i s_wor m/spa f - IWor m-paper
-ESEC.ps.Z, and Mark W. Eichin’s and Jon A. Rochlis’
With Microscope and Tweezers at ftp://coast.cs.purdue.
edu/pub/doc/morris_worm/mit.PS.Z), the worm’s
main goal seems to have been to establish a software
foothold on as many machines as possible while running
perpetually and undetected. It planned to accomplish its
coverage using neighbor information that was available
only on infected machines, thus spreading in a classic
branching pattern.

Propagating software through an arbitrary graph of
computers is an interesting problem in distributed com-

36 IEEE SECURITY & PRIVACY � SEPTEMBER/OCTOBER 2003

The Morris Worm

puting. Formally, all computers running the Internet
protocol (IP) form a graph. Those with Internet connec-
tions form a connected graph on which each computer is
a node. In a sense, IP connects all pairs of computers on
the Internet, creating a full-mesh graph. In reality, com-
puters are very selective about accepting IP packets.
Some packets are discarded because they name unknown
or unreachable destinations (32-bit addresses). Even
when packets are delivered to their destinations, the re-
ceiving node might discard them, depending on subfield
information such as the protocol (usually TCP or UDP)
and port number. Getting a valid triplet of IP address,
transport protocol, and port number accepted at a com-
puter is a challenge I will call the endpoint-identification
problem, but beyond that, accessing the target computer
requires that it have an application that accepts and acts on
the packets. For the worm to spread, that application also
must be vulnerable or trusting. We can envision each
such application as a directed link color for the graph.

The goal of all worms is to establish a subgraph by oc-
cupying nodes and establishing new links of any color. For
each link in the original graph, zero or more colored links
are possible. A worm tries to maximize its subgraph by
choosing strategies that are likely to invade other nodes.

A surreptitious worm tries to evade detection by min-
imizing the visible resources that it uses. To that end, it
will try to avoid invading a node more than once, but if it
does so, it will try to avoid having more than one instance
of itself occupy the node. Ideally, this should result in a
nearly stable steady-state connected subgraph with an in-
ward link degree of one.

Workings of the worm
The Morris worm was a mixture of sophistication and
naïvety. It had a simple overall design: look at a com-
puter’s system configuration to find potential neighbors,
invade them, and try to minimize the number of inva-
sions on any machine. The worm used heuristic knowl-
edge about Internet topology and trust relationships to
aid its spread, and it targeted two different machine archi-
tectures. Its cleverness in finding potential attack targets
made it especially effective, but it also took on the time-
consuming task of guessing passwords on individual user
accounts, which gave it an “attack in depth” aspect.
Nonetheless, it became a victim of its own success as it
was unable to control its exponential growth. With no
global information and no point of control, the Morris
worm ran rampant.

Design attributes
Some of Spafford’s findings point to aspects of the
worm’s innovative design:

• It attacked one operating system, but two different
computer architectures.

• It had three distinct propagation vectors.
• It had several mechanisms for finding both potential

nodes to infect, particularly information about the local
system’s IP connectivity (its network class and gateway),
and information found in user accounts.

• It traversed trusted accounts using password guessing.
The worm made heavy use of this computationally in-
tensive method by employing four information
sources: accounts with null passwords (no password),
information related to the user account, an internal dic-
tionary, and a word list on the local machines,
/usr/dict/words.

• It installed its software via a two-step “hook and haul”
method (explained later in the “Inside the worm” sub-
section) that required the use of a C compiler, link
loader, and a callback network connection to the in-
fecting system.

• It evaded notice by obscuring the process parameters
and rarely leaving files behind.

• It attempted to limit the reinfection rate on each node
(but not the total number).

• It attempted to run forever on as many nodes as possible.

Although there had been worms before, no one had
tried to run one on a complex topology. For this worm to
achieve its purpose of widespread propagation, it had to
discover local topology in an arbitrary graph. As an ex-
periment, it might have been considered a brilliant be-
ginning for work in self-organizing systems.

Design flaws
The Morris worm also contained some noteworthy de-
sign flaws:

• It was overly aggressive. Although it did have a way to
notice multiple infections, its rate-limiting behavior
was not effective, and a hundred or more copies could
be running on a single machine. Even uninfected ma-

chines were vulnerable to assault through multiple in-
fection attempts coming from many independent
sources.

• As the number of infections increased, the worm’s abil-
ity to limit itself decreased. Race conditions in its detec-
tion method actually caused the infection rate to in-
crease.

• It could not trace its progress or control it.

http://computer.org/security/ � IEEE SECURITY & PRIVACY 37

Although there had been worms
before, no one had tried to run
one on a complex topology.

The Morris Worm

• Log files, particularly sendmail logs, contained informa-
tion about the worm’s usage. Some log files filled up with
the information, and the machines’ I/O load increased.

• Its infection method depended on the C compiler,
thus preventing access to some major sites that had al-
ready established machines that acted as bastions, lim-
iting network access. These machines might not have
had C compilers.

• A variety of resource failures left many copies of the
“hook” program on the attacked machines.

The intensity of the attacks on machines running the
SMTP protocol, particularly those running the Unix
sendmail program, resulted in denial of email service to
large portions of the Internet. This was the Morris
worm’s most disruptive aspect. Like many human infec-
tions, it was not the worm itself that was harmful, but its
secondary effects on resources.

Inside the worm
Once launched, the worm moved from node to node
using only itself and the infected node’s local information.
The worm did not receive information from other
worms. This simplicity was probably a blessing and a
curse, because it minimized the prerequisites for gaining a
foothold, but it also made the worm difficult to control.
Worms like the Morris follow these steps to establish a
graph link.

1. Choose an endpoint.
2. Choose a vulnerable application.
3. Compute authentication information (if necessary).
4. Establish a network connection.
5. Control the new, remote worm instance using four

substeps: use the remote application vulnerability to
propagate the worm software by sending “hook”
software source code and completion instructions,
wait for the “haul” network connection from the
endpoint, send worm body as binary load modules,
and wait for the remote system to construct the
worm and call back.

6. Go on to the next endpoint.

The worm needed software vulnerabilities to infect a
new node, and it also needed to find likely targets for in-
fection. The worm had the interesting property of
being able to use two different vulnerabilities, one hid-
den in an email application. It also had a method for
breaking into user accounts and spreading to sites
trusted by those users.

Mechanics of the spread
The Morris worm used three independent applications for
attacking remote systems: sendmail, fingerd (a program for
finding information about computer users), and rexec (a

program for starting other programs on remote systems). It
used telnet (an Internet standard program for gaining access
to command-line interpreters—a type of lowest-com-
mon-denominator application) to probe the system and
determine whether an attempt to establish the connection
would work. Not all systems supported all these applica-
tions, but most had SMTP, and if they were running Unix,
the sendmail program was probably behind the SMTP.
The Morris worm could propagate to systems that had
only sendmail and not the other applications.

Part of the Morris worm’s brilliance was the way it ap-
proached the endpoint-identification problem. In 1988,
it might well have been possible to obtain IP addresses for
every computer on the Internet and incorporate that
database into a worm program. Instead, the Morris worm
relied only on information available at each node. It
looked for three endpoint types:

• neighbors trusted by administrators or individual users,
• local neighbors selected at random, and
• gateways to distant machines.

The first group was described in the Unix files
/etc/hosts.equiv and /.rhosts (hosts trusted by
the superuser) and in individual users’ .forward and
.rhosts files. While the first two files were generally
limited to machine names in the local organization, the
last two file types might name distant machines on the In-
ternet on which the user had an account. These repre-
sented trust relationships established by the user on the
basis of organizational memberships, but not controlled
by administrators. The .forward file was especially
useful because it named a machine where a user expected
to receive email, which was a good indication that the
machine ran SMTP, and provided an entry point to the
sendmail application on Unix systems.

The second group of possible endpoints was based on
an infected machine’s network address types, which
served as a rough guide to the address pool that might be
assigned to an organization’s machines. Not all possible
addresses were assigned (this remains true, even today), so
random guessing was the main strategy.

The members of the third endpoint group were gate-
ways: nodes that would forward traffic to other Internet
networks. Although attackers might not be able to attack
all the gateways (which might be routers and, therefore, not
susceptible to the Morris worm’s attack methods), those
that were vulnerable made powerful graph nodes because
of their higher degree of connectivity to the outside world.

These three classes were key to the worm’s spread;
they determined the Internet graph’s “degree of separa-
tion,” with respect to the three types of graph links. To
replicate, the Morris worm needed links to vulnerable
applications running on similar OSs and with similar ar-
chitectures. In 1988, few people could have made intelli-

38 IEEE SECURITY & PRIVACY � SEPTEMBER/OCTOBER 2003

The Morris Worm

gent guesses about how many Unix machines had com-
mon vulnerabilities, and even fewer realized that such a
survey was needed. The Morris worm performed a good
deal of the survey in about half a day and kept going while
site administrators battled against it.

Some application links, particularly the rsh com-
mands, required more information to proceed if adminis-
trators required a username and password. A startling in-
novation in the Morris worm was the way it worked to
undermine, and even evade, authentication, by taking
advantage of application vulnerabilities. The sendmail
application had a powerful backdoor access method that
did not need authentication, and the fingerd application
was vulnerable to a buffer overrun exploit, something of
a novelty at the time. Many systems did not run sendmail
or fingerd, or else they had versions that did not include
authentication shortcomings, but such systems were still
vulnerable through the hosts.equiv files, which al-
lowed BSD Unix systems to trust each other with respect
to remote services, or through the .rhosts files, which
let individual users determine whom they trusted for re-
mote access to their accounts. In many cases, they trusted
themselves on several machines—sometimes with a pass-
word, and sometimes without.

Even with a password requirement, users were un-
likely to use a different password on every machine they
used. If the worm running on machine A learned the
password (P) of user U, and if it knew that U was also a
user on machine B, it could likely use the triple B,U,P to
access machine B via the remote-execution facility.
Therefore, the Morris worm put a lot of effort into learn-
ing passwords by intelligent and efficient guessing.

Having established a graph link, a worm must have
some means to replicate itself. To do so, the Morris
worm needed a handful of resources on the machine it
was attacking:

• a place to write files,
• a C compiler and link loader,
• the ability to create a network connection back to its

parent node, and
• permission to launch a new program.

Not all the machines in the worm’s mesh had these re-
sources, and these machines were “dead ends” for the
worm. They were subject to repeated infection attempts,
especially through email, but they were not the launching
pads for new infections.

Application vulnerabilities
Of the three applications the Morris worm used for
gaining appropriate access to replicate on a new system,
both fingerd and sendmail had serious security prob-
lems. Fingerd processed its invocation parameters using
the library function gets (get string), which did not

have bounds-checking. Thus, if fingerd were invoked
with a long, carefully constructed parameter, it would
overrun the stack area and execute the parameter. The
Morris worm used this vulnerability to start a remote
shell (command line interpreter on another machine).
Donn Seely, in his University of Utah tech report (ftp://
coast.cs.purdue.edu/pub/doc/morris_worm/seely.PS.Z),
said the gets routine dated from “the dawn of time,”
showing how little attention was paid to potential vul-
nerabilities in those days, and also showing how a seem-
ingly minor vulnerability can become both widespread
and exploitable in a networked environment.

The sendmail program had two problems that let the
worm replicate. As Eric Allman, sendmail’s creator, tells it
(also in Seely’s tech report): “[T]he trap door resulted
from two distinct ‘features’ that, although innocent by
themselves, were deadly when combined (kind of like bi-
nary nerve gas).” The two features were DEBUG mode
and the run program command. An outsider establish-
ing an SMTP connection to the sendmail program could
enable DEBUG and then have permission to use the run
program command. In theory, the DEBUG mode was
meant only for temporary use by a programmer when
debugging the sendmail program, and was not an avail-
able option in ordinary service; in reality, many sites had
DEBUG enabled, albeit unwittingly. In theory, remote
users could not access run program, but in reality,
DEBUG mode enabled run program for remote users.
Having enabled DEBUG, a remote user could send com-
mands for execution, in privileged mode, on the remote
computer. The Morris worm sent commands for the
command line shell sh.

Once launched, a worm must make progress while
controlling its energy distribution. The energy of soft-
ware is roughly the number of computer instructions it
executes, although it can include other things, such as
I/O or network communication. We do not know
much about worms’ energy distribution with respect
to time and place, but we do know that they tend to
overwhelm some locations and result in a DoS attack.
This would undermine the purpose of being unde-
tectable, for a worm with such a goal.

In an ideal worm, each infected node spends the bulk
of its computation time trying to infect uninfected hosts.
The Morris worm did not have this property. In order to
achieve an even energy distribution with a purely local al-
gorithm, a program must depend on discovery methods
that either proceed along something resembling a span-
ning tree, or it must have a very low-cost method of deter-
mining that another endpoint is already infected. There
are some trade-offs of resiliency versus redundancy inher-
ent in either scheme. An infected node might encounter
an unexpected resource limit on one node and die; if it
cannot be “refreshed,” the ubiquitous-coverage goal will
not be met. On the other hand, if the worm makes too

http://computer.org/security/ � IEEE SECURITY & PRIVACY 39

The Morris Worm

many infection attempts on one machine, it “wastes en-
ergy” and risks detection, as the Morris worm did.

The Morris worm spent a lot of time infecting the
same systems many times. In some organizations, it
seemed to have an n2 effect, with all nodes trying to infect
each other. Although two nodes could detect that they

were both infected and that they should drop their infec-
tion attempts toward each other, they did not do this until
the redundant infection had done a certain amount of
work. In a simple-minded attempt at resiliency, the worm
allowed one in seven infections on a node to persist indef-
initely, resulting in unbounded energy consumption be-
cause there was no countervailing force killing off the ac-
cumulating infections. In any event, after 12 hours, an
infection either died or started retrying its infections,
often reattacking previously infected hosts. This kept the
Morris worm operating at a frenetic pace.

The worm used an interesting hook-and-haul
method of propagation that was meant to mask its en-
trance to a site and keep its mechanisms secret. It was also
multifaceted and multi-architecture, using multiple
methods to gain entrance to a machine and affecting two
entirely different computer architectures. It had an in-
tensely computational part that was meant to give it re-
silience through the ability to infiltrate through many
user accounts, but it had an ineffective mechanism to
limit its growth rate.

Responses in the worm’s wake
It would be gratifying to learn that the Morris worm
had caused a sea change in attitudes toward computer
security, and that there never again was an Internet
worm. As this article is being written, however, the
Blaster Worm is making the news and showing some re-
markable similarities to the Morris worm. After 15
years, what has changed?

For a few years after the Morris worm hit, computer
science departments around the world tried to delineate
the difference between appropriate and inappropriate
computer and network usage, and many tried to define
an ethical basis for the distinctions. This approach had
two purposes: to control harmful Internet behavior and
to avoid any strict policy controls on innovators. The

ethics efforts might have stemmed a tide of clever exploits
similar to the Morris worm, but they probably passed un-
noticed by the rapidly growing Internet user community,
which included students of all subjects and all ages around
the world. The Internet ceased to be a community in the
sense it had been because it had to accept as netizens many
uncontrollable sociopaths in its population, as immediate
events would show.

Nearly a year after the Morris worm incident, the
WANK worm spread through sites on some research net-
works running the DECNet protocol and services, Digi-
tal Equipment Corporation’s (DEC) alternative net-
working technology. Because these machines were not
connected to the Internet, the infection was more limited
than the Morris worm attack. However, the attack was
interesting because DECNet users had largely enjoyed
immunity from the Morris worm.

Although the Internet had begun as an experiment,
and then as a place for doing protocol experimentation,
most users and their system administrators in 1988 had
begun to expect and desire reliability and consistency.
Their aversion to using the Internet for experiments so-
lidified in the Morris worm’s wake, and perhaps stifled
investigations into the dynamics of self-organizing
agents. On the other hand, the Internet was growing
more commercial, and experiments are rarely appreci-
ated on commercial infrastructures. Many lamented the
passing of the days when universities could easily deploy
new Internet services, but in only a few years they would
witness the Internet’s transformation by the Web and its
myriad new services.

CERT’s emergence
Soon after the Morris worm incident, DARPA provided
funding for the Computer Emergency Response Team
(CERT), which has since served as a clearinghouse for se-
curity-vulnerability information. Although CERT pro-
vides no panacea, it has become a trusted source of infor-
mation about security flaws and fixes for a variety of
software. However, it merely documents problems and
vendor solutions; it is powerless to change the way the in-
dustry produces software. A look at its database reveals
continuing trouble in the same areas that the Morris
worm highlighted. There are at least 200 reports relating
to buffer overrun problems on many major OSs. Possibly
because there is even less variability in machine architec-
tures today than in 1988, the problem’s exploitation has
become routine and highly effective. There is even some
evidence that systematic testing of all parameter-process-
ing pathways in programs that accept network data is re-
vealing an increasing number of problems. The bad guys
might have latched on to some of the tools that were
meant for software developers.

The sendmail program is used still, and still is an om-
nibus program with configuration possibilities that far ex-

40 IEEE SECURITY & PRIVACY � SEPTEMBER/OCTOBER 2003

The worm used an interesting
hook-and-haul method of
propagation that masked its
entrance to a site and kept its
mechanisms secret.

The Morris Worm

ceed its expected use. CERT’s database contains 50 re-
ports of sendmail problems, two of them from this year,
both of which were buffer overruns.

Nonetheless, the 1988 experience inspired some re-
searchers to tackle the problems directly. For example,
Spafford and Dan Farmer of CERT developed the Com-
puterized Oracle and Password System (COPS),2 which
embodied a cornucopia of information about Unix sys-
tems and their security and gave system administrators an
automated view of system vulnerabilities. Additionally,
Spafford and Gene Kim at Purdue University created the
TripWire tool, which detects file changes that could sig-
nal malicious alteration.

Although these tools were useful, new vulnerabilities
kept showing up, and constant updates to COPS were
needed. Moreover, COPS was directed at Unix systems,
and other operating systems, such as Microsoft Windows,
Novell’s Netware, and IBM’s OS/2, were coming onto
the Internet.

Later, Dan Farmer and Wietse Venema developed the
Security Administrator Tool for Analyzing Networks
(SATAN), which was designed to check for network vul-
nerabilities, but administrators had become so sensitized
to their systems’ fragility that some found it hard to distin-
guish between SATAN and an outright attack.

Firewalls
The biggest security change to affect the Internet is the
firewall, those nearly ubiquitous protectors of Internet
computers. Because these devices began appearing sub-
sequent to the Morris worm (the first edition of Steve
Bellovin’s and Bill Cheswick’s Firewalls and Internet Secu-
rity was published in 1994), they seem to be a tangible re-
sponse to it. However, the history of firewall technology
begins before the worm and seems to ripple right
through it, developing into a cascade after most people
had relegated 2 November 1988 to the memory of a bad
day at the office.

The first attempt at a firewall might have been that of
Bolt, Beranek, and Newman (BBN), a small consulting
firm. Their Milnet mail gateway, a project intended to
enforce a near separation of the Milnet from the Arpanet.
Worried early on about the possibility of network attacks,
the DoD planned to severely restrict network services be-
tween its computers and the rest of the networked world,
and email was the only thing they allowed as an essential
service. The mail gateway had a policy-driven engine and
could be configured to allow only packets for the SMTP
protocol through its communication channels. This
might have been the first packet-filtering gateway. Ironi-
cally, even if it had been in place in 1988, it would not
have stopped the sendmail exploit. As it was, Milnet op-
erators used nonfiltering gateways, and they simply dis-
connected them when they heard of the Morris worm.

At DEC, although unaffected and generally unim-

pressed by the Morris worm, a handful of people began
putting effort into corporate network protection. Brian
Reid, who had seen firsthand the devastating effects of
exploits using the Berkeley Unix remote access com-
mands while at UC Berkeley in 1986, developed a cor-
porate firewall using a two-step access approach (login to
firewall, then to internal services). Jeff Mogul, inspired
by Debra Estrin at USC and others interested in Internet
security, developed a generic packet-filtering capability,
similar to the BBN Milnet mail gateway, but meant for
use in a generic OS like Unix. Based on some of these
ideas, Fred Avolio and Marcus Ranum developed a
commercial firewall product and extended it to use ap-
plication proxies. Much of this technology, under
DARPA funding at Trusted Information Systems, be-
came a freely available toolkit for Unix systems. How-
ever, little or none of this activity was directly motivated
by the Morris worm; there were plenty of other early
warning signs that put the plans into motion.

By 1995, it had become nearly impossible to put a
general use Unix system on the Internet without it be-
coming subject to an unending series of attacks. Fire-
walls became an essential part of any organization’s net-
work presence. At the same time, other forces, such as
management of IP address allocations, brought in net-
work address translation and restrictions on providing
server access. In today’s Internet environment, a worm
like Morris’ would have trouble moving between orga-
nizations because of infected machines would have
been unable to contact the infector using the reverse
TCP channel.

Much study, few improvements
The security research community responded in the years
following 1988 with enthusiasm and creativity. There
have been at least 80 research papers in the last 15 years
addressing buffer overruns. Reseachers have proposed
new languages, new automated tools for source and bi-
nary, new checking mechanisms, new OS checks, and al-
most every conceivable approach to ensuring that run-
ning programs cannot be tricked into executing code
introduced through the process stack. Nonetheless,
buffer overrun problems continue to plague commercial
software offerings.

In light of this, it is dismaying to read Gene Spaf-

http://computer.org/security/ � IEEE SECURITY & PRIVACY 41

The biggest security change to
affect the Internet is the firewall,
those nearly ubiquitous protec-
tors of Internet computers.

The Morris Worm

ford’s comments in his tech report from the immediate
aftermath of the Morris worm:

“The sendmail program is of immense importance
on most Berkeley-derived (and other) UNIX sys-
tems because it handles the complex tasks of mail
routing and delivery. Yet, despite its importance and
widespread use, most system administrators know
little about how it works. Stories are often related
about how system administrators will attempt to
write new device drivers or otherwise modify the
kernel of the operating system, yet they will not
willingly attempt to modify sendmail or its configu-
ration files. It is little wonder, then, that bugs are
present in sendmail that allow unexpected behav-
ior. Other flaws have been found and reported now
that attention has been focused on the program, but
it is not known for sure if all the bugs have been dis-
covered and all the patches circulated.”

A resounding “no” echoes down through the years.
Why does research fail to yield solutions, or why do

solutions go unnoticed in the course of software pro-
duction? Why is it more profitable to support a security
industry that responds on a case-by-case basis than to
produce secure software directly? These questions
probe at economics as much as at computer science, and
it might be that an approach must be tied to economics
or that economists must be able to better estimate the
price of poor security. In any event, today’s Internet se-
curity situation seems little changed, at its heart, than it
did 15 years ago.

Today’s Linux systems still contain the BSD remote
commands, and the .rhosts and .forward files, but
these are not the main focus of today’s attacks. Similar fa-
cilities plague other OS, and attackers are concentrating
on those.

For many years, Unix retained the reputation of hav-
ing exceptionally poor security. Other OSs, with fewer
entries in CERT’s database, had the misleading appear-
ance of being free from risk. A poor understanding of
commercial software production practices, combined
with some vendor hype, might have led some planners to
choose alternatives to Unix on the grounds that they
would have no vulnerabilities. History—and current
events—show the folly of such complacency.

Research questions
Whatever its intentions, the Morris worm did reveal a
good deal of information about how tightly bound Inter-
net sites had become, despite organizational administra-
tive boundaries. The user population has information
that connects it in ways that are not easily modeled by
transmission-line links, and that set of personal, individ-
ual links is part of what makes the Internet such a power-

ful sociological force. Recognition of the growing bonds
between users might have shown earlier that worms
would be a fact of life on such a highly connected system.
However, some important questions were never resolved
in the legal hubbub following the Morris worm.

Some of those questions concern the sources of viru-
lence. Did virulence increase as user account passwords be-
came compromised? How long did it take to move from an
organization’s bastion machine to others on the same net-
work? What was the average load on machines that were
unsuccessfully attacked? Were there vulnerable machines
that the worm did not find? How long did it take, on aver-
age, to find a vulnerable user account, and how important
were the user accounts in spreading the infection? Was the
energy expended in password guessing well-spent, and
could more effort have made the worm more effective?

The worm’s progress is unknown. No one knows for
certain which of its propagation methods were most suc-
cessful, what its LAN-versus-WAN spread rates were
like, or if only a few user accounts were responsible for
most of its spread.

Instead of undertaking a systematic mapping of the
worm’s progress, individual sites fixed their vulnerabil-
ities and warned their users against interorganizational
trust policies. Users with .rhosts files removed
them. Connectivity was reduced, but by how much?
How important was each link “color” in assisting the
worm propagation?

Earlier studies indicated that 20 percent or more of
user accounts typically had poor password choices. Only
a small amount of anecdotal information about the Mor-
ris worm’s experience exists from Spafford’s Purdue tech-
nical report mentioned earlier, which stated that some
sites had half their passwords quickly discovered through
the simple dictionary attacks.

It could be an open research topic to determine the
conditions for building a low-energy, widespread, and
surreptitious worm. For example, how much better
could an attacker do with a worm that set up a web of
communication to monitor and control its progress?
Could the communication be held to a small amount per
node, say lnln (the mathematical notation for the loga-
rithm of a logarithm), of the number of infections?
Would that make a worm fragile, either because it would
fail to keep a coherent list of infected sites, or because any
communication would make it detectable, and thus, eas-
ily corrupted by defenders? Apparently worm writers
have begun using covert channels in protocol fields to
mask their communication, so some form of research is
already under way.

On a positive note, Internet researchers have recently
begun to take up the study of worm propogation. At the
2002 Usenix Security Symposium, researchers showed
how a worm today could infect as many as 10 million
computers.3 Using mathematical models of Internet

42 IEEE SECURITY & PRIVACY � SEPTEMBER/OCTOBER 2003

The Morris Worm

connectivity and computer simulation techniques, they
show that the potential for spread, once an exploitable
and widespread vulnerability is found, might be higher
today than in 1988.

Fifteen years later
Despite its notoriety and the numerous references to it
today, the Morris worm was heeded neither as a security
wake-up call nor as a graph-connectivity experiment,
and its legacy is that the attack has been much imitated
with continued success.

Today’s Internet is a thousand times larger than 1988’s,
with many new services and a much larger and less-so-
phisticated user population. The diversity of machine ar-
chitectures and OSs is probably lower than in 1988, but
the number of vulnerabilities might well be higher. Al-
most all sites have firewall protection. There is an industry
devoted to antiworm and antivirus software, quickly tar-
geting new attacks with specific antidotes. A continual
state of thrust and parry is the norm.

Vendors have a heightened sense of awareness of
their responsibilities to produce security-preserving
software, but this does not penetrate through to all soft-
ware developers. Few universities teach software engi-
neering with an eye toward avoiding security vulnera-
bilities. Either the methods are too onerous or the
importance is not appreciated.

It would seem foolishly shortsighted to expect that
we have seen the worst of the problems yet. Perhaps
someone will again combine novel observations on
connectivity and vulnerabilities into a potent mix that
will sweep across the Internet unchecked. If they do,
the Morris worm’s history shows that we will be un-
likely to develop any effective defense to it in less than
two decades.

Hilarie Orman is the founder of Purple Streak, a security con-
sulting and research company. While at the University of Arizona
as a research scientist, she led the development of novel network
security protocols and very fast network communication meth-
ods. These research interests led to the design of secure key
exchange for the Internet protocols developed through the Inter-
net Engineering Task Force. She received a BS degree in mathe-
matics from MIT. She previously worked at the Defense Advanced
Research Projects Agency (DARPA) and was chief architect for
Volera. She is the editor of the IEEE online security newsletter
Cipher, and is on the technical advisory board for Senforce, which
develops solutions for location-aware computing.

References
1. T. Eisenberg et al., “The Cornell Commission on Mor-

ris and the Worm,” Comm. ACM, vol. 32, no. 6, June
1989, pp. 706–710.

2. D. Farmer and E. Spafford, “The COPS Security
Checker System,” Purdue University tech. report
CSD-TR-993, Purdue Univ., Jan. 1994.

3. S. Staniford, V. Paxson, and N. Weaver, “How to Own

the Internet in Your Spare Time,” Proc. 11th Usenix Secu-
rity Symp. (Security 02), Usenix, 2002, pp. 149–167.

http://computer.org/security/ � IEEE SECURITY & PRIVACY 43

2003-2004
Editorial Calendar

For submission information and author guidelines, go to

http://www.computer.org/security/author.htm

November/December 2003
Understanding Privacy

2004
January/February
E-Voting

March/April
Wireless Security

May/June
Security in Large Systems—Legacy and New

July/August
Red Teaming State-of-the-Art

September/October
Special Report

November/December
Reliability/Dependability Aspects
of Critical Systems

Put Your Mark

on Security—

Write for Us

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

