
Exploiting the DRAM
rowhammer bug to gain kernel
privileges
How to cause and exploit
single bit errors

Mark Seaborn and Thomas Dullien

Bit flips!
This talk is about single bit errors -- i.e. bit flips:
● How to cause them
● How to exploit them

Specifically: bit flips caused by the “rowhammer” bug

The rowhammer DRAM bug
Repeated row activations can cause bit flips in adjacent rows

● A fault in many DRAM modules, from 2010 onwards
● Bypasses memory protection: One process can affect others
● The three big DRAM manufacturers all shipped memory with this

problem
○ A whole generation of machines

Overview of talk
● How to cause bit flips by row hammering
● Proof-of-concept exploits
● Mitigations and the industry’s response

● Topics covered in our Project Zero blog post
● Plus things we’ve learned since the blog post

○ Rowhammer from Javascript?

Exploiting random bit flips
 How would one exploit a truly
random bit flip in physical
memory?

2003 paper:
“Using Memory Errors to
Attack a Virtual Machine”
● by Sudhakar

Govindavajhala,
Andrew Appel

● Escape from Java VM

Exploiting random bit flips
How would one exploit a truly random bit flip in physical memory?
● Generic strategy:

○ Identify data structure that, if randomly bit-flipped, yields
improved privileges

○ Fill as much memory as possible with this data structure
○ Wait for the bit flip to occur

● Apply this to JVM:
○ Spray memory with references
○ Bit flip causes reference to point to object of wrong type

Types of memory error
Totally random (e.g. cosmic ray) vs. repeatable

Rowhammer is inducable by software, and often repeatable

● Similar exploit techniques can be used in both cases
● But repeatable bit flips offer more control

 Intro to DRAM
● Cells are capacitors → refresh contents every 64ms
● “Analogue” device → sense amplifiers
● Accessed by row → “currently activated row”, row buffer

(Diagram from
Kim et al)

DRAM disturbance errors
● Cells smaller and closer together

○ <40nm process
● Electrical coupling between rows

○ “Word line to word line coupling”
○ “Passing gate effect”

● Activating a row too often causes “disturbance errors”
○ Can be as low as 98,000 activations (8% of spec)
○ DDR3 spec allows upto 1,300,000 activations
○ Insufficient testing by manufacturers?

(Diagram from
ARMOR
project,
University of
Mancester)

Timeline: 2014
Summer:
“Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors”
-- Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, Onur Mutlu, at CMU

● 5th September: Read the paper
● 9th September: Repro’d bit flips on spare laptop using Memtest
● Also tested some desktops

○ but they had ECC -- a pretty good mitigation

DRAM badness by year

(Graph from
Kim et al)

How to row hammer on x86
 code1a:
 mov (X), %eax // Read from address X
 mov (Y), %ebx // Read from address Y
 clflush (X) // Flush cache for address X
 clflush (Y) // Flush cache for address Y
 // mfence // In CMU paper, but not actually needed
 jmp code1a

● Requirement #1: Bypass the cache → x86 CLFLUSH instruction
○ Unprivileged instruction
○ No way to disable it (unlike e.g. RDTSC)

How to row hammer on x86
 code1a:
 mov (X), %eax // Read from address X
 mov (Y), %ebx // Read from address Y
 clflush (X) // Flush cache for address X
 clflush (Y) // Flush cache for address Y
 // mfence // In CMU paper, but not actually needed
 jmp code1a

● Requirement #2: Search for bad rows
○ Some DRAM modules have more bad rows than others
○ Allocate big chunk of memory, try many addresses

How to row hammer on x86
 code1a:
 mov (X), %eax // Read from address X
 mov (Y), %ebx // Read from address Y
 clflush (X) // Flush cache for address X
 clflush (Y) // Flush cache for address Y
 // mfence // In CMU paper, but not actually needed
 jmp code1a

● DRAM is divided into banks → each has its own current row
● Requirement #3: Pick >=2 addresses

○ Map to different rows in the same bank
○ “Row-conflict address pair”

Row-conflict address pairs
Could use physical addresses
● Memtest: runs in supervisor mode (bare metal)
● On Linux: could use /proc/$PID/pagemap

CMU paper uses: Y = X + 8MB

Row # Bank 0 Bank 1 Bank 2 ... Bank 7

0 0 0x2000 0x4000 ... 0xe000

1 0x10000 0x12000 0x14000 ... 0x1e000

...

128... 0x800000 0x802000 0x804000 ... 0x80e000

Row-conflict address pairs
Pick address pairs randomly
● 8 banks → 1/8 chance of getting a row-conflict pair
● Insight on 18th Sept, ~2 weeks after reading paper

○ Repro’d bit flips in userland, under Linux

Row # Bank 0 Bank 1 Bank 2 ... Bank 7

0 0 0x2000 0x4000 ... 0xe000

1 0x10000 0x12000 0x14000 ... 0x1e000

2 0x20000 0x22000 0x24000 ... 0x2e000

3... 0x30000 0x32000 0x34000 ... 0x3e000

Refinement: Try hammering >2 addresses, e.g. 4 or 8
● Tests more rows at a time
● Increases chances of row conflicts
● Hardware can often queue multiple accesses

Address selection

Row # Bank 0 Bank 1 Bank 2 ... Bank 7

0 0 0x2000 0x4000 ... 0xe000

1 0x10000 0x12000 0x14000 ... 0x1e000

2 0x20000 0x22000 0x24000 ... 0x2e000

3... 0x30000 0x32000 0x34000 ... 0x3e000

● Activate both neighbours of a row, not just one
● Less data: Existing papers haven’t explored this

Double-sided row hammering

Row # Bank 0 Bank 1 Bank 2 ... Bank 7

0 0 0x2000 0x4000 ... 0xe000

1 0x10000 0x12000 0x14000 ... 0x1e000

2 0x20000 0x22000 0x24000 ... 0x2e000

3 0x30000 0x32000 0x34000 ... 0x3e000

4 0x40000 0x42000 0x44000 ... 0x4e000

5... 0x50000 0x52000 0x54000 ... 0x5e000

Double-sided row hammering
● Figure out DRAM address mapping:

○ by bit flips observed
○ by timing

● Picking addresses:
○ Using physical addresses -- /proc/PID/pagemap, disabled
○ Huge pages (2MB) -- not disabled
○ Other chunks of contiguous physical memory

(Diagram from
ARMOR
project,
University of
Mancester)

Querying DRAM’s SPD data
$ sudo decode-dimms

...

---=== Memory Characteristics ===---

Fine time base 2.500 ps

Medium time base 0.125 ns

Maximum module speed 1333MHz (PC3-10666)

Size 4096 MB

Banks x Rows x Columns x Bits 8 x 15 x 10 x 64

Ranks 2

...

→ 2^15 rows. Each contains 2^10 * 64 bits = 8 kbytes.

Result: rowhammer-test
● https://github.com/google/rowhammer-test
● Runs in userland

○ Allocates 1GB, looks for bit flips in this
● Risky: Could corrupt other processes or the kernel

○ In practice, it rarely does

Iteration 4 (after 4.42s)

 Took 99.7 ms per address set

 Took 0.997074 sec in total for 10 address sets

 Took 23.080 nanosec per memory access (for 43200000 memory accesses)

 This gives 346614 accesses per address per 64 ms refresh period

 Checking for bit flips took 0.104433 sec

Testing more machines
2014 timeline:
● 7th Oct (4.5 weeks in): NaCl exploit working
● 23rd Oct (~7 weeks in): Testing more laptops → got repros

Laptop model Laptop year
CPU family
(microarch)

DRAM
manufacturer Saw bit flip

1 Model #1 2010 Family V DRAM vendor E yes

2 Model #2 2011 Family W DRAM vendor A yes

3 Model #2 2011 Family W DRAM vendor A yes

4 Model #2 2011 Family W DRAM vendor E no

5 Model #3 2011 Family W DRAM vendor A yes

...

Further refinements
● Easy: Use timing to find row-conflict pairs

○ Find bad rows quicker

● Easy: Hammer for 128ms (= 64ms refresh period * 2)
○ Maximise row activations between refreshes
○ Maximise chance of disturbing a bad row

● Harder: 2-sided row hammering
○ Requires more knowledge of physical addresses

Exploitability
● Systems rely on memory staying constant!
● Two exploits:

○ Native Client (NaCl) sandbox in Chrome
■ bit flip in validated-to-be-safe code
■ easier: can read code to see bit flips

○ Linux kernel privilege escalation
■ bit flip in page table entries (PTEs)
■ gain RW access to a page table

● Dense data structures

Intro to Native Client (NaCl)
● Sandbox for running native code (C/C++)
● Part of Chrome
● Similar to Asm.js, but code generator is not trusted
● “Safe” subset of x86 -- “Software Fault Isolation”

○ Executable (nexe) checked by x86 validator
○ But it allowed CLFLUSH -- “safe in principle”

● Two variants:
○ PNaCl, on open web. Runs pexe (LLVM bitcode): compiled to

nexe by in-browser translator. No CLFLUSH?
○ NNaCl, in Chrome Web Store. Could use CLFLUSH.

● Disclosure: I work on NaCl :-)

NaCl exploit
Safe instruction sequence:
 andl $~31, %eax // Truncate address to 32 bits

 // and mask to be 32-byte-aligned.

 addq %r15, %rax // Add %r15, the sandbox base address.

 jmp *%rax // Indirect jump.

NaCl sandbox model:
● Prevent jumping into the middle of an x86 instruction
● Indirect jumps can only target 32-byte-aligned addresses

NaCl exploit
Bit flips make instruction sequence unsafe:
 andl $~31, %eax // Truncate address to 32 bits

 // and mask to be 32-byte-aligned.

 addq %r15, %rax // Add %r15, the sandbox base address.

 jmp *%rax // Indirect jump.

e.g. %eax → %ecx
● Allows jumping to a non-32-byte-aligned address

NaCl exploit
Bit flips make instruction sequence unsafe:
 andl $~31, %eax // Truncate address to 32 bits

 // and mask to be 32-byte-aligned.

 addq %r15, %rax // Add %r15, the sandbox base address.

 jmp *%rax // Indirect jump.

● Create many copies of this sequence -- dyncode_create()
○ Look for bit flips -- code is readable

● Exploit handles changes to register numbers
○ Can exploit 13% of possible bit flips
○ Test-driven development

NaCl sandbox address space

stack (initial thread) read+write

available for mmap() anything but exec

nexe rwdata segment read+write variable size

nexe rodata segment read variable size

dynamic code area read+exec ~256MB

nexe code segment read+exec variable size

NaCl syscall trampolines read+exec 64k

zero page no access 64k

Total size: 1GB or 4GB

Hiding unsafe code in NaCl
Existing technique for exploiting non-bundle-aligned jump:
 20ea0: 48 b8 0f 05 eb 0c f4 f4 f4 f4

 movabs $0xf4f4f4f40ceb050f, %rax

This conceals:
 20ea2: 0f 05 syscall

 20ea4: eb 0c jmp ... // Jump to next hidden instr

 20ea6: f4 hlt // Padding

NaCl mitigations
● Disallow CLFLUSH
● Hide code?

○ Might not help

Kernel exploit
● x86 page tables entries (PTEs) are dense and trusted

○ They control access to physical memory
○ A bit flip in a PTE’s physical page number can give a process

access to a different physical page
● Aim of exploit: Get access to a page table

○ Gives access to all of physical memory
● Maximise chances that a bit flip is useful:

○ Spray physical memory with page tables
○ Check for useful, repeatable bit flip first

● Page table is a 4k page containing array of 512 PTEs
● Each PTE is 64 bits, containing:

● Could flip:
○ “Writable” permission bit (RW): 1 bit → 2% chance
○ Physical page number: 20 bits on 4GB system → 31% chance

x86-64 Page Table Entries (PTEs)

...

Virtual Address
Space

Physical
Memory

...

Virtual Address
Space

Physical
Memory

What happens when we map a file with read-write
permissions?

...

Virtual Address
Space

Physical
Memory

What happens when we map a file with read-write
permissions? Indirection via page tables.

...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with
read-write permissions?

...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with
read-write permissions?

...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with
read-write permissions?

PTEs in physical memory help resolve virtual
addresses to physical pages.

...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with
read-write permissions?

PTEs in physical memory help resolve virtual
addresses to physical pages.

We can fill physical memory with PTEs.

...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with
read-write permissions?

PTEs in physical memory help resolve virtual
addresses to physical pages.

We can fill physical memory with PTEs.

Each of them points to pages in the same physical
file mapping.

...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with
read-write permissions?

PTEs in physical memory help resolve virtual
addresses to physical pages.

We can fill physical memory with PTEs.

Each of them points to pages in the same physical
file mapping.

If a bit in the right place in the PTE flips ...

...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with
read-write permissions?

PTEs in physical memory help resolve virtual
addresses to physical pages.

We can fill physical memory with PTEs.

Each of them points to pages in the same physical
file mapping.

If a bit in the right place in the PTE flips …

… the corresponding virtual address now points to
a wrong physical page - with RW access.

...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with
read-write permissions?

PTEs in physical memory help resolve virtual
addresses to physical pages.

We can fill physical memory with PTEs.

Each of them points to pages in the same physical
file mapping.

If a bit in the right place in the PTE flips …

… the corresponding virtual address now points to
a wrong physical page - with RW access.

Chances are this wrong page contains a page
table itself.

...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with
read-write permissions?

PTEs in physical memory help resolve virtual
addresses to physical pages.

We can fill physical memory with PTEs.

Each of them points to pages in the same physical
file mapping.

If a bit in the right place in the PTE flips …

… the corresponding virtual address now points to
a wrong physical page - with RW access.

Chances are this wrong page contains a page
table itself.

An attacker that can read / write page tables …

...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with
read-write permissions?

PTEs in physical memory help resolve virtual
addresses to physical pages.

We can fill physical memory with PTEs.

Each of them points to pages in the same physical
file mapping.

If a bit in the right place in the PTE flips …

… the corresponding virtual address now points to
a wrong physical page - with RW access.

Chances are this wrong page contains a page
table itself.

An attacker that can read / write page tables can
use that to map any memory read-write.

Exploit strategy
Privilege escalation in 7 easy steps …
1. Allocate a large chunk of memory
2. Search for locations prone to flipping
3. Check if they fall into the “right spot” in a PTE for allowing the

exploit
4. Return that particular area of memory to the operating system
5. Force OS to re-use the memory for PTEs by allocating massive

quantities of address space
6. Cause the bitflip - shift PTE to point into page table
7. Abuse R/W access to all of physical memory
In practice, there are many complications.

… but wait ...
In theory, theory and practice are the same.

In practice, there are many complications.

Exploit strategy
Privilege escalation in 7 easy steps …
1. Allocate a large chunk of memory
2. Search for locations prone to flipping
3. Check if they fall into the “right spot” in a PTE for allowing the

exploit
4. Return that particular area of memory to the operating system
5. Force OS to re-use the memory for PTEs by allocating massive

quantities of address space
6. Cause the bitflip - shift PTE to point into page table
7. Abuse R/W access to all of physical memory
In practice, there are many complications.

...

Virtual Address
Space

Physical
Memory

In practice there are many complications.

The biggest one: If the file is contiguous in
physical memory, and one of the lower bits flip ...

...

Virtual Address
Space

Physical
Memory

In practice there are many complications.

The biggest one: If the file is contiguous in
physical memory, and one of the lower bits flip …

… we shift where the PTE points to, but that may
still point to our mapped file - which doesn’t help
us.

...

Virtual Address
Space

Physical
Memory

In practice there are many complications.

The biggest one: If the file is contiguous in
physical memory, and one of the lower bits flip …

… we shift where the PTE points to, but that may
still point to our mapped file - which doesn’t help
us. We had RW access to our mapped file
beforehand.

Solution: Aggressively fragment the file data
across physical memory.

Exploit strategy
Privilege escalation in 7 easy steps …
1. Allocate a large chunk of memory
2. Search for locations prone to flipping
3. Check if they fall into the “right spot” in a PTE for allowing the

exploit
4. Return that particular area of memory to the operating system
5. Force OS to re-use the memory for PTEs by allocating massive

quantities of address space
6. Cause the bitflip - shift PTE to point into page table
7. Abuse R/W access to all of physical memory
In practice, there are many complications.

Exploit strategy
Turns out it is hard to force the OS to re-use “regular” memory for
PTEs.

Possible somehow. I spent a few afternoons fumbling around in the
Linux physical page allocator. Not very fun code.

Mark was more clever: He simply put the system under memory
pressure - when backed into a corner, the OS behaves nicely.

Mitigations
CMU paper: “The industry has been aware of this problem since at
least 2012”
● Industry preparing mitigations -- but no security advisories

● ECC (Error Correcting Codes)
● TRR (Target Row Refresh)
● Higher DRAM refresh rates

Mitigation: ECC memory
● Single-bit error correction
● Double-bit error detection
● >=3 bits: not detectable

○ But not very likely?
● Reduces problem to Denial of Service

But only works if you enable proper MCE (Machine Check Exception)
handling for ECC errors!

Not ideal: Expensive, and not guaranteed to work

“Ideal” fix: Target Row Refresh
● Count activations of a row
● Refresh neighbouring rows when counter reaches threshold

● Covered by LPDDR4
● DDR4 too?
● In DRAM: Micron data sheets
● In memory controllers:

○ pTRR (pseudo TRR)
○ One Intel presentation says Ivy Bridge supports pTRR. No

further evidence of this?

Mitigation: 2x refresh rate
● Current CPUs support this
● tREFI parameter

○ Covered by Intel’s public memory controller docs
○ Set by BIOS

■ Coreboot covers Sandy/Ivy Bridge
● Various vendor BIOS updates do this
● How to verify refresh rate?
● Is 2x refresh enough?

Timing DRAM refreshes

From https://github.
com/google/rowhammer-
test/tree/master/refresh_timing

Is 2x refresh enough?

Graph from
Kim et al

Rowhammer from Javascript?
● Can we do row hammering from Javascript?

○ Via normal cached memory accesses, without CLFLUSH
○ Generate many cache misses

● Javascript engine speed not a problem
○ Near-native access to typed arrays (e.g. Asm.js)
○ Cache misses are slow

● lavados reports doing this

Causing cache misses
● Have to miss at all cache levels (L1, L2, L3)
● Seems difficult?

○ Row hammering by accident in benchmarks (see paper)
○ Not with an inclusive cache!

■ Evicting cache line from L3 evicts from L1 and L2 too
■ Used by Intel CPUs

Cache profiling algorithm
● Find addresses mapping to the same L3 cache set
● e.g. For a 12-way L3 cache, find 13 addresses

○ Accessing these in turn must produce >=1 cache miss

How: “The Spy in the Sandbox -- Practical Cache Attacks in
Javascript” (Yossef Oren, Vasileios P. Kemerlis, Simha
Sethumadhavan, Angelos D. Keromytis)
● By timing memory accesses
● Original motivation: L3 cache side channel attacks

Cache eviction policy
● True LRU: would give 13 cache misses per iteration (for 12-way

cache)
○ 6.5x reduction in row activations. Not ideal.

● Ideally want 2 cache misses per iteration
● Real CPUs:

○ Sandy Bridge: Bit-Pseudo-LRU, 1 bit per cache line
○ Ivy Bridge: Quad Age LRU, 2 bits per cache line

■ Plus adaptive policy: “set duelling”

Cache side channel mitigations?
● Reduce timer resolution (performance.now())

○ Changes in Firefox, Chrome, Safari/WebKit
● Probably doesn’t help

○ Cache profiling just takes longer?
○ Multi-threading: Build Your Own Timer

■ PNaCl
■ SharedArrayBuffers in Javascript
■ WebAssembly

● CPU performance counters?

Unknowns
● ARM and mobile devices? Depends on:

○ Cache organisation
○ Performance of CPU and memory controller

● Damage to DRAM?
○ Anecdotal observations

Conclusions
● As software-level sandboxes get better, attackers will likely target

more esoteric bugs, such as hardware bugs

● Rowhammer: not just a reliability problem

● Hard to verify that hardware meets spec
○ Vendors should adopt security mindset
○ Vendors should be more transparent

For more information
Code and notes on Github:
● https://github.com/google/rowhammer-test

Mailing list:
● https://groups.google.com/group/rowhammer-discuss/

