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SCENARIOS AND GOALS

Public network Disk

Alice Bob

Keep others from 
reading Alice’s messages / data

CONFIDENTIALITY

Keep others from undetectably  
tampering with Alice’s messages / data

INTEGRITY

Keep others from undetectably 
impersonating Alice (keep her to her word, too)

AUTHENTICITY
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RANDOMNESS

Message m

Something that leaks  
no information about m

Original m

Message m
<m, unpredictable ‘tag’>

Determine if m  
was tampered

Ideally, to the attacker, it is indistinguishable from  
a string of bits chosen uniformly at random

This will be impossible with Alice and Bob having a shared secret
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WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS
Consider the set of all permutations  fi : X →	X

Shared secret: index i chosen u.a.r.

Message m
i ifi(m)

If you know i, then fi(x) is trivial to invert

Think of X as all  
128-bit bit strings

Learns m

Without knowing i, 
learns nothing about m
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f2

f|X|!

…

0 1 2 3 4 …

1 0 2 3 4 …

7 9 5 1 8 …
If you don’t know i, then fi(x) is one-way

i is our key

“One-way trapdoor function”



WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS
Shared secret: index i chosen u.a.r.

Message m
i ifi(m)

Learns m

Without knowing i, 
learns nothing about m

In essence, this protocol is saying “Let’s use the ith permutation function”

Infeasible to store all permutation functions 

So instead cryptographers construct pseudorandom functions
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BLOCK CIPHERS HAVE FIXED SIZE

E

m1

K

c1

E

m2

K

c2

E

mn

K

cn

…





NEVER use ECB
(but over 50% of Android apps do)









MESSAGE AUTHENTICATION CODE (MAC)
BLACKBOX #2:
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MESSAGE AUTHENTICATION CODES

• Sign: takes a key and a message and outputs a “tag” 
• Sgn(k,m) = t 

• Verify: takes a key, a message, and a tag, and outputs Y/N 
• Vfy(k,m,t) = {Y,N} 

• Correctness: 
• Vfy(k, m, Sgn(k, m)) = Y



ATTACKER’S GOAL: EXISTENTIAL FORGERY

• A MAC is secure if an attacker cannot demonstrate an 
existential forgery despite being able to perform a chosen 
plaintext attack: 

• Chose plaintext: 
• Attacker gets to choose m1, m2, m3, … 
• And in return gets a properly computed t1, t2, t3, … 

• Existential forgery: 
• Construct a new (m,t) pair such that Vfy(k, m, t) = Y



ENCRYPTED CBC
It’s a trap!Just take the last block in CBC

Use a separate key and encrypt the last block



HASH FUNCTIONS
BLACKBOX #3:



HASH FUNCTION PROPERTIES

• Very fast to compute 

• Takes arbitrarily-sized inputs, returns fixed-sized output 

• Pre-image resistant:  
       Given H(m), hard to determine m 

• Collision resistant  
       Given m and H(m), hard to find m’≠ m s.t. H(m) = H(m’)

Good hash functions: SHA family (SHA-256, SHA-512, …)



HASH MACS

• Sign(k, m): 
• opad = 0x5c5c5c… 
• ipad =0x363636… 
• H( (k ⊕ opad) ||  H((k ⊕ ipad) || m ) ) 

• Verify: 
• Recompute and compare


