
CRYPTOGRAPHY 
INTRO

GRAD SEC
OCT 17 2017

SCENARIOS AND GOALS

Public network Disk

Alice Bob

SCENARIOS AND GOALS

Public network Disk

Alice Bob

SCENARIOS AND GOALS

Public network Disk

Alice Bob

Keep others from
reading Alice’s messages / data

CONFIDENTIALITY

Keep others from undetectably
tampering with Alice’s messages / data

INTEGRITY

Keep others from undetectably
impersonating Alice (keep her to her word, too)

AUTHENTICITY

RANDOMNESS

RANDOMNESS

Message m

RANDOMNESS

Message m

Something that leaks  
no information about m

RANDOMNESS

Message m

Something that leaks  
no information about m

Original m

RANDOMNESS

Message m

Something that leaks  
no information about m

Original m

Message m

RANDOMNESS

Message m

Something that leaks  
no information about m

Original m

Message m
<m, unpredictable ‘tag’>

RANDOMNESS

Message m

Something that leaks  
no information about m

Original m

Message m
<m, unpredictable ‘tag’>

Determine if m  
was tampered

RANDOMNESS

Message m

Something that leaks  
no information about m

Original m

Message m
<m, unpredictable ‘tag’>

Determine if m  
was tampered

Ideally, to the attacker, it is indistinguishable from  
a string of bits chosen uniformly at random

RANDOMNESS

Message m

Something that leaks  
no information about m

Original m

Message m
<m, unpredictable ‘tag’>

Determine if m  
was tampered

Ideally, to the attacker, it is indistinguishable from  
a string of bits chosen uniformly at random

This will be impossible with Alice and Bob having a shared secret

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS
Consider the set of all permutations fi : X →	X

Think of X as all  
128-bit bit strings

f1

f2

f|X|!

…

0 1 2 3 4 …

1 0 2 3 4 …

7 9 5 1 8 …

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS
Consider the set of all permutations fi : X →	X

If you know i, then fi(x) is trivial to invert

Think of X as all  
128-bit bit strings

f1

f2

f|X|!

…

0 1 2 3 4 …

1 0 2 3 4 …

7 9 5 1 8 …

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS
Consider the set of all permutations fi : X →	X

If you know i, then fi(x) is trivial to invert

Think of X as all  
128-bit bit strings

f1

f2

f|X|!

…

0 1 2 3 4 …

1 0 2 3 4 …

7 9 5 1 8 …
If you don’t know i, then fi(x) is one-way

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS
Consider the set of all permutations fi : X →	X

If you know i, then fi(x) is trivial to invert

Think of X as all  
128-bit bit strings

f1

f2

f|X|!

…

0 1 2 3 4 …

1 0 2 3 4 …

7 9 5 1 8 …
If you don’t know i, then fi(x) is one-way

“One-way trapdoor function”

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS
Consider the set of all permutations fi : X →	X

If you know i, then fi(x) is trivial to invert

Think of X as all  
128-bit bit strings

f1

f2

f|X|!

…

0 1 2 3 4 …

1 0 2 3 4 …

7 9 5 1 8 …
If you don’t know i, then fi(x) is one-way

“One-way trapdoor function”

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS
Consider the set of all permutations fi : X →	X

Shared secret: index i chosen u.a.r.

If you know i, then fi(x) is trivial to invert

Think of X as all  
128-bit bit strings

f1

f2

f|X|!

…

0 1 2 3 4 …

1 0 2 3 4 …

7 9 5 1 8 …
If you don’t know i, then fi(x) is one-way

“One-way trapdoor function”

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS
Consider the set of all permutations fi : X →	X

Shared secret: index i chosen u.a.r.

i i

If you know i, then fi(x) is trivial to invert

Think of X as all  
128-bit bit strings

f1

f2

f|X|!

…

0 1 2 3 4 …

1 0 2 3 4 …

7 9 5 1 8 …
If you don’t know i, then fi(x) is one-way

“One-way trapdoor function”

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS
Consider the set of all permutations fi : X →	X

Shared secret: index i chosen u.a.r.

Message m
i i

If you know i, then fi(x) is trivial to invert

Think of X as all  
128-bit bit strings

f1

f2

f|X|!

…

0 1 2 3 4 …

1 0 2 3 4 …

7 9 5 1 8 …
If you don’t know i, then fi(x) is one-way

“One-way trapdoor function”

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS
Consider the set of all permutations fi : X →	X

Shared secret: index i chosen u.a.r.

Message m
i ifi(m)

If you know i, then fi(x) is trivial to invert

Think of X as all  
128-bit bit strings

f1

f2

f|X|!

…

0 1 2 3 4 …

1 0 2 3 4 …

7 9 5 1 8 …
If you don’t know i, then fi(x) is one-way

“One-way trapdoor function”

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS
Consider the set of all permutations fi : X →	X

Shared secret: index i chosen u.a.r.

Message m
i ifi(m)

If you know i, then fi(x) is trivial to invert

Think of X as all  
128-bit bit strings

Learns m

f1

f2

f|X|!

…

0 1 2 3 4 …

1 0 2 3 4 …

7 9 5 1 8 …
If you don’t know i, then fi(x) is one-way

“One-way trapdoor function”

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS
Consider the set of all permutations fi : X →	X

Shared secret: index i chosen u.a.r.

Message m
i ifi(m)

If you know i, then fi(x) is trivial to invert

Think of X as all  
128-bit bit strings

Learns m

Without knowing i, 
learns nothing about m

f1

f2

f|X|!

…

0 1 2 3 4 …

1 0 2 3 4 …

7 9 5 1 8 …
If you don’t know i, then fi(x) is one-way

“One-way trapdoor function”

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS
Consider the set of all permutations fi : X →	X

Shared secret: index i chosen u.a.r.

Message m
i ifi(m)

If you know i, then fi(x) is trivial to invert

Think of X as all  
128-bit bit strings

Learns m

Without knowing i, 
learns nothing about m

f1

f2

f|X|!

…

0 1 2 3 4 …

1 0 2 3 4 …

7 9 5 1 8 …
If you don’t know i, then fi(x) is one-way

i is our key

“One-way trapdoor function”

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS
Shared secret: index i chosen u.a.r.

Message m
i ifi(m)

Learns m

Without knowing i, 
learns nothing about m

In essence, this protocol is saying “Let’s use the ith permutation function”

Infeasible to store all permutation functions

So instead cryptographers construct pseudorandom functions

BLOCK CIPHERS
BLACKBOX #1:

BLOCK CIPHERS

E

m

K

c

Plaintext

Ciphertext

Same fixed block size  
 (AES: 128 bits)

D

c

K

m

AES key sizes:  
128, 192, 256

For a given m and K,  
E(K,m) always returns the same c

Confusion: Each bit of the ciphertext should depend on each bit of the key

Diffusion: Flipping a bit in m should flip each bit in c with Pr = 1/2

Block ciphers are deterministic

BLOCK CIPHERS ARE DETERMINISTIC

E

m

K

c

For a given m and K,  
E(K,m) always returns the same c

Block ciphers are deterministic

E

m’

K

c’

E

m

K

c

c c’ c An eavesdropper could determine  
when messages are re-sent

BLOCK CIPHERS ARE DETERMINISTIC

E

m

K

c

For a given m and K,  
E(K,m) always returns the same c

Block ciphers are deterministic

E

m’

K

c’

E

m

K

c

c c’ c An eavesdropper could determine  
when messages are re-sent

E

m ⊕	r

K

c

Send c and rChoose random r

INITIALIZATION VECTORS

r just needs to be different each time

Random: Must send with the message  
Good if messages can be reordered

Counter: Can infer from message number  
Good if messages are delivered in-order

INITIALIZATION VECTORS

E

m ⊕	r

K

c

Send c and rChoose random r

r just needs to be different each time

Random: Must send with the message  
Good if messages can be reordered

Counter: Can infer from message number  
Good if messages are delivered in-order

BLOCK CIPHERS HAVE FIXED SIZE

E

m1

K

c1

E

m2

K

c2

E

mn

K

cn

…

NEVER use ECB
(but over 50% of Android apps do)

MESSAGE AUTHENTICATION CODE (MAC)
BLACKBOX #2:

MESSAGE AUTHENTICATION CODES

E

m

K

c

Plaintext

Ciphertext

Same fixed block size  
 (AES: 128 bits)

D

c

K

m

AES key sizes:  
128, 192, 256

For a given m and K,  
E(K,m) always returns the same c

Confusion: Each bit of the ciphertext should depend on each bit of the key

Diffusion: Flipping a bit in m should flip each bit in c with Pr = 1/2

Block ciphers are deterministic

MESSAGE AUTHENTICATION CODES

• Sign: takes a key and a message and outputs a “tag”
• Sgn(k,m) = t

• Verify: takes a key, a message, and a tag, and outputs Y/N
• Vfy(k,m,t) = {Y,N}

• Correctness:
• Vfy(k, m, Sgn(k, m)) = Y

ATTACKER’S GOAL: EXISTENTIAL FORGERY

• A MAC is secure if an attacker cannot demonstrate an
existential forgery despite being able to perform a chosen
plaintext attack:

• Chose plaintext:
• Attacker gets to choose m1, m2, m3, …
• And in return gets a properly computed t1, t2, t3, …

• Existential forgery:
• Construct a new (m,t) pair such that Vfy(k, m, t) = Y

ENCRYPTED CBC
It’s a trap!Just take the last block in CBC

Use a separate key and encrypt the last block

HASH FUNCTIONS
BLACKBOX #3:

HASH FUNCTION PROPERTIES

• Very fast to compute

• Takes arbitrarily-sized inputs, returns fixed-sized output

• Pre-image resistant:  
 Given H(m), hard to determine m

• Collision resistant  
 Given m and H(m), hard to find m’≠ m s.t. H(m) = H(m’)

Good hash functions: SHA family (SHA-256, SHA-512, …)

HASH MACS

• Sign(k, m):
• opad = 0x5c5c5c…
• ipad =0x363636…
• H((k ⊕ opad) || H((k ⊕ ipad) || m))

• Verify:
• Recompute and compare

