CRYPTOGRAPHY

GRAD SEC

0CT 17 2017

&

SCENARIUS AND GOALS

SCENARIUS AND GOALS

SCENARIUS AND GOALS

CONFIDENTIALITY Keep others from

reading Alice’'s messages / data

INTEGRITY Keep others from undetectably

tampering with Alice’s messages / data

AUTHENT'C'TY Keep others from undetectably

impersonating Alice (keep her to her word, too)

RANDOMNESS

RANDOMNESS

RANDOMNESS

Message m x

Something that leaks

no information about m 8

RANDOMNESS

Message m x

Something that leaks

no information about m .
Original m

RANDOMNESS

Message m x
Message m x

Something that leaks

no information about m .
Original m

R

RANDOMNESS

Message m x
<m, unpredictable ‘tag'>
Message m x x

Something that leaks

no information about m .
Original m

RANDOMNESS

Message m x
<m, unpredictable ‘tag'> -

M Determine if m

e x was tampered

Something that leaks

no information about m .
Original m

RANDOMNESS

Something that leaks

no information about m
Message m Original m
<m, unpredictable ‘tag'>
M Determine if m
essage m
x was tampered

Ideally, to the attacker, it is indistinguishable from

a string of bits chosen uniformly at random

RANDOMNESS

Something that leaks

no information about m o
Message m Original m
<m, unpredictable ‘tag'>
M Determine if m
essage m
x was tampered

Ideally, to the attacker, it is indistinguishable from

a string of bits chosen uniformly at random

This will be impossible with Alice and Bob having a shared secret

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Think of X as al
128-bit bit strings

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

It you know i, then fi(x) is trivial to invert

Think of X as al
128-bit bit strings

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

It you know i, then fi(x) is trivial to invert

It you don’t know 1, then fi(x) is one-way

Think of X as al
128-bit bit strings

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

It you know i, then fi(x) is trivial to invert

It you don’t know 1, then fi(x) is one-way

“One-way trapdoor function”

Think of X as al
128-bit bit strings

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations fi: X = X

f1 |ol1]2]3]4]-..

It you know i, then fi(x) is trivial to invert

f2 |1]o]2]3]4]-..

It you don’t know 1, then fi(x) is one-way

fix;r [71915]1[8]---

“One-way trapdoor function”
Think of X as al ytrap f

128-bit bit strings

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations fi: X = X

f1 |ol1]2]3]4]-..

It you know i, then fi(x) is trivial to invert

f2 |1]o]2]3]4]-..

It you don’t know 1, then fi(x) is one-way

fix;r [71915]1[8]---

| “One-way trapdoor function”
Think of X as al

128-bit bit strings

Shared secret: index 1 chosen u.a.r.

s

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations fi: X = X

f1 |ol1]2]3]4]-..

It you know i, then fi(x) is trivial to invert

f2 |1]o]2]3]4]-..

It you don’t know 1, then fi(x) is one-way

fix;r [71915]1[8]---

| “One-way trapdoor function”
Think of X as al

128-bit bit strings

Shared secret: index 1 chosen u.a.r.

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations fi: X = X

f1 |ol1]2]3]4]-..

It you know i, then fi(x) is trivial to invert

f2 |1]o]2]3]4]-..

It you don’t know 1, then fi(x) is one-way

fix;r [71915]1[8]---

| “One-way trapdoor function”
Think of X as al

128-bit bit strings

Shared secret: index 1 chosen u.a.r.

1

Message m

r R

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations fi: X = X

f1 |ol1]2]3]4]-..

It you know i, then fi(x) is trivial to invert

f2 |1]o]2]3]4]-..

It you don’t know 1, then fi(x) is one-way

fix;r [71915]1[8]---

| “One-way trapdoor function”
Think of X as al

128-bit bit strings

Shared secret: index 1 chosen u.a.r.

1

Message m

fi(m) 8 1
R

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations fi: X = X

f1 |ol1]2]3]4]-..

It you know i, then fi(x) is trivial to invert

f2 |1]o]2]3]4]-..

It you don’t know 1, then fi(x) is one-way

fix;r [71915]1[8]---

| “One-way trapdoor function”
Think of X as al

128-bit bit strings

Shared secret: index 1 chosen u.a.r.

1

Message m

fi(m) 1
x 8 Learns m

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations fi: X = X

f1 |ol1]2]3]4]-..

It you know i, then fi(x) is trivial to invert

f2 |1]o]2]3]4]-..

It you don’t know 1, then fi(x) is one-way

fix;r [71915]1[8]---

| “One-way trapdoor function”
Think of X as al

128-bit bit strings

Shared secret: index 1 chosen u.a.r.

1

Message m

fi(m) 1
x 8 Learns m

Without knowing 1,
learns nothing about m

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations fi: X = X

f1 |ol1]2]3]4]-..

It you know i, then fi(x) is trivial to invert

f2 |1]o]2]3]4]-..

It you don’t know 1, then fi(x) is one-way

fix;r [71915]1[8]---

| “One-way trapdoor function”
Think of X as al

128-bit bit strings

Shared secret: index 1 chosen u.a.r.

1

Message m

fi(m) i
x Learns m
Without knowing 1, » 3
learns nothing about m LIS OUr key

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Shared secret: index 1 chosen u.a.r.

1

Message m

fi(m) 1
x 8 Learns m

Without knowing 1,
learns nothing about m

In essence, this protocol is saying “Let’s use the i*h permutation function”

Infeasible to store all permutation functions

So instead cryptographers construct pseudorandom functions

BLACKBOX #1.
BLOCK CIPHERS

BLOCK CIPHERS

m Plaintext

Same fixed block size
(AES: 128 bits)

4

Ciphertext

AES key sizes:

128, 192, 256 €
Block ciphers are deterministic

For a given m and K,

K —
E(K,m) always returns the same c

Confusion: Each bit of the ciphertext should depend on each bit of the key
Diffusion: Flipping a bit in m should flip each bit in c with Pr = 1/2

BLOCK CIPHERS ARE DETERMINISTIC

Block ciphers are deterministic

For a given m and K,
E(K,m) always returns the same c

An eavesdropper could determine

when messages are re-sent

BLOCK CIPHERS ARE DETERMINISTIC

Block ciphers are deterministic

For a given m and K,
E(K,m) always returns the same c

An eavesdropper could determine
when messages are re-sent

Choose random r K »# Send c and r

C

INITIALIZATION VECTORS

r just needs to be different each time

Random: Must send with the message
Good if messages can be reordered

Counter: Can infer from message number
Good if messages are delivered in-order

INITIALIZATION VECTORS

Choose random r Send cand r

r just needs to be different each time

Random: Must send with the message
Good if messages can be reordered

Counter: Can infer from message number
Good if messages are delivered in-order

BLOCK CIPHERS HAVE FIXED SIZE

Plaintext

Key ——

'

block cipher
encryption

Ciphertext

Plaintext

Key —

Y

block cipher
encryption

|

Ciphertext

Key —

Plaintext

'

block cipher
encryption

|

Ciphertext

Electronic Codebook (ECB) mode encryption

Ciphertext

Key ——

'

block cipher
decryption

Plaintext

Ciphertext

Key —

v

block cipher
decryption

|

Plaintext

Key —

Ciphertext

'

block cipher
decryption

Plaintext

Electronic Codebook (ECB) mode decryption

Original image Encrypted using ECB mode

NEVER use ECB
(but over 50% of Android apps do)

Plaintext

Initialization Vector (IV)

Key ——

——

Plaintext

block cipher
encryption

Y

Ciphertext

Key —

Plaintext

block cipher
encryption

Y

Ciphertext

Key —

block cipher
encryption

i

Ciphertext

Cipher Block Chaining (CBC) mode encryption

Ciphertext

HNNENEEREEEEE

Key ——

Y

block cipher
decryption

Initialization Vector (IV)

é

Ciphertext

HNNNEEEREEEEE

Key —>

Y

block cipher
decryption

LELTPTPPTTIoTd

Plaintext

-

Ciphertext

HNINNEEREEEEE

Key —>

l

block cipher
decryption

LELTPTPPTTIoTd

Plaintext

-

LELTPTPPTTTTT

Plaintext

Cipher Block Chaining (CBC) mode decryption

Original image Encrypted using ECB mode Modes other than ECB result in
pseudo-randomness

Nonce Counter Nonce Counter Nonce Counter
c59bcf35.. 00000000 c59bcf35.. 00000001 ¢c59hcT35.. 00000002
LITTTTTTTIITT] LITITTTITTTTT] HINENEEEREEEER
Key block C|p-her Key _ block cupher Key block cnpher
encryption encryption encryption
Plaintext ———~ Plaintext ——— Plaintext ———~
CITTTTITTITITIITT | [TTTTITTITITITITIT] | [TTTTITITTITITIT]
HEREEEREREREN HEREEERERERER HEREERRRERREN
Ciphertext Ciphertext Ciphertext
Counter (CTR) mode encryption
Nonce Counter Nonce Counter Nonce
c59bhcf35.. 00600000 c59bcf35.. 00000001 c59bcf35.. 00000002
HENEREEREREER LITTTTTTIITTT] LITTTTTTITTTT]
Key block C|p.her Key block cipher Key block cipher
encryption encryption encryption
Ciphertext ———— Ciphertext ———— Ciphertext ———
LLTTITITITTITITT] LTI TITITTIITIT] LTI TITTITITIT]
HEINEREEREREER HEINEEEEREREER LITTTTTTITTTT]
Plaintext Plaintext Plaintext

Counter (CTR) mode decryption

Counter

BLACKBOX #2.
MESSAGE AUTHENTICATION CODE (MAC)

MESSAGE AUTHENTICATION CODES

m Plaintext

Same fixed block size
(AES: 128 bits)

4

Ciphertext

AES key sizes:

128, 192, 256 €
Block ciphers are deterministic

For a given m and K,

K —
E(K,m) always returns the same c

Confusion: Each bit of the ciphertext should depend on each bit of the key
Diffusion: Flipping a bit in m should flip each bit in c with Pr = 1/2

MESSAGE AUTHENTICATION CODES

* Sign: takes a key and a message and outputs a “tag”
e Sgn(k,m) =1

» Verify: takes a key, a message, and a tag, and outputs Y/N
o Viy(k,m,1) = {Y,N}

e Correctness:
o Viy(k, m, Sgn(k, m)) =Y

ATTACKER'S GOAL: EXISTENTIAL FORGERY

e A MAC is secure if an attacker cannot demonstrate an
existential forgery despite being able to perform a chosen
plaintext attack:

e Chose plaintext:
e Attacker gets to choose m1, m2, m3, ...

* And in return gets a properly computed t1, t2, t3, ...

e Existential forgery:
e Construct a new (m,t) pair such that Vfy(k, m, t) =Y

ENCRYPTED CBC

Just take the last block in CBC It’s a trap!
Plaintext Plaintext Plaintext
Initialization Vector (IV)
— » >
Key — > block CIp'her Key — > block cip_her Key — > block cipher
encryption encryption encryption
| |
+ + |
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

Use a separate key and encrypt the last block

BLACKBOX #3:
HASH FUNCTIONS

HASH FUNCTION PROPERTIES

* Very fast to compute
e Takes arbitrarily-sized inputs, returns tixed-sized output

* Pre-image resistant:
Given H(m), hard to determine m

e Collision resistant
Given m and H(m), hard to find m’# m s.t. H(m) = H(m’)

Good hash functions: SHA family (SHA-256, SHA-512, ...)

HASH MACS

e Sign(k, m):
e opad = Ox5c5che...
* ipad =0x363636...
 H((k ® opad) Il H((k ® ipad) llm))

e Verity:

* Recompute and compare

