Let's begin by recalling our overall setting and goals:

Example scenarios:
- Alice ————(public network)---—> Bob
- Alice ————- >(disk)———————— > Alice

Overall goals
* CONFIDENTIALITY: Keep other people from reading Alice's messages/data
* INTEGRITY: Keep other people from tampering with Alice's messages/data
* AUTHENTICITY: Ensure that data purportedly from Alice really is from Alice

THE SHORTCOMINGS OF SYMMETRIC KEY CRYPTOGRAPHY

We have seen how symmetric key crypto achieves confidentiality (through
block ciphers) and integrity (through MACs). It also gave us a limited
form of authenticity:

1. Alice and Bob establish a shared symmetric key and agree to keep it
secret.

2. Alice sends Bob a message with a valid MAC.

3. If Alice and Bob both kept the key secret, then thanks to the MAC's
resistance to existential forgery, only Alice or Bob could have
generated the MAC; if Bob knows that he did not generate it, then
he knows that it must have come from Alice.

This is limited in a few ways. First, Alice's message could only be
authenticated by Bob, because they are the only ones who know the key.
If she wanted to broadcast a message to N people, then she would have
had to establish N symmetric keys, and generate N unique MACs. What
happens if Alice decides (or is forced) to go offline-—-how can she
prove to the N+1'st person that the message is from her? What we
would like to have is a way to achieve authenticity without requiring
that all users be online all the time to establish symmetric keys;
ideally, the messages would remain authentic long after the sender
can do any more work.

WE WILL OVERCOME THIS LIMITATION WITH A NEW "BLACK BOX" CALLED
PUBLIC KEY ENCRYPTION.

The second major limitation of achieving authenticity with a protocol
like the one above is establishing the key in the first place! The
process of establishing the key must itself achieve our three security
goals:

- Key exchange must achieve confidentiality, or else an eavesdropper
could learn the key.

— It must achieve integrity, or else an active attacker could tamper
with the keys in transit.

- Finally, it must itself achieve authenticity, or else Bob could
be establishing a key with someone other than Alice.

We have here a circular problem: we seem to need authenticity in order to
achieve authenticity. This might seem impossible (and without making a
few extra assumptions, it is!), but let's first consider a simple key
exchange protocol that is capable of achieving all of these properties:

1. Alice and Bob meet *in personx.
2. They run the Diffie-Hellman key exchange protocol by speaking it
aloud.

For this to work, Alice and Bob must be able to identify one another in
person. If they know one another, then this is relatively straightforward
(but possibly more difficult if one of them has an identical twin).

This is feasible for friends to establish keys and achieve authenticity,
but what we want is the ability to secure communication online; how

are you expected to meet amazon.com "in person"? How would you know
that it was actually amazon.com you were meeting with? Perhaps you
have a friend who works there, but what about bobs-socks—emporium.com?
Moreover, with such a protocol, you would be expected to meet with
everyone you would want to authenticate in the future. This does not
scale.

Let us now consider an alternative protocol which will get us better
properties through the use of TRUST:

0. Suppose that both Alice and Bob trust a third party, Trent.

1. Alice and Bob both each follow the above meet-in-person
protocol, and separately establish keys with Trent: let's call the
Alice-Trent key K_AT and the Bob-Trent key K_BT.

2. When Alice wishes to send a message m to Bob, she sends to Trent
E(K_AT, m) (along with the appropriate MAC).

3. Trent decrypts this, and sends to Bob E(K_BT, m || "From Alice")

First the good news: if there is some Trent that both you and amazon.com
trust, then you could use him as an intermediary to establish a key without
having to "meet with" amazon.com in person. Now the bad news:

Trust is absolutely fundamental to a protocol like this: Trent could easily
forge messages from Alice, and there is nothing in place to stop him from
doing so.

Moreover, Trent learns what Alice and Bob are sending to one another.
Note, however, that Alice and Bob can overcome this limitation by running
Diffie-Hellman over this protocol to establish a shared key that only they
know about, allowing them to subsequently decouple from Trent. But to
perform this key exchange, Trent must be online. Thus, another way that
Alice and Bob are implicitly trusting Trent is to remain online whenever
they need him to communicate with one another.

Because it requires Trent to be online all the time, this protocol is not
practical in a setting like the Internet (as we will see, however, there
are some settings where it is feasible, like authenticating users within
a more constrained network, like within an enterprise).

But let's step back for a moment and take stock of what this protocol
showed us: through the application of TRUST, we reduced the problem of
authenticated key exchange to the problem of requiring a trusted third
party to be ONLINE.

Note that this was the same exact issue we had earlier: for Alice to
authenticate messages to N people, she had to be online to establish
keys with all of them.

So ultimately what we seek is a way for Alice (or Trent) to prove that they
sent a message without having to remain online to perform key exchanges
every time a new party joins the system.

Enter public key cryptography.

PUBLIC KEY CRYPTOGRAPHY (aka asymmetric key cryptography)

Our next black box provides a different means of performing encryption and
decryption. The fundamental difference with symmetric key crypto is that,
instead of using a single shared key for both encrypting and decrypting, we
will be using a PAIR of keys: one key for encrypting a message, and another
for decrypting that message. As such, this is referred to as "asymmetric
key cryptography", or more commonly as public key cryptography. In

general, such a mechanism consists of three algorithms:
(1) A KEY GENERATION algorithm G

— Inputs: a source of randomness and a maximum key length L
— Outputs: a key pair, both of length <=L
* PK - the "public key"
* SK - the "secret key" (aka "private key")
— This algorithm is randomized: calling it more than once
must return different outputs each time with extremely
high probability.

(2) An ENCRYPTION algorithm E(PK, m)

— Inputs: the public key PK and plaintext message m. The
message is no longer than the maximum key size L.

— Outputs: a ciphertext c

— This algorithm is PROBABILISTIC: calling it with the same
inputs (PK,m) will result in different ciphertexts. It
typically achieves this by including random padding. For
example, the well-known RSA algorithm (provided later) is
technically deterministic (for a given set of inputs, it
will always provide the same output-—-that is why, strictly
speaking, RSA is never really used in practice. What is
used instead is RSA-PKCS, which first tacks on some random
padding to the message before invoking RSA. At a high
level, you can think of public-key encryption as providing
its own IV.

(3) A DECRYPTION algorithm D(SK, c)

— Inputs: the secret key SK and ciphertext c

— Outputs: the original message m

— This algorithm is also DETERMINISTIC: provided the same
inputs (SK,c), it must return the original message.

In terms of security and correctness, we want very similar properties that
we had with symmetric key crypto, but the key difference (pun intended) is
that with public key crypto, we assume that the attacker is allowed access
to the public key. Let's make this a bit more rigorous:

CORRECTNESS:
A public key crypto scheme is correct so long as

D(SK, E(PK, m)) =m

That is, decrypting an encrypted message should yield the original
message.

SECURITY:
The encryption algorithm should approximate a one-way trapdoor
function: E(PK, m) should appear random (and thus we get our nice
property that changing a single bit in m should result in each bit
in the ciphertext changing with probability 1/2). The trapdoor
here is the secret key SK: only by knowing SK can one "invert" E,
even if everyone knows the public key PK.

Like with symmetric key mechanisms, these are also subject to
brute force attacks. This is where the length of the keys comes
into play: generally speaking, longer keys take longer to attack
in a brute force manner. Recommended key lengths increase over
time to reflect the computational power available to attackers.
For RSA, a public key crypto scheme which we'll see in more detail
later, key lengths of 1024 bits are now considered crackable by a
reasonably powerful attacker; 2048 bits are expected to be
crackable within the next couple decades, after which using 3072

bit keys will be necessary.
A BASIC PUBLIC KEY CRYPTO PROTOCOL

Given this black box, we can now start to develop protocols that will
allow us to achieve properties that symmetric key crypto alone could not.
Let's begin by considering how Alice sends an encrypted message to Bob

in this new paradigm:

(1) Bob runs the key generation algorithm G to obtain a public/private
key pair (PK,SK).

(2) Bob keeps SK secret——-he never reveals it to anyone-—--but he
makes his public key (you guessed it) public: he announces it to
everyone, e.g., by publishing it in the NY Times.

(3) When Alice wants to send a message m to Bob, she obtains his
public key PK and computes c = E(PK, m), and sends it to Bob.

(4) Bob computes m = D(SK, c) to recover the original message.

This high-level protocol captures the general use of public key crypto for
encryption and decryption: because the public key is used for encrypting,
public keys are often referred to as the "encryption key".

The main property that this approach gives us is that Alice and Bob did not
need to have any direct communication with one another to establish a key.
In fact, Bob did not have to send any messages whatsoever directly to Alice
(he simply "broadcasted" his public key to anyone).

Nonetheless, so long as Bob is doing his job at keeping SK secret (and so
long as Alice does her job with picking a proper random nonce with which to
pad her message), Alice can be certain that the only person who can
decipher the message is Bob.

As far as key exchange goes, this is a strict improvement over symmetric
key crypto, so why not use public key crypto for everything?

WHY THIS PROTOCOL IS NOT USED FOR ARBITRARY MESSAGES

The main problem with public key crypto schemes is that they are slow:
several orders of magnitude slower than their symmetric key counterparts.
As a result, public key crypto schemes are not used for messages of
arbitrary size. While one could conceptually derive "modes" of encryption
for them (like CBC), such things are not used in practice. Instead, we
can leverage the best of both worlds by using a HYBRID scheme:

HYBRID ENCRYPTION

—— To make things clear, let's use E & D to denote encryption
—— and decryption using public key crypto, and let's use e & d
—— to denote encryption and decryption using symmetric key

—— crypto.

(1&2) Proceed as above: Bob generates a public/private key pair (PK,SK)
and publishes PK while keeping SK secret.

(3) When Alice wants to send a message m to Bob, she obtains his
public key PK.

(4) She then generates a random SYMMETRIC key K and computes

c_m = e(K, m) — that's an efficient symmetric key encryption scheme,
e.g., AES in CBC mode.

(5) She finally computes c_K = E(PK, K) —— that is, she encrypts the
symmetric key K using Bob's public key PK. At this point, she

throws away K.
(6) She sends c_m and c_K to Bob.

(7) Bob computes K

= D(SK, c_K) to recover the symmetric key, and uses
this to compute m =

d(K, c_m).

The intuition behind the security of such a protocol is that, because Bob
is the only one who can decrypt c_K (the encrypted key K), then he is the
only one who can decrypt c_m (the encrypted message m).

This gets us the best of both worlds: we benefit from public key crypto
in that it did not require Alice and Bob to directly communicate with one
another, and we benefit from symmetric key crypto in that it is efficient
in encrypting and decrypting an arbitrarily large message m. Public key
crypto is only used here to encrypt a small symmetric key K.

Consider what this implies about the relative sizes of symmetric keys and
the maximum key sizes used in the key generation algorithm G.

The above protocol is at a high level what is used in practice when sending
large messages, e.g., with encrypted email.

WHAT'S MISSING?

The above protocols still lack authentication. How does Alice know that
the person who published Bob's public key was really Bob? And when Alice
sends an encrypted message to Bob, how does he know that it really was from
Alice?

To solve these issues, we will need one final black box: a way to "sign"
messages.

DIGITAL SIGNATURES

Suppose that Alice wants to send a message m to Bob, and she wants to
provide proof that she was the one who sent it.

A digital signature scheme makes use of a public-private key pair (PK,SK)
and consists of two algorithms:

(1) A SIGNING function Sgn

— Inputs: Alice's SECRET key SK and message m
- Outputs: a SIGNATURE s = Sgn(SK,m)

(2) A VERIFICATION function Vfy
— Inputs: Alice's PUBLIC key PK, the message m, and the signature s
- Outputs: Vfy(PK,m,s) = "Yes" if s is a valid signature of m
generated by using SK, and "No" otherwise.

Because the secret key SK is used to sign, it is commonly referred to as
the "signing key".

At a high level, digital signatures are very similar to MACs, the exception
being that we are again using different keys for signing and verifying.

CORRECTNESS:
A digital signature scheme is correct so long as

Vfy(PK, m, Sgn(SK,m)) = "Yes"

SECURITY:
Once again, we have the same notions of security as in the
symmetric key setting, even when the attacker has access to Alice's
public key: in particular, even after seeing many message/signature
pairs, the attacker cannot produce an existential forgery (see the
notes on MACs for more details of this).

In addition to having similar definitions of correctness and security,
digital signatures share several other similarities with MACs:

Just as with the symmetric key equivalent of MACs, digital signatures do
not seek to provide confidentiality—-——when using digital signatures alone,
the message would be sent in the clear. This is useful if Alice wishes to
send a message that she would not mind everyone seeing (e.g., ads or a
software patch).

Also, like MAC tags, the size of the signature is typically much smaller
than the original message. In fact, it *has* to be: the message m and
ciphertext ¢ must be no longer than the maximum key length (typically
around 2048 bits). Thus, rather than sign the entire message m, one signs
H(m), the hash of m using a pre-image resistant hash function H, such as
SHA-256 (see the earlier discussion of hash functions for these
definitions).

PROPERTIES OF DIGITAL SIGNATURES

To better understand what digital signatures give us, it is useful to
compare them to their physical counterparts: handwritten signatures. There
are many issues with handwritten signatures that digital signatures
overcome. In particular, there are three main properties we want from a
signature:

AUTHENTICITY: Bob can prove that a message signed by Alice is truly
from Alice.

Handwritten signatures do not readily provide this property because
they are easy to forge. Digital signatures overcome this by using
one-way trapdoor functions that are difficult to invert without
knowing Alice's secret key.

INTEGRITY: Bob can prove that no one tampered with a message that Alice
signed.

Even if handwritten signatures were impossible to forge, they still
do not provide integrity. To see this, imagine a letter with
Alice's signature at the bottom. One could tamper with the letter
by adding or removing words, or even by cutting out Alice's
signature and pasting it to another letter. Digital signatures
overcome this by making the signature a function of the message
itself; any modification to the message would result in a
different, difficult-to-predict signature.

NON-REPUDIATION: If Alice signed a message, she cannot later assert
to a third party that she was not the one who signed it.

There is a subtle distinction between non-repudiation and
authenticity+integrity. The best example I can think of that
captures the difference is when we include a third party: suppose
that Alice signs a message and sends it to Bob, and that Bob then
shows the signed message to Charlie. Non-repudiation dictates that
this is sufficient proof to Charlie that the signature came from
Alice. This arises from the fact that Alice uses a public key that

is widely distributed. A MAC, on the other hand, would provide
authenticity and integrity, but because it uses a secret that only
Bob and Alice know, he cannot provide proof to a third party
without revealing their shared secret (and thus potentially
divulging all of their communication).

We now have all of the tools we need in order to solve our problem of
online authentication. But before we explore those protocols, let us take
a moment to consider concrete instances of how to implement these public
key crypto primitives. There are several that are in wide use today,
including RSA, ElGamal, and schemes based on elliptic curves. An
undergraduate course in cryptography would cover all of these, but we will
consider just one: RSA.

RSA: AN EXAMPLE CONSTRUCTION OF PUBLIC KEY CRYPTO

RSA is built on the assumption that it is computationally difficult to
factor a number that is the product of large primes. It makes use of
modular exponentiation (numbers raised to a power mod N). Modular
exponentiation has many interesting properties, but the most critical in
understanding RSA is the following:

Suppose that p and q are two primes. Then the following holds:
a~b (mod pxq) = a~(b mod (p-1)x(g-1)) (mod pxq)

What this is saying is that if we are working mod p*q, then the
exponents work mod (p-1)*(g-1).

This function (p-1)*(g-1) is a specific example of what is known as Euler's
totient function, but we will not consider it more deeply here (I encourage
you to take an undergraduate course in cryptography or number theory to
learn more about it and to see proofs of the above property).

==RSA ENCRYPTION AND DECRYPTION==
(1) Key generation G:
— Choose two large primes p and q at random
— Compute N = pxq
— Choose a small number e (there are a few typical values)
- Compute d such that dxe = 1 (mod (p-1)%(g-1))
- Throw away p and q

> The public key is (e,N) —— e is the encryption key
> The secret key is (d,N)

(2) Encryption E(e, m):
- Return ¢ = m*e (mod N)
(3) Decryption D(d, c):

- Return c~d (mod N)

First let's check that this algorithm is correct:

¢ = m™e (mod N)

D(d,c) = c¢~d (mod N) = (m*e)~d (mod N)
m™(exd) (mod N)
ml\

(exd (mod (p-1)*(g-1)) (mod N)

i o

m~1 (mod N)
m

Why is this secure? After all, given N and e (the public key), couldn't
anyone compute d? At a high level, to do so seems to require the ability
to compute (p-1)*(g-1), which in turn seems to require knowing both p and
g. In other words, to compute the private key (d) given the public key (e
and N), one would have to first factor N, which is believed to be hard.

Digital signatures using RSA simply follows in reverse. It makes use of a
publicly known, pre-image-resistant hash function H (such as SHA-256).

==DIGITAL SIGNATURES WITH RSA==

(1) Key generation proceeds as above, resulting in public key e
and secret key d.

(2) Signing Sgn(d, m):
- Return s = H(m)~d (mod N)
(3) Verifying Vfy(e, m, s):

- Return "Yes" if and only if H(m) = s”~e (mod N)

WHAT YOU SHOULD TAKE AWAY FROM THESE CONSTRUCTIONS

This is a good time for me to reiterate: in production code, do NOT
implement RSA or any other construction yourself; use existing libraries to
do so. The reason I even show the construction here (in addition to it
being darn cool) is to emphasize the following points:

— Its algorithms are deterministic: in and of themselves, they involve
no randomness, and thus "encrypting" on the same message twice
yields the same ciphertext. As a result, the above is often
referred to as "textbook RSA" and should NEVER be used for
encryption in practice. Instead, use padding schemes like OAEP
and PKCS with prepend a random nonce to the message before
invoking RSA, thus getting us a true encryption algorithm.

— The "heavy lifting" is in the key generation phase: it is more
complex than generating symmetric keys (for which almost any random
key suffices), and all of our security comes from whether or not
the key generation algorithm operated correctly. As a result,
there are many guidelines for ensuring that p, gq, e, and d are
chosen well. To this end, you should only ever use libraries that
generate and test RSA keys, rather than rolling your own.

BACK TO AUTHENTICATION

We are at last able to solve our problem of online authentication: how can
Bob know that messages purportedly from Alice really are from her, without
without having to meet in person ahead of time?

Recall from earlier in this document that we developed a protocol involving
a TRUSTED THIRD PARTY, Trent, to act as an intermediary between Alice and
Bob, and to vouch for them to one another. The problems with this approach
were that Trent was able to learn who was communicating with whom, and
Trent needed to be online for Alice to initiate secure communication with
Bob.

We can now consider a protocol that makes use of public key crypto's
ability to allow entities to securely communicate without having to both be
online at the same time.

0. Suppose that both Alice and Bob trust a third party, Trent.

1. Trent generates a public/private key pair (PK_T, SK_T) and publishes
his public key as widely as possible.

2. Alice generates a public/private key pair (PK_A, SK_A), and sends PK
to Trent.

3. Trent verifies that he is communicating with Alice, e.g., by visiting
her or by asking her questions that only she could know.

4, If he is able to verify that PK_A came from Alice and that she knows
the corresponding secret key SK_A, then Trent uses his secret key
SK_T to sign the message "Alice's public key is PK_A". This
message along with Trent's signature is called a CERTIFICATE.

5. Trent gives this certificate to Alice.

6. When Alice sends an encrypted message to Bob, she signs it using her
secret key SK_A, and she also sends the certificate she got from
Trent.

7. Bob verifies the certificate to see that Trent has indeed asserted
that Alice's public key is PK_A.

8. He uses PK_A to verify Alice's signature: if it verifies, then it
must have come from someone who knows SK_A, and if Bob trusts
Trent, then the only person who knows SK_A is Alice. Thus the
message must have come from Alice.

In the case of web browsing, Alice would be amazon.com, Bob would be a user,
and Trent would be one of many so-called CERTIFICATE AUTHORITIES. These
include Verisign, Comodo, Thawt, and many others.

In practice, certificates have more information; open up a web browser of
your choice, go to a secure website (like bankofamerica.com), and inspect
the certificate by clicking on the information in the address bar.

There are a few natural questions that this raises:

(a) How do Alice and Bob learn about Trent's public key in the first
place?

In practice, the most common way of disseminating the keys of
certificate authorities is to include them directly with an
operating system or a browser. When you bought your machine,
you inherited trust in companies like Verisign. Mac 0S X ships
with over 200 public keys of various certificate authorities.

(b) Step #8 above assumes that the only person who knows Alice's secret
key is Alice: what happens if Alice's key gets compromised, say,
because someone stole her laptop.

In practice, Alice would have to inform Trent that her key was
compromised. Trent would then have to try to inform anyone who
may have obtained a copy of Alice's certificate that it is no
longer valid. We call this process CERTIFICATE REVOCATION.
Certificate revocation typically comes in one of two flavors:

- Certificate revocation lists (CRLs): Certificate
authorities publish lists of revoked certificates;
users are expected to periodically obtain these CRLs
to see if any of the certificates they encounter have
been revoked (and should thus be ignored). If a
certificate was revoked since the last time the user
downloaded the CRL, then the user is vulnerable.

- Online Certificate Status Protocol (OCSP): To reduce
users' vulnerability, the idea behind OCSP is to ask
the certificate authority "Have you revoked this
certificate?" before accepting it. On the one hand,
this improves how up-to-date users are, but on the
other hand, they have to reveal to certificate
authorities all of their communication habits.

A revocation system that balances between delivering timely
information, maintaining users' privacy, and keeping costs

low ... simply does not exist in practice. Whether one exists
is an open question. What do you think such a system would
look like?

(c) What if there is no Trent whom both Alice and Bob trust?

The above protocol which assumes a few, widely trusted
certificate authorities represents one broad way to achieve
a PUBLIC KEY INFRASTRUCTURE (PKI); in fact, it is so common,
that any system that uses a protocol like this is often
referred to as a PKI.

But there are other forms of PKIs that do not require

trust to be so heavily concentrated. A canonical example is

a system called PGP (PRETTY GOOD PRIVACY). 1In practice, it
works very similarly: Alice and Bob share their public keys
with many people, and in return get certificates from those
people attesting to the fact that that is indeed their public
key. Alice sends not just one certificate, but potentially
many certificates she has obtained that all assert that she

is the owner of her public key. Bob can then decide on his
own whether this collection of certificates convinces him that
Alice truly owns that key. Perhaps one of the certificates
comes from a close, trusted friend of his; or perhaps Alice has
five signatures from UMD computer science professors. The
point is that Bob can apply his own trust metrics.

We have at last solved our problem of authentication in an online setting,
but in so doing, we have also identified several shortcomings of the web:
users are required to trust a relatively small set of third parties for
virtually all secure web browsing. Also, users are often out-of-date with
knowing what certificates have been revoked. There are many active areas
of research that seek to solve both of these shortcomings.

CONCLUSION

Driven by the goal of solving the problem of online authentication, we have
added two new black boxes to our arsenal: public key encryption and digital
signatures. These have very similar counterparts in the symmetric key
setting, yet the seemingly minor difference of using two keys instead of
one allowed us to construct protocols that disseminate keys without
requiring all parties to be online at all times.

There are several variants of all of these schemes that are mostly of

academic interest, but that in time may make it into more mainstream
systems. For example, BLIND SIGNATURE schemes allow Alice to ask Bob to
sign a message m without revealing that message to Bob. This has been
shown to be useful in developing anonymous currencies. MULTI-SIGNATURES
allow a set of N people to all sign the same message, yielding a signature
that is of size 0(1). This has been shown to be useful to compress data
when sent over very slow links.

In sum, the techniques covered in this document are extremely powerful when
developing systems for use on the Internet. Staying up to date with new
techniques as they are discovered is important as a security expert.

