
The Case of Performance Variability on Dragonfly-based Systems

Abhinav Bhatele†, Jayaraman J. Thiagarajan∗, Taylor Groves‡, Rushil Anirudh∗, Staci A. Smith§,
Brandon Cook‡, David K. Lowenthal§

†Department of Computer Science, University of Maryland, College Park, Maryland 20742 USA
∗Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94551 USA

‡NERSC, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
§Department of Computer Science, The University of Arizona, Tucson, Arizona 85721 USA

E-mail: †bhatele@cs.umd.edu

 1

 1.5

 2

 2.5

 3

Nov 29 Dec 13 Dec 27 Jan 10 Jan 24 Feb 07 Feb 21 Mar 07 Mar 21 Apr 04

R
el
at
iv
e
pe
rf
or
m
an
ce

MILC
AMG

UMT
miniVite

Figure 1. Variation in performance of four applications relative to their respective best observed run times when running on 128 nodes of Cori in 2018–2019.

Abstract—Performance of a parallel code running on a large su-
percomputer can vary significantly from one run to another even
when the executable and its input parameters are left unchanged.
Such variability can occur due to perturbation of the computation
and/or communication in the code. In this paper, we investigate
the case of performance variability arising due to network effects
on supercomputers that use a dragonfly topology – specifically,
Cray XC systems equipped with the Aries interconnect. We
perform post-mortem analysis of network hardware counters,
profiling output, job queue logs, and placement information,
all gathered from periodic representative application runs. We
investigate the causes of performance variability using deviation
prediction and recursive feature elimination. Additionally, using
time-stepped performance data of individual applications, we
train machine learning models that can forecast the execution
time of future time steps.

Keywords-performance variability, dragonfly network, data
analytics, machine learning, performance models, forecasting

I. THE PROBLEM

Computational scientists who use large supercomputers for
modeling science phenomena often submit many long running
jobs over a period of time due to job time limits. These jobs
often run the same executable and possibly the same input
dataset. It is common to hear science users complain about
performance variability within a single job from one time step
to another and across equivalent jobs run over a period of time.
Figure 1 shows that the performance of several HPC codes with
different computational and communication characteristics can
be up to 3× slower even when running the same executable

and input. Such performance variability creates practical issues
such as making performance debugging difficult and estimating
the runtime of a job more challenging. More importantly, when
jobs run slower than the best performance possible, they use
resources for a longer amount of time than necessary, thereby
reducing simulation efficiency and overall system throughput.

Performance variability in both short and long running jobs
can arise from a multitude of factors ranging from operating
system (OS) noise, varying network congestion, to filesystem
(I/O) traffic. In this work, we primarily focus on variability
arising from sub-optimal communication on networks that
are shared by all concurrently running jobs. When network
resources such as routers and links are shared by multiple
jobs, it can lead to resource contention, which can degrade
communication and I/O performance. This can significantly
impact the overall performance of an individual job.

We target dragonfly-based systems in this paper because in
spite of adaptive routing, such systems have been known to
suffer from significant performance variability [1], [2]. Drag-
onfly systems are a popular network topology for deploying
large supercomputers due to their low network diameter and
high bandwidth. In order to study variability and identify its
root causes, we set up controlled experiments using production
and proxy applications running at different node counts. We
perform our experiments on a Cray XC40 system at NERSC,
Cori, which uses Aries routers to create a dragonfly topology.

In addition to application performance, we gather other
related data such as time spent in computation and different

MPI routines, network hardware performance counters, job
queue logs, and job placement information. We start with
exploratory analysis to identify correlations between running
jobs, their users, and their impact on the performance of our
controlled experiments. We then use machine learning (ML)
to find correlations between various independent features and
the deviation in execution time from the mean behavior. The
generated models are used to identify features that are strong
predictors of execution time. Such analyses can be used by
the resource manager to adapt scheduling decisions based on
current system state.

Finally, we use ML to analyze time-stepped performance
data of individual applications and to create models that can
forecast the execution time of subsequent time steps. Using
the generated models, we demonstrate that we can forecast the
performance of both short controlled experiments and different
time segments of long running production jobs. Such analysis
can be extremely powerful in analyzing historical performance
data being gathered at HPC facilities to forecast the system
state in the future.

We make four main contributions in this paper:
• We perform controlled experiments on a dragonfly-based

supercomputer to create a dataset of more than 1200 runs,
each with multiple time steps.

• We identify correlations between performance slowdowns
and concurrently running users and jobs on the system.

• We use ML to identify features that are important in
predicting performance deviations within a run.

• We create a forecasting model that can predict future
performance of a code based on its job placement, system
state, and historical network counters data.

II. BACKGROUND

Below, we describe the dragonfly topology, and potential
sources of variability in HPC systems.

A. Dragonfly Topology and Cray XC systems

The dragonfly topology has become a popular choice
for HPC interconnection networks because of low network
diameter and high degree of connectivity, due to its use of
high radix routers [3]. In this paper, we focus on Cray’s
implementation of the dragonfly topology in its Cascade
(XC) line of supercomputers (e.g. Cray XC30 and XC40) [4].
Figure 2 illustrates the dragonfly topology of Cray XC systems,
which use a 48-port router, called Aries, for connecting nodes in
a two-level hierarchy. There are 96 routers connected together
to form a group, arranged in a 16 × 6 grid. Sixteen routers in
each row are connected in an all-to-all manner by so-called
green or row links, and six routers in each column are also
connected in an all-to-all configuration by black or column
links. Each router is then connected using some blue or global
links to routers in other groups.

The Cray XC systems use adaptive routing to evenly
distribute network traffic over many links. When using adaptive
routing, for any given packet, each router has multiple shortest
and non-minimal paths to choose from. One of those paths

all-to-all links in each column

all-to-all links
in each row

inter-group
global links

Figure 2. The dragonfly network configuration in Cray XC systems.

is selected based on the current back pressure observed on
different links. We use Cori for all the experiments in this
paper, which is a Cray XC40 installation at National Energy
Research Scientific Computing Center (NERSC). Cori has 34
groups, seven of which have Intel Haswell nodes, and 27 have
Intel Knights Landing (KNL) nodes. All of the experiments
in this paper were run on the KNL nodes. Each KNL node
contains a single-socket processor with 68 cores.

B. Sources of Performance Variability

With the increasing complexity of processing elements,
networks, and software systems, variation within and between
executions of the same program has become common. One oft-
discussed form of variability is operating system (OS) noise [5].
Interruption of useful computation in a program by a system
daemon can have negative effects downstream in programs that
synchronize at a fine granularity [6]. This is referred to as OS
noise. Several researchers have studied OS noise empirically
and in many cases offered solutions (e.g., low-noise operating
systems) to reduce or eliminate its effects.

Even in the absence of OS noise, there can be other
contributors to performance variability on a supercomputer.
For example, on most systems, the I/O subsystem is shared,
and if two or more jobs access it simultaneously, degraded
I/O performance can result. In this paper, we primarily focus
on the effects of the interconnection network, which refers to
application performance varying because of contention from
other jobs using the shared network resources.

III. DATA COLLECTION

In this section, we describe the production and proxy
applications used in the experiments on Cori, and the sources
from which performance data is gathered for the study.

A. Application Codes and Inputs

We ran four codes that are representative of different HPC
workloads commonly run at NSF and DOE centers:

AMG: The AMG proxy application is a parallel algebraic
multigrid solver for linear systems arising from problems on
unstructured grids. It is based on code in the Hypre linear solver
library [7]. The input problem we ran in our experiments
simulates a time-dependent loop with AMG-GMRES on a
linear system built for a three-dimensional (3D) problem. The
problem size per MPI process is 32× 32× 32 (see Table: I).

 0
 10
 20
 30
 40
 50
 60

 0 2 4 6 8 10 12 14 16 18 20

T
im
e
pe
r
st
ep

 (
s)

Step number

Mean time per step behavior of AMG

AMG 128 nodes
AMG 512 nodes

 0
 1
 2
 3
 4
 5
 6
 7

 0 10 20 30 40 50 60 70 80

T
im
e
pe
r
st
ep

 (
s)

Step number

Mean time per step behavior of MILC

MILC 128 nodes
MILC 512 nodes

0

0.5

1.0

1.5

2.0

 1 2 3 4 5 6 7
0

50

100

150

200

U
M
T

 t
im
e
pe
r
st
ep

 (
s)

m
in
iV
ite

 t
im
e
pe
r
st
ep

 (
s)

Step number

Mean time per step behavior: UMT, miniVite

UMT 128 nodes
miniVite 128 nodes

Figure 3. Plots showing the mean time per step behavior of each application across all runs.

TABLE I
APPLICATION VERSIONS AND THEIR INPUTS

Application No. of Nodes Input Parameters

AMG 1.1 128 -P 32 16 16 -n 32 32 32 -problem 2
AMG 1.1 512 -P 32 32 32 -n 32 32 32 -problem 2
MILC 7.8.0 128 n128 large.in
MILC 7.8.0 512 n512 large.in
miniVite 1.0 128 -f nlpkkt240.bin -t 1E-02 -i 6
UMT 2.0 128 custom 8k.cmg 4 2 4 4 4 0.04

MILC: MILC stands for MIMD Lattice Computation and is
used to study quantum chromodynamics using numerical sim-
ulations [8]. We use the MILC application, su3_rmd, which
performs the same amount of computation and communication
in every time step (after a warmup phase). MILC performs a
4D Stencil on a per process grid of dimensions 4× 4× 4× 4.

miniVite: miniVite is a proxy for the production application,
Vite [9]. It performs a single phase of the Louvain classification
for community detection in large distributed graphs. This is
representative of new graph analytics workloads starting to run
on HPC platforms. For this paper, we added another iterative
loop in order to run the same computation and communication
repeatedly. We use a real world graph called nlpkkt240,
which has ∼28 million vertices and ∼373 million edges.

UMT: This is a discrete ordinates (Sn) code for multigroup
deterministic, non-linear, radiation transport [10] over 3D
unstructured spatial domains. The code allows user control
over the number of energy groups and that of angles used in
the discretization.

The experimental data for the paper was gathered by
submitting one or two jobs (to the production job queue on
Cori) per application and node count every day from a single
user’s account between December 2018 and April 2019. The
actual start time for each submitted job was decided by the job
scheduler, and sometimes, several of our jobs had an overlap in
their execution periods. AMG and MILC were run on 128 and
512 nodes each because of their better scaling behavior, and
miniVite and UMT were run on 128 nodes only. We used 64
out of 68 cores on each KNL node to set aside four cores for
OS daemons. The inputs used for these runs are summarized
in Table I. Each row in the table is considered an independent
dataset with somewhere in between 175 and 225 runs in each.

B. Application Characterization

With the exception of miniVite, we ran each application
for a certain number of iterations (time steps) to restrict the
execution time to between five and ten minutes. As mentioned
earlier, we added a second iterative loop in the case of miniVite
to repeat the entire application execution six times. We recorded
the time per step for each application. The first observable
pattern, which happens to be true across all the applications,
is that there is a mean time step behavior for each application
and node count across all of its runs (Figure 3). Different
runs of an application deviate from this mean behavior to
different degrees, but the mean behavior is still discernible. In
each execution, we also collected MPI profiles using mpiP to
understand the time spent in computation and communication,
and to identify the dominant MPI routines w.r.t. performance.

AMG: AMG runs for twenty time steps, and the mean time per
step is shown in Figure 3 (left). AMG on 128 nodes performs
better than on 512 nodes (we are using weak scaling) but the
overall trends for time per step are similar. Figure 4 (left plots)
shows the time spent in computation and communication on
512 nodes and the split of communication time into different
MPI routines. The error bars on MPI time represent the slowest
and fastest execution of AMG. We do not see a significant
variation in compute time, which suggests the lack of OS noise.
A significant amount of time is spent in MPI, which is due
to the fact that we are stressing the scaling limits of AMG
at 8,192 and 32,768 processes. The time spent in MPI varies
significantly across runs, which causes overall performance
variability. AMG sends a large number of small-sized messages
and on average, spends 76 and 82% of the total time in MPI on
128 and 512 nodes respectively. We partition the MPI time into
its constituent routines and observe that Iprobe, Test, Testall,
Waitall, and Allreduce are the dominant routines.

MILC: The first twenty time steps in MILC are considered
“warmup” trajectories and hence are much faster. The next sixty
time steps are slower (Figure 3, middle). Note that even so,
MILC time steps are shorter in duration than those of AMG
and we are able to execute 80 of them in each run. MILC
spends nearly 89% of its time in MPI on average (Figure 4,
right plots). This is because we ran a relatively small input
problem to limit the total execution time, which results in a
significant fraction of the time spent in MPI. MILC sends large
point-to-point messages, and the dominant MPI routines are

 50
 100
 150
 200
 250
 300
 350
 400
 450

Compute MPI

T
im
e
(s
)

AMG, 512 nodes

 0
 100
 200
 300
 400
 500
 600
 700
 800

Best Average Worst
T
im
e
(s
)

Time spent in MPI calls (AMG, 512 nodes)

Iprobe
Test

Waitall

Testall
Allreduce
Other

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

Compute MPI

T
im
e
(s
)

MILC, 512 nodes

 0

 200

 400

 600

 800

 1000

 1200

 1400

Best Average Worst

T
im
e
(s
)

Time spent in MPI calls (MILC, 512 nodes)

Wait
Allreduce

Isend
Irecv

Figure 4. Time spent in computation and communication and in different MPI routines in AMG (left plots) and MILC (right plots) on 512 nodes.

 0

 200

 400

 600

 800

 1000

 1200

ComputeMPI

T
im
e
(s
)

miniVite, 128 nodes

 0

 200

 400

 600

 800

 1000

 1200

 1400

Best Average Worst

T
im
e
(s
)

Time spent in MPI calls (miniVite, 128 nodes)

Waitall
Irecv

Isend
Other

 0

 5

 10

 15

 20

 25

Compute MPI

T
im
e
(s
)

UMT, 128 nodes

 0
 5

 10
 15
 20
 25
 30
 35
 40

Best Average Worst

T
im
e
(s
)

Time spent in MPI calls (UMT, 128 nodes)

Allreduce
Barrier
Wait

Waitall
Other

Figure 5. Time spent in computation and communication and in different MPI routines in miniVite (left plots) and UMT (right plots) on 128 nodes.

Allreduce, Wait, Isend and Irecv.

miniVite: miniVite spends more than 98% of its time in MPI
on average (Figure 5, first plot). This is due to the inherent
nature of the algorithm in miniVite, which requires frequent
communication. Since most of the time is spent in MPI,
variations in communication performance can be more drastic.
The slowest recorded miniVite job ran 3.76× slower than the
best performing job. Almost all of the MPI time in miniVite
is spent in Waitall.

UMT: Among all the applications used in the paper, UMT
has the smallest fraction of communication compared to its
total execution time. However, it has some of the highest
variability in performance. On an average, UMT spends 30%
of its total time in MPI (Figure 5, third plot). However, the
slowest recorded UMT job was 3.3× slower than the best
performing UMT job. Most of the MPI time in UMT is spent
in Allreduce, Barrier and Wait.

C. Sources of Performance Data

We gather hardware counters and related data from various
sources to train the machine learning models for our analyses.

Network hardware performance counters: A wealth of
performance counters are available on the Aries routers [11].
We use AriesNCL, a network counters library, which internally
uses PAPI to collect counter data for our jobs. We record the
execution time per step (iteration) of the application and the
corresponding change in counter values. However, this has a
limitation that users may only collect counters for routers that
are directly connected to the nodes allocated to a job. Table II
presents the network counters that are recorded and their
descriptions. Processor tile counters (abbreviated names begin

with PT_) are indicative of end-point traffic, i.e. data moving
to and from NICs directly attached to a given router. Router
tile counters (abbreviated names begin with RT_) capture data
movement between network routers.

Much of the data we collect is focused on two things –
(1) flits transmitted on the network, and (2) cycles stalled on
various virtual channels (VCs). The stalls occur when the next
hop in a route has no buffer space to receive additional flits
or the arbiter is busy servicing other VCs. For system-wide
data, i.e., counters on all routers in the system, we leverage
LDMS, a monitoring service. LDMS data on Cori is collected
every second, amounting to approximately 5 TB per day. We
organize the system counters by the role of the nodes (compute
versus I/O) attached to specific routers.

Job placement and neighborhood: In addition to network
hardware counters, we derive several features from Slurm
account logs (sacct). These job queue logs provide information
about the nodes allocated to our jobs and jobs of other users
in the system. We create two features for each of our jobs:
NUM_ROUTERS is the number of unique routers to which the
nodes in our job are attached, and NUM_GROUPS is the number
of unique groups in the dragonfly topology on which a job’s
nodes are allocated. These features give an indication of the
fragmentation of a job across routers and dragonfly groups.
Using the job queue logs, we also track which other users and
jobs were running during the same period as our jobs.

IV. APPROACH TO VARIABILITY ANALYSIS

We now describe the proposed analysis methodologies to
identify factors responsible for the observed performance
variability, and more importantly, to forecast future performance
by leveraging statistics from the past data.

TABLE II
DESCRIPTION OF NETWORK HARDWARE PERFORMANCE COUNTERS (SOME ARE RAW AND OTHERS ARE DERIVED) USED IN THE STUDY.

Counter name Abbreviation Description

AR_RTR_INQ_PRF_INCOMING_FLIT_TOTAL RT_FLIT_TOT (Derived) Total number of flits received on router tile
AR_RTR_INQ_PRF_INCOMING_PKT_TOTAL RT_PKT_TOT (Derived) Total number of cycles stalled on router tile
AR_RTR_INQ_PRF_ROWBUS_2X_USAGE_CNT RT_RB_2X_USG Number of cycles in which two stalls occur on a router tile
AR_RTR_INQ_PRF_ROWBUS_STALL_CNT RT_RB_STL Total number of cycles stalled on router tile

AR_RTR_PT_COLBUF_PERF_STALL_RQ PT_CB_STL_RQ Number of cycles a processor tile is stalled for request VCs
AR_RTR_PT_COLBUF_PERF_STALL_RS PT_CB_STL_RS Number of cycles a processor tile is stalled for response VCs
AR_RTR_PT_INQ_PRF_INCOMING_FLIT_VC0 PT_FLIT_VC0 Number of flits received on processor tile on VC0
AR_RTR_PT_INQ_PRF_INCOMING_FLIT_VC4 PT_FLIT_VC4 Number of flits received on processor tile on VC4
AR_RTR_PT_INQ_PRF_INCOMING_FLIT_TOTAL PT_FLIT_TOT (Derived) Total number of flits received on processor tile
AR_RTR_PT_INQ_PRF_INCOMING_PKT_TOTAL PT_PKT_TOT (Derived) PT RB STL RQ + PT RB STL RS
AR_RTR_PT_INQ_PRF_REQ_ROWBUS_STALL_CNT PT_RB_STL_RQ Number of cycles stalled on processor tile request VCs
AR_RTR_PT_INQ_PRF_RSP_ROWBUS_STALL_CNT PT_RB_STL_RS Number of cycles stalled on processor tile response VCs
AR_RTR_PT_INQ_PRF_ROWBUS_2X_USAGE_CNT PT_RB_2X_USG Number of cycles in which two stalls occur on a processor tile

A. Neighborhood Analysis

First, we consider a coarse-grain analysis of performance
variability of an application based on the knowledge of other
application codes whose execution overlapped with that of
the former (“the neighborhood”). Though this analysis does
not take into account factors such as the placement of the
concurrently executing jobs and the temporal extent of the
actual overlap, we believe that meaningful correlations can
exist between frequently occurring jobs and the optimality of
an application. Though it might appear straightforward to apply
a predictive modeling strategy (e.g., regression) to determine if
the performance variability can be predicted solely based on the
list of concurrently executing jobs or user IDs, such a model can
be heavily biased because of spurious correlations. Hence, we
propose to quantify the amount of information shared between
each of the users (or jobs) and a given performance metric,
and subsequently analyze only the top-ranked users (or jobs) to
obtain a comprehensive view of their impact on the variability.

In our setup, we perform this coarse-grain analysis based
on user IDs. We chose user IDs rather than job or executable
names because those were not unique, and it was challenging to
build an automated parser. We begin by creating a vocabulary
U of all the users who have concurrently executing jobs with
our application. For each independent run, r, of our application,
we construct a binary vector ur ∈ R|U|,∀r ∈ 1 · · ·N , where
|U| is the cardinality of the set of unique users, and N is the
number of runs in one application dataset. The binary vector
has a value of 1 for users with jobs executing concurrently
with our application and zero elsewhere. Next, we define the
optimality of each application run as follows: We measure the
total execution time of a run, r as tr,∀r ∈ 1 · · ·N and estimate
its mean value tm. For each run r, if tr < τtm, we mark that
run as optimal (τ = 1). Consequently, the performance metric
(execution time) is transformed into a binary vector p ∈ RN
denoting the optimality of the runs.

Given the user co-occurrence matrix M of size N × |U|,
we quantify the dependency between each of the users and
optimality based on mutual information (MI) [12]. Mutual
information is a quantity that measures the relationship between
two random variables that are sampled simultaneously. In

particular, it measures how much information is communicated,
on average, in one random variable about another. The formal
definition of MI between two random variables X and Y ,
whose joint distribution is defined by P (X,Y) is given as:

I(X;Y) =
∑
x∈X

∑
y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
(1)

Here, X and Y denote the sample set drawn simultaneously
from the joint distribution, while P (x) and P (y) are the
marginal densities. When the MI is equal to zero, the two
variables are statistically independent, while higher values
mean a higher degree of dependency. We obtain the mutual
information between each column in M and p, and the
hypothesis is that users with the highest MI will be the most
informative about performance optimality.

B. Modeling Performance Deviation

While the coarse-grain analysis provides insights into the
impact of neighborhood on performance, a more fine-grain
analysis is required to identify a subset of network hardware
counters that best explain the observed performance variability.
To this end, we treat each time step (corresponding to a single
loop execution) from an application run as an independent
sample and build a predictive model to estimate the time spent
in that time step. We attempt to determine which counters are
the most indicative of the efficiency of a particular time step.
While existing approaches for such an analysis use machine
learning techniques to build a mapping from the network
counters to the time incurred, our focus is on describing the
deviation from the expected behavior. In other words, instead
of building a surrogate for application execution, we build a
predictive model to estimate the variability. Interestingly, the
factors responsible for variability are very different from those
required for predicting the total execution time.

We denote the recorded network counters data for N
independent runs of an application by the matrix X of size
N × T ×H , where T indicates the total number of time steps
(i.e. number of times the loop is executed) and H is the number
of network counters gathered (see Table II). The performance
data or execution time for these runs is denoted by the matrix

Y of size N × T . In order to obtain a model for the deviation
from the mean behavior instead of the absolute times, we first
remove the mean trends for both the counter data as well as the
execution times. Consequently, we build the predictive models
using the mean-centered data, X̂ and Ŷ. Since we treat each
time step as an independent sample, we transform X̂ and Ŷ
into matrices of sizes NT ×H and NT × 1 respectively.

We use gradient boosted regression (GBR) [13] to build
predictive models with cross-validation (10-fold), based on
recursive feature elimination (RFE). We briefly review the
formulation of GBR before describing the RFE technique. In
gradient boosted machines, the key idea is to assume that the
unknown regression function is a linear combination of several
base learners. The base learners are greedily trained by setting
their target response to be the negative gradient of the current
loss with respect to the current prediction. The base learner
can be imagined to be the “basis function” for the negative
gradient. Concretely, let us assume the function of interest:

f(x) =
∑̀
j=1

βjψj(x|zj) (2)

where ψj(x|zj) is a base-learner (e.g. decision tree) parame-
terized by zj . The algorithm proceeds by performing a greedy
fit:

(βj , zj) = argmin
β,z

N∑
i=1

L(yi, fj−1(xi) + βψj(xi|z)) (3)

Here L is the loss function and fj−1 is an estimate of the
function obtained from the previous iteration.

With GBR trees as the underlying model, RFE is built
upon the idea of repeatedly constructing a predictive model,
identifying the worst performing feature (based on feature
importance), setting that feature aside, and then repeating the
process with the rest of the features. This process is applied
until all features in the dataset are exhausted, and the features
are ranked according to when they were eliminated. In effect,
this is a greedy algorithm for finding the best performing
subset of features. Finally, we compute the relevance score of
each feature (network hardware counters in this case) as the
likelihood of being chosen as a well-performing feature across
all the cross-validation splits.

C. Forecasting Execution Time

The final critical component of our analysis approach is to
build a forecaster, using multiple data sources, that predicts
the performance of future time steps based on previous time
steps. The underlying problem of time-series forecasting has
long been studied in several fields from finance and climate
to energy usage in power grids. Typically, this involves
modeling the underlying dynamical process responsible for
generating the time-series. Because estimating this dynamical
process is not easy, a common approach for incorporating
dynamic information is to include temporal context. This refers
to information from previous time steps, in order to make
predictions about the next time step. We adopt this formalism

for forecasting performance of our applications. In the set of
applications considered here, the performance (i.e. execution
time) at each step can vary significantly. However, we expect
longer term trends to be more reliably predictable.

We formulate the problem as one of predicting the aggregate
performance of k future time steps, based on the network
counters data from the last m time steps. The forecasting
problem is formulated as follows: Denoting the set of input
features (network counters) at any time step t by x(t), the
forecasting problem is to predict yktot(tc), the sum of execution
times of the next k steps after the current time step tc:

yktot(tc) = P
(
{x(t)}tct=tc−m

)
, where yktot(tc) :=

tc+k∑
t=tc+1

y(t)

Here P denotes the forecasting model. This formulation
contains two free parameters: m, the number of historical
steps that we consider for making predictions, and k, the
number of steps that we are predicting. Figure 6 illustrates
this formulation. For generating the training data, we use a
sliding window based approach and “slide” tc between m
and T − k, where T is the maximum number of steps in
each application run. Finally, we report the mean absolute
percentage error (MAPE) in prediction across all our cross-
validation splits. We find that such a forecasting model is highly
generalizable, in that it can be used to predict across very long
time frames even if we have used relatively shorter runs during
training. The machine learning technique that we adopt in
order to build P is the recently successful attention models
in the deep learning literature [14]. Attention mechanism is
a widely-adopted strategy in sequence modeling, wherein a
parameterized function is used to determine relevant parts of
the input to focus on, in order to make decisions about the
future. We use the popular scalar dot-product attention along
with a fully connected neural network to predict yktot(tc).

Temporal Context (m)

Current Sample

Looking Ahead (k)

T
im

e
pe

r
st

ep
 (

s)

Step

Temporal context (m)

Current
sample (tc)

Looking ahead (k)

Figure 6. Illustration of the formulation for performance forecasting using
different sources of application (job-specific), system and I/O data.

In order to understand how our forecasting capability varies,
we conduct several ablation studies. First, we vary the temporal
context used for prediction (m), and how far into the future we
can predict (k). Then, we study how the prediction performance
changes when we include information about the job placement
(NUM_GROUPS and NUM_ROUTERS), and additional system-
wide hardware counters (obtained from LDMS) for I/O nodes
and “system” nodes (nodes allocated to jobs other than ours).

 0
 10
 20
 30
 40
 50
 60

 0 2 4 6 8 10 12 14 16 18 20

T
im
e
pe
r
st
ep

 (
s)

Step number

Mean time per step behavior of AMG

 0
 5x107
 1x108

 1.5x108
 2x108

 2.5x108
 3x108

 3.5x108

 0 2 4 6 8 10 12 14 16 18 20

C
ou
nt
er

 v
al
ue
s

Step number

Mean trend of RT_FLIT_TOT

 0
 1x108
 2x108
 3x108
 4x108
 5x108
 6x108

 0 2 4 6 8 10 12 14 16 18 20

C
ou
nt
er

 v
al
ue
s

Step number

Mean trend of RT_RB_STL

Figure 7. Mean time per step trends (left plot) are similar to mean counter values (middle and right plot) over all runs for each time step.

V. FINDINGS

In this section, we apply the proposed machine learning
methodologies to analyze the experimental data.

A. Neighborhood Analysis and Assigning Blame

In order to assign blame to users for performance degradation,
for each job in an application dataset, we create a list of users
that had one or more running jobs during the entire duration
of our job (we define this as the “neighborhood” of a job). A
user is considered only if their job size is larger than a certain
number of nodes (128 for this analysis). These per-job lists give
us an idea of the largest jobs running on the system alongside
our job. We then quantify the dependency between optimality
of jobs in each dataset and the “qualified” user names. Table III
presents the lists of users that had high mutual information
and appear in more than one list across the six datasets. Note
that the actual user names have been anonymized.

TABLE III
SETS OF HIGHLY CORRELATED USERS (W.R.T. PERFORMANCE OPTIMALITY)

FOR THE DIFFERENT DATASETS

Application No. of nodes Highly correlated users

AMG 128 User-[1, 2, 3, 4, 5, 6, 7, 8, 9]
AMG 512 User-[2, 3, 7, 9, 10, 11, 12]
MILC 128 User-[2, 8, 9, 11, 13, 14]
MILC 512 User-[8, 10, 11, 14]
miniVite 128 User-[2, 4, 5, 8, 12, 13]
UMT 128 User-[1, 6, 11]

We observe that some users appear in multiple rows of the
table above. Users 2, 8 and 11 appear in four lists as being
highly negatively correlated with optimality. This suggests that
if one of these users is running a job on the system, there is a
good chance that other communication-heavy jobs will slow
down. User 9 shows up in three lists, and the other users show
up in two lists each. User 8 is Bhatele, who submitted all the
jobs for this study; in other words, two different jobs that we
submitted can interfere with each other. For example, we know
that MILC is communication-heavy and can create congestion
on the network.

It so happens that all jobs of each of the users in Table III had
the same or very similar job names, and we were able to identify
the applications being run by these users in several instances.
User 2 ran HipMer, which is a Genome Assembly code that is
both communication-intensive and performs heavy I/O to the
filesystem. User 11’s jobs were doing climate modeling using

the Energy Exascale Earth System Model (E3SM) code. User
9 was running a particle mesh N-body solver, FastPM, which
invokes MPI_All_Reduce many times and also uses burst
buffers for I/O. Many other users (6, 10 and 14) ran material
science simulations. These applications are also known to
send significant MPI and/or filesystem traffic on the network.
Hence, there is great likelihood that these jobs will impact the
performance of other jobs.

This suggests that even a coarse-grain analysis of total
execution time and running jobs on the system can help us in
identifying potential users/jobs that can impact performance
negatively. A resource manager can use such historical data to
delay scheduling jobs that are communication-sensitive when
certain other jobs are already running on the system.

B. Identifying Strong Predictors of Deviation

Next, we attempt to identify network counters that are
strong predictors of performance variability. As described in
Section III-C, for each job, we record the execution times and
corresponding counter value changes per step (iteration). In
this analysis, we consider each time step as an independent
sample within each of the six datasets. Note that we consider
the deviation from mean behavior instead of absolute times to
identify network counters that are strong predictors of run-to-
run variability. We did this because we observed that the trends
of the mean values of many counters and mean execution time
per step are similar across all the runs (Figure 7).

Using recursive feature elimination and gradient boosted
regression for the prediction model, we compute the relevance
scores of different features (counters) independently for each
of the six datasets (Figure 9). We observe that the stall counter
on router tiles (RT_RB_STL) is highly relevant for the MILC
datasets and the AMG 512 nodes dataset. The stall counter gives
an aggregate view into the backpressure incurred by the network
traffic received on the router tiles. In addition, the processor
tile stall counter, PT_CB_STL_RS, has moderate relevance
for MILC, and PT_RB_STL_RQ and PT_RB_2X_USG are
relevant for AMG. This suggests that to a smaller extent for
MILC, and a larger extent for AMG, end-point congestion in the
processor tiles impacts performance. This becomes even more
pronounced for UMT, where the PT_RB_STL_RQ counter
is the most significant. Due to the nature of communication
in miniVite, flit counters at the processor and router tiles
(PT_FLIT_VC0, RT_FLIT_TOT) are most important for it.

 0
 2
 4
 6
 8

 10
 12

m=3 m=8 m=3 m=8

M
A
PE

app
app + placement

k=10k=5

 0
 2
 4
 6
 8

 10
 12

m=3 m=8 m=3 m=8

M
A
PE

k=10k=5

Figure 8. Mean absolute percentage error of the forecasting model for different m and k for the AMG 128 node (left) and 512 node (right) datasets.

Figure 9. Relevance scores of each counter in predicting the deviation from
mean behavior for the different datasets.

The mean absolute percentage error (MAPE) made by the
prediction models was less than 5% for all the datasets. This
analysis helps us identify, for different applications, which
network hardware performance counters are most relevant in
predicting deviation from the mean behavior. This motivates the
possibility of using these features to forecast future performance
based on past behavior. Additionally, because monitoring and
analyzing hundreds of counters in real time has high overheads,
the results of such analysis can help identify the critical counters
that should be used by job schedulers in deciding when and
where to schedule pending jobs.

C. Forecasting Execution Time

We now analyze the accuracy of the forecaster developed
in Section IV-C in predicting the execution time of k future
time steps using counter data from m previous time steps. So
far we only considered network counters for routers directly
attached to our jobs’ nodes as input features. We now consider
additional data to include features that contain information
about the job placement and other routers on the system:
• placement: These features (NUM_ROUTERS and
NUM_GROUPS) depend on the placement of the job and
indicate the degree of fragmentation of the job.

• io: LDMS collects four counters in Table II. The “io”
features refer to data collected by LDMS from I/O nodes
on Cori that connect to the filesystem. These counters
give an indication of the filesystem traffic on the network.

• sys: These are also derived from LDMS data gathered
from all routers on the system that have no nodes in
common with those allocated to our job. Values of these
counters give an indication of the traffic on other routers
of the system.

We create multiple independent models for different values
of m and k, where m is kept small relative to the total number
of time steps so that we have enough samples in the training set.

The value of k is set to 25% and 50% of the total number of
time steps in order to assess the ability to predict up to half of
the execution period of a job. Based on these considerations, we
choose m = {3, 8}, k = {5, 10} for AMG, and m = {10, 20}
and k = {20, 40} for MILC. Note that the absolute execution
time of time steps in AMG is much greater than those in
MILC. So, even though we use larger values of m in the case
of MILC, the temporal context used for modeling in terms
of the absolute time is similar to that of AMG. We did not
perform forecasting for miniVite and UMT because they ran
for six and seven time steps respectively, which was not long
enough to create reasonable models.

Figure 8 shows the MAPE for the different forecasting
models created for the two AMG datasets. We observe that
a longer temporal context (larger m) lowers the MAPE
significantly. In addition, larger values of k allow bursty
performance changes per time step to be amortized, and so
predictions improve as k increases. We see similar trends for
the 128 and 512 node datasets. The 512 node datasets have
slightly higher errors, possibly because of the larger variation
in performance at that scale. We do not use the io and sys
features for AMG because they lead to overfitting. We do
not see a significant improvement in forecasting by adding
placement features.

Figure 10 shows the MAPE for the different forecasting
models created for the two MILC datasets. In this case, we use
the placement as well as io and sys features. The observations
from the AMG forecasting models for different values of m
and k still hold true. The largest difference from the AMG
forecasting models is that for MILC, adding io and sys features
successively lowers the errors and makes the forecasting much
better. We believe that this is because MILC is bandwidth-
bound, and increased I/O and MPI traffic on the system impacts
its performance more than AMG. This suggests that in addition
to a job’s own routers, traffic on other routers of the system
can also impact its performance.

Next, we look at feature importances derived from the
forecasting models. Note that as opposed to the previous section
where the goal was to predict the deviations in performance,
the forecasting models are trying to predict the absolute
performance. Also, in the case of MILC, we are now using a
much larger set of input features. Figure 11 shows the feature
importances in the case of AMG and MILC for the largest m
and k considered in each case. We observe that in the case of
AMG (left plot), PT_RB_STL_RQ is no longer relevant and
PT_RB_STL_RS now has high relevance for AMG 512 nodes.

 0
 2
 4
 6
 8

 10
 12

m=10 m=30 m=10 m=30

M
A
PE

k=40k=20

 0
 2
 4
 6
 8

 10
 12

m=10 m=30 m=10 m=30

M
A
PE

app
app + placement

app + placement + io
app + placement + io + sys

k=40k=20

Figure 10. Mean absolute percentage error of the forecasting model for different m and k for the MILC 128 node (left) and 512 node (right) datasets.

R
T_

FL
IT

_T
O

T

R
T_

P
K

T_
TO

T

R
T_

R
B

_2
X

_U
S

G

R
T_

R
B

_S
TL

P
T_

C
B

_S
TL

_R
Q

P
T_

C
B

_S
TL

_R
S

P
T_

FL
IT

_V
C

0

P
T_

FL
IT

_V
C

4

P
T_

FL
IT

_T
O

T

P
T_

P
K

T_
TO

T

P
T_

R
B

_S
TL

_R
Q

P
T_

R
B

_2
X

_U
S

G

P
T_

R
B

_S
TL

_R
S

N
U

M
_R

O
U

TE
R

S

N
U

M
_G

R
O

U
P

S

AMG 512 nodes

AMG 128 nodes

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

R
T_

FL
IT

_T
O

T

R
T_

P
K

T_
TO

T

R
T_

R
B

_2
X

_U
S

G

R
T_

R
B

_S
TL

P
T_

C
B

_S
TL

_R
Q

P
T_

C
B

_S
TL

_R
S

P
T_

FL
IT

_V
C

0

P
T_

FL
IT

_V
C

4

P
T_

FL
IT

_T
O

T

P
T_

P
K

T_
TO

T

P
T_

R
B

_S
TL

_R
Q

P
T_

R
B

_2
X

_U
S

G

P
T_

R
B

_S
TL

_R
S

N
U

M
_R

O
U

TE
R

S

N
U

M
_G

R
O

U
P

S

IO
_R

T_
FL

IT
_T

O
T

IO
_R

T_
R

B
_S

TL

IO
_P

T_
FL

IT
_T

O
T

IO
_P

T_
P

K
T_

TO
T

S
Y

S
_R

T_
FL

IT
_T

O
T

S
Y

S
_R

T_
R

B
_S

TL

S
Y

S
_P

T_
FL

IT
_T

O
T

S
Y

S
_P

T_
P

K
T_

TO
T

MILC 512 nodes

MILC 128 nodes

0.1

0.2

0.3

0.4

0.5

0.6

Figure 11. Feature importances derived from the forecasting model for the AMG (left) and MILC (right) datasets.

RT_RB_STL is still important but now, flit-based features
(RT_FLIT_TOT and RT_PKT_TOT) are also relevant for the
128 and 512 datasets, respectively.

In the case of the MILC datasets, we previously observed
that the job-specific router tile stalls counter RT_RB_STL
had the highest relevance in terms of predicting performance
deviation. Interestingly, in the forecasting model, we observe
that the io router tile flit counter (IO_PT_FLIT_TOT) has the
highest relevance for MILC, and all other features become less
relevant. This counter gives an indication of how much I/O
traffic is being sent to the I/O nodes from all over the system,
and we believe that for MILC, this is a strong predictor of
future performance.

Finally, we analyze the effectiveness of the generated
forecasting models in predicting the execution times of future
time steps in a significantly long-running simulation. To test
this, we ran a MILC job on 128 nodes for 620 time steps,
which took more than an hour and 45 minutes. We divide
this execution into segments of 40 time steps and predict the
execution time of these segments by considering only the
previous 30 time steps. It is important to note that no data
from this run was included in training the model. Figure 12
shows that using the generated models, we are able to forecast
the performance of a long running science job in the face
of significant performance variability. Note that, given the
inherent uncertainties in this forecasting problem, there is
irreducible bias in the predictive model, which manifests as
larger prediction error for some time periods.

We believe that this is a significant finding in this work –
we are able to use historical information about an application
to predict the time-stepped performance of unseen data in a
long running job. This indicates that time-series forecasting
could be used to train models on historical performance data
from an HPC system. Such models can then be used by system
administrators or resource managers to forecast future system
state such as MPI traffic or I/O load on the system, which

 0
 100
 200
 300
 400
 500
 600

 0 100 200 300 400 500 600

T
im
e
pe
r
40

 s
te
ps

 (
s)

Step

Observed Predicted

Figure 12. Forecasting 40 step segments using m = 30

can be used in turn to influence scheduling and other resource
management decisions for system optimization. For this to be
successful, the resource manager would need application and
system data from the past to train the models. When using these
models, the resource manager would need information about
the current state of all the routers and additional information
about the jobs in the queue (to ensure that the executable, input
parameters, etc. match the setup used for training).

VI. RELATED WORK

Several researchers have studied performance variation on
systems using dragonfly interconnects. Chunduri et al. [2]
perform a run-to-run variability study on a Cray XC system.
However, they primarily focus on on-node variability (which
itself is well studied [5], [6]), whereas we focus on network
variability. Groves et al. [15] examine the correlation of user-
level counters to simple network benchmarks on the Aries
network, using simple linear regression. However, neither of
these works attempt prediction of application variability from
counter measurements. Tuncer et al. [16] perform classification
and detection of anomalous performance based on Aries
counters. The system evaluated is significantly smaller (52
nodes) and synthetic congestion patterns are used.

Other researchers have studied network variation via simu-
lation and modeling. For example, Yang et al. [17] simulate

execution on dragonfly machines, show that contention exists,
and then propose a placement strategy to alleviate it. Faizian
et al. [18] present simulated results of using software defined
routing on a dragonfly and compare to adaptive routing. There
is also work on studying and alleviating interference on other
interconnects; these are complementary to our work. For
example, Bhatele et al. [19] show that on a Cray torus machine,
performance degradation occurs and is most likely due to
nearby jobs. Smith et al. [1] and de Sensi et al. [20] propose
modifications to the routing policy to alleviate congestion on
fat-tree and dragonfly networks respectively. Jha et al. [21]
investigate the relationship between counters and observed
performance on the Gemini network.

VII. CONCLUSION

In this work, we addressed the difficult challenge of analyz-
ing and predicting performance variability on a production
system with a dragonfly network. The evaluated system
supports thousands of unique users and workloads, and our
analysis encompassed over four months of application runs.
Despite these challenges, our approach was fruitful, and
this work makes a number of contributions to the area. We
have developed a methodology to identify the users and jobs
correlated with runtime variability of our workloads. We are
able to identify the key network hardware counters responsible
for variability due to network congestion for the applications
examined, as evidenced by our deviation prediction models.
Finally, our forecasting models provide accurate predictions
spanning up to 50% of the application runtime. We identify
the key metrics that impact application runtime and observe
that most of the predictive power comes from counters of
routers that are directly connected to the nodes of a job. We
also observe I/O traffic having a significant impact on network
performance of bandwidth-bound codes. In future work, we
plan to exploit this predictive power to improve scheduling
and placement.

ACKNOWLEDGMENT

This work was supported by funding provided by the University of
Maryland College Park Foundation, and based upon work supported
by the National Science Foundation under Grant No. 1526015. This
work was performed in part under the auspices of the U.S. Department
of Energy (DOE) by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-CONF-772401), and used
resources of the National Energy Research Scientific Computing
Center (NERSC), a U.S. DOE Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] S. Smith, C. Cromey, D. K. Lowenthal, J. Domke, N. Jain, and A. Bhatele,
“Mitigating inter-job interference using adaptive flow-aware routing,”
in Proceedings of the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’18.
IEEE Computer Society, Nov. 2018, lLNL-CONF-745538.

[2] S. Chunduri, K. Harms, S. Parker, V. Morozov, S. Oshin, N. Cherukuri,
and K. Kumaran, “Run-to-run variability on xeon phi based cray xc
systems,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’17. New York, NY, USA: ACM, 2017.

[3] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” SIGARCH Comput. Archit. News, vol. 36,
pp. 77–88, June 2008.

[4] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray Cascade: A
scalable HPC system based on a dragonfly network,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012.

[5] F. Petrini, D. J. Kerbyson, and S. Pakin, “The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the
8,192 Processors of ASCI Q,” in Proceedings of the 2003 ACM/IEEE
conference on Supercomputing (SC’03), 2003.

[6] K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing application
sensitivity to OS interference using kernel-level noise injection,” in
Supercomputing, Nov. 2008.

[7] R. Falgout, J. Jones, and U. Yang, “The design and implementation
of hypre, a library of parallel high performance preconditioners,”
in Numerical Solution of Partial Differential Equations on Parallel
Computers, A. Bruaset and A. Tveito, Eds. Springer-Verlag, 2006,
vol. 51, pp. 267–294.

[8] C. Bernard, T. Burch, T. A. DeGrand, C. DeTar, S. Gottlieb, U. M.
Heller, J. E. Hetrick, K. Orginos, B. Sugar, and D. Toussaint, “Scaling
tests of the improved Kogut-Susskind quark action,” Physical Review D,
no. 61, 2000.

[9] S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, H. Lu,
D. Chavarrià-Miranda, A. Khan, and A. Gebremedhin, “Distributed
louvain algorithm for graph community detection,” in 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
May 2018, pp. 885–895.

[10] P. F. Nowak and M. K. Nemanic, “Radiation transport calculations on
unstructured grids using a spatially decomposed and threaded algorithm,”
in Proceedings of the International Conference on Mathematics and
Computation, Reactor Physics and Environmental Analysis in Nuclear
Applications, Sep. 1999.

[11] “Aries hardware counters (s-0045-20),” http://docs.cray.com/books/S-
0045-20/S-0045-20.pdf, 2017.

[12] S. Kullback, Information theory and statistics. Courier Corporation,
1997.

[13] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” The Annals of Statistics, vol. 29, no. 5, pp. pp. 1189–1232,
2001.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
neural information processing systems, 2017, pp. 5998–6008.

[15] T. Groves, Y. Gu, and N. J. Wright, “Understanding performance
variability on the aries dragonfly network,” in 2017 IEEE International
Conference on Cluster Computing (CLUSTER), Sep. 2017, pp. 809–813.

[16] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung, M. Egele,
and A. K. Coskun, “Online diagnosis of performance variation in hpc
systems using machine learning,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 4, pp. 883–896, April 2019.

[17] X. Yang, J. Jenkins, M. Mubarak, R. B. Ross, and Z. Lan, “Watch
out for the bully! Job interference study on dragonfly network,” in
Supercomputing, Nov. 2016.

[18] P. Faizian, M. A. Mollah, Z. Tong, X. Yuan, and M. Lang, “A Comparative
Study of SDN and Adaptive Routing on Dragonfly Networks,” in
Supercomputing 2017 (SC’17), Denver, CO, USA, November 12-17
2017.

[19] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes
the neighborhood: performance degradation due to nearby jobs,” in
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’13. IEEE Computer Society,
Nov. 2013, LLNL-CONF-635776.

[20] D. D. Sensi, S. D. Girolamo, and T. Hoefler, “Mitigating Network
Noise on Dragonfly Networks through Application-Aware Routing,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC19), Nov. 2019.

[21] S. Jha, J. Brandt, A. Gentile, Z. Kalbarczyk, and R. Iyer, “Characterizing
supercomputer traffic networks through link-level analysis,” in 2018 IEEE
International Conference on Cluster Computing (CLUSTER), Sep. 2018,
pp. 562–570.

