

 Page 1

The IBM Blue Gene/Q Interconnection

Network and Message Unit

Dong Chen, Noel A. Eisley, Philip Heidelberger,
Robert M. Senger, Yutaka Sugawara, Sameer Kumar,

Valentina Salapura, David L. Satterfield
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598
{chendong, naeisley, philiph, rmsenger, ysugawa, sameerk,

salapura, davidsat}@us.ibm.com

Burkhard Steinmacher-Burow
IBM Deutschland Research & Development GmbH

71032 Böblingen, Germany
steinmac@de.ibm.com

Jeffrey J. Parker

IBM Systems &Technology Group
Systems Hardware Development

Rochester, MN 55901
jjparker@us.ibm.com

Abstract- This is the first paper describing the IBM Blue Gene/Q
interconnection network and message unit. The Blue Gene/Q
system is the third generation in the IBM Blue Gene line of
massively parallel supercomputers. The Blue Gene/Q
architecture can be scaled to 20 PF/s and beyond. The network
and the highly parallel message unit, which provides the
functionality of a network interface, are integrated onto the same
chip as the processors and cache memory, and consume 8% of
the chip's area. For better application scalability and
performance, we describe new routing algorithms and new
techniques to parallelize the injection and reception of packets in
the network interface. Measured hardware performance results
are also presented.

Keywords- parallel computer architecture, interconnect
technologies, router architecture, routing algorithms and
techniques, network interface architecture

I. INTRODUCTION

The IBM Blue Gene/Q (BG/Q) system is the third
generation in the IBM Blue Gene line of massively parallel
supercomputers. BG/Q can be scaled to 20 PF/s and beyond.
An overview of BG/Q is given in [1], while the first generation
Blue Gene/L and second generation Blue Gene/P are described
in [2] and [3], respectively. This paper is the first detailed
description of the BG/Q network and message unit. The highly
parallel message unit (MU) provides the functionality of a

network interface. Both the network logic and MU are
integrated onto the same chip as the processors and cache
memory and consume 8% of the chip’s area, including IO cells.
The network, which is generally configured as a five
dimensional torus, is described in Section II. Section III gives
an overview of the MU. Software interfaces to the network and
MU are described in Section IV and initial performance
measurements are reported in Section V.

II. INTERCONNECTION NETWORK

A. Overview

BG/Q systems consist of compute nodes and IO nodes.
Applications run on the compute nodes while file IO is shipped
from a compute to an IO node, where it is then sent over a PCIe
interface to a file system. Compute nodes are interconnected
via a five dimensional (5D) torus. To support a 5D torus, 10
bidirectional ports, or links, are required. The logic implements
an additional 11th link, the IO link, which is used to connect the
compute and I/O nodes together. Each torus link, including the
IO link, operates at 2 GB/s; each link/port can simultaneously
send at 2 GB/s and receive at 2 GB/s. To match IO bandwidth
to the external file system, only some compute nodes have the
IO link attached to an IO node. Typically, an IO node is
connected to two compute nodes. In addition, to save pins on
the chip, IO nodes use the pins of one of the torus dimensions
for the PCIe. The PCIe operates at 4 GB/s; the bandwidth of
the two IO links from two compute nodes thus matches the
PCIe bandwidth of the IO node.

We now focus on the compute node torus and compare
BG/Q to BG/L and BG/P. The network logic on BG/P is
essentially identical to that of BG/L, the major difference being
an increase in link bandwidth. BG/L has a 3D torus with 175
MB/s per link. Thus each BG/Q link at 2 GB/s is 11.4 times

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SC11, November 12–18, 2011, Seattle, Washington, USA.
Copyright 2011 ACM 978-1-4503-0771-0/11/11…$10.00.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 02,2021 at 17:17:00 UTC from IEEE Xplore. Restrictions apply.

 Page 2

faster than a BG/L link and the total compute node torus
bandwidth on BG/Q is 19 times that of BG/L. Similarly BG/P
has a 3D torus with 425 MB/s links, so BG/Q links are 4.7
times faster than BG/P links and the total BG/Q compute node
torus bandwidth is 7.8 times that of BG/P.

A 5D torus was chosen for three primary reasons. First,
from a performance perspective, it achieves high nearest-
neighbor bandwidth while increasing bisection bandwidth and
reducing the maximum number of hops (and latency) compared
to a lower dimensional torus. For example, a 20 PF
16x16x16x12x2 BG/Q has about 46 (19) times the bisection
bandwidth than a 64x48x32 BG/L (BG/P) with the same
number of nodes. Compared to BG/L, 11.4x of the 46x comes
from increasing the link bandwidth from 175 MB/s to 2 GB/s
and 4x comes from reducing the length of the maximum
dimension, which for a fixed number of nodes is made possible
by increasing the dimensionality of the network. Second, the
torus permits partitioning a large machine into independent
sub-machines; applications running in different partitions do
not affect one another at all, except possibly for file IO. Third,
from a packaging perspective, the torus permits most links,
those within a midplane, to be electrical rather than optical,
reducing cost. The links internal to a midplane (4x4x4x4x2) are
through circuit cards. The links that are on the surface of this 5-
D cube connect through a link chip to an optical transceiver.
The midplane is built from 2x2x2x2x2 boards; there are 32
cards, each with one compute node, attached to the board.
There are link chips on each board to connect via optics to
boards in other midplanes. The dimensions are labeled
A,B,C,D,E, with the opposing directions signified by, e.g., A-
and A+. The last dimension E is constrained to always be of
length two, thereby keeping its links entirely within a single
board and reducing inter-board wiring within a midplane. The
pins for the E dimension are used for PCIe on IO nodes.

In addition to the torus network, BG/L and BG/P have a
global barrier network and a collective network. To reduce
cost, simplify inter-midplane cable connections and to maintain
partitionability, since many applications do not use point-to-
point and collective messaging at the same time, BG/Q
integrates barrier and collective functionality onto the torus
network.

Data packets on BG/Q include a 32 B header; 12 B for the
network and 20 B for the MU. The data portion of the packet is
from 0 to 512 B, in increments of 32 B chunks. With 8 trailing
link level packet check bytes and protocol packet overhead, at
most 90% of the raw link bandwidth, 1.8 GB/s, can be used for
user data.

On BG/Q, the 64 bit PowerPC cores operate at 1.6 GHz
while the rest of the memory system, including the MU,
operates at half that rate, 800 MHz. The internal network logic
operates at 500 MHz; the network handles 4 B per network
cycle thereby matching the 2 GB/s link bandwidth.

The on-chip per hop latency for point-to-point packets on
BG/Q is approximately 40 ns compared to approximately 97 ns
on BG/L and 46 ns on BG/P. Of the 40 ns, which is 20 network
cycles, 8 cycles are in the network logic (compared to 12
network cycles on BG/L) with the rest being in the SerDes and
high speed signaling. The worst case hardware one way point-

to-point latency on a large 16x16x16x12x2 system is expected
to be about 2.6 μs, including cable delays.

An overview of the network, showing its major units, is
shown in Figure 1. There are 11 send units and 11 receive
units; one for each of the links in the 5D torus and one for the
IO link. All packets are injected into a network injection FIFO
by the MU and all packets are pulled from a network reception
FIFO by the MU. There are multiple injection and reception
FIFOs divided up for normal priority user point-to-point data
on the 5D torus, as well as intra-node local transfers, user high
priority and system point-to-point data, and user and system
collective data. The number of FIFOs is sufficient to ensure
that all links can be kept busy simultaneously. Packets injected
into any of the point-to-point injection FIFOs may go out any
link, i.e., injection FIFOs are not tied to torus links. When a
normal priority point-to-point packet arrives at its destination,
it is placed into the reception FIFO associated with the receive
unit on which the packet arrived. For example, packets arriving
on the A- receiver are always placed in the A- reception FIFO.
Upon reception, user high priority, system and collective
packets are placed in their corresponding reception FIFOs.

Figure 1. The BG/Q Network Device (ND) Router Logic

B. Virtual Channels and Point-to-Point Routing

To support an integrated network with user, system and
collective traffic, BG/Q has more virtual channels (VCs) than
BG/L. There are virtual channels (VCs) for point-to-point (user
dynamic, user deterministic, user high priority, system) and for
collective (user and system) traffic. Each receiver has separate
buffers for each VC (with the exception that to reduce internal
network VC storage, user commworld and system collective
use the same physical VC; software ensures that these two
logical VCs never use the same physical links) and there is
virtual cut-through logic and token flow control similar to that
in BG/L and described more fully in [4] and [5]. To improve
BG/Q performance, we increased the number of packets that
can be stored in each VC. To reduce head-of-line blocking,

�Central
Global
Barrier
Logic

�
rcp FIFOs

�
inj FIFOs

To Global Barrier
Control & Status in

MU To MU iMEs To MU rMEs

Receiver 10

Sender 10

Receiver 0

Sender 0

Central Collective
Logic

Network DCR
Slaves

N
D

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 02,2021 at 17:17:00 UTC from IEEE Xplore. Restrictions apply.

 Page 3

BG/L and BG/P have two VCs for dynamic routing, but the
deterministic VC is managed as a single queue FIFO.
Improving upon that, a form of virtual output queuing is
employed for BG/Q. Each point-to-point VC maintains
multiple queues, each holding one or more packets. Packets in
different queues requiring different links do not block one
another, but deterministically routed packets in different queues
that do require the same link are served in first-come-first-
served order, thus maintaining in-order delivery. When a
dynamic packet is placed in a VC buffer, it selects the queue
with the fewest number of packets in it. Packets in different
dynamic VC queues do not block one another. Like BG/L,
there are multiple data paths from each receiver so that multiple
packets can be transferred simultaneously.

Point-to-point routing is similar to BG/L in that “hint” bits
specify which of the links can be used (at most one per
dimension). However, there are several important
improvements to boost performance, especially for asymmetric
tori. First, the dimension order for deterministically routed
packets is programmable whereas it was fixed on BG/L. This
permits routing longest dimension first, which is typically most
efficient. Second, for dynamically routed packets, “zone”
routing is introduced in which several packet header bits
indicate which set of programmable zone masks (stored in
network control registers) are to be used. These permit dynamic
routing but constrain the order in which dimensions are routed.
For example, in a 16x16x12x12x2 torus, they can be
programmed to route longest dimensions first; A or B first,
then C or D, then E. As BG/L routing is very efficient on
symmetric tori, this effectively breaks the routing into
symmetric zones of decreasing size, thus packets tend to move
from the busy links to either equally busy links, or more lightly
loaded links [6]. This reduces pressure on internal network
buffers, thereby improving performance. For example, detailed
near cycle accurate (parallel) simulations of an all-to-all pattern
of a 16x8x8x8 torus showed that performance improved from
66% of network peak without zone routing to 93% of peak with
zone routing. Simulations of zone routing on a 16x16x16x8
torus achieved 99% of network peak.

Routing from a compute node to an IO node is handled as
follows. The packet destination specifies the coordinates of an
“exit” node, that compute node whose IO link is attached to an
IO node. The packet routes deterministically to the exit node. If
a “toIO” bit in the packet header is set, the packet then routes to
the attached IO node over the IO link, where it is received.
When routing from an IO node to a compute node, the packet
destination specifies the coordinates of the compute node
destination. The packet routes over the IO link to the attached
compute node, and then to its final compute node destination.
Only system packets can route over the IO links.

Like BG/L, BG/Q supports broadcasts down a line of a
torus dimension using the point-to-point virtual channels.

C. Collective Support

BG/Q implements support for collective operations within
the network. BG/Q support for collectives improves over BG/L
in two primary ways. First, whereas BG/L required two passes
over the collective network for floating point reductions, BG/Q

incorporates logic for one pass double precision floating point
sums. Second, BG/Q supports collective operations over MPI
sub-communicators, provided they are contiguous sub-
rectangles of the torus (e.g., over lines, planes, 3D sub-cubes,
etc).

The collective unit supports floating point add, min and
max as well as the following fixed point operations: signed and
unsigned add, signed and unsigned min and max, bitwise AND,
OR and XOR. Header-only packets (0 B payload) are valid
collective packets as well, and can be used for short broadcasts
or barriers. Broadcast, reduce to a single node and all reduce to
all nodes are supported. In addition, a single node can
broadcast a short remote get packet (rDMA read, see Section
III) onto the network thereby causing a long message reduce or
all reduce on the network.

The nodes participating in a collective are defined by class
routes, are programmed into control registers on each node and
specify a contiguous (non-binary) tree which is embedded
within the torus network. Packets go up the tree, being reduced
on each hop and are turned around at the tree’s root and
broadcast back down the tree. The class routes specify which
links are inputs on the uptree path, which link is the uptree
output (there is none at the root) and whether or not there is a
contribution from the local node. Each node can participate in
up to 16 different class routes, but there can be many more than
16 class routes in the machine. For example, there could be a
class route for each two dimensional AB plane and all of these
could be active simultaneously without any interference
between them. Packets can be flowing uptree and downtree at
the same time, but at any given time the uptree (downtree)
collective logic can be active processing packets from only one
class route. For reductions, uptree packets are stored in the
receiver’s VC buffers until packets from all of the class route’s
inputs have been received. There can be up to 12 inputs: 11
from each of the links and one local contribution. When the
output link is free, the packets proceed through parallel,
multilevel 2-input, 1-output ALUs with the combined packet
being sent on the output link.

Floating point additions are bit-reproducible; if each node
inputs the same floating point numbers on two different runs on
the same machine geometry and with the same class route, the
results of the floating point additions will be the same in both
runs. The collective logic has a floating point front end unit that
computes the maximum exponent over all inputs. The ALUs
operate at link speed, 4 B per network cycle. As the combined
packet emerges from the ALUs it enters a floating point back
end unit that formats the maximum exponent and combined
mantissa into an IEEE compliant floating point number. When
NaNs or integer overflows are generated by the collective
logic, a maskable interrupt bit is set on the node and a flag bit
that trails the packet is set so that all nodes in the class route
can be informed of the exception.

Reductions occur at near link bandwidth, up to 86% of the
raw link bandwidth. Floating point reductions add an average
of 6 network cycles (12 ns) to the per hop point-to-point
latency (9 cycles uptree and 3 downtree). The hardware latency
for a short allreduce on a 16x16x16x12x2 BG/Q is expected to
be about 6.5 μs.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 02,2021 at 17:17:00 UTC from IEEE Xplore. Restrictions apply.

 Page 4

D. Barrier Support

To further reduce the latency of barriers, BG/Q implements
special barrier packets and logic. 16 barrier classes can be set
up, similar to the collective classes. A global OR of the inputs
of each class is performed on each node and when that
changes, a barrier packet is sent up (or back down) the tree.
The hardware latency for a barrier on a 16x16x16x12x2 BG/Q
is expected to be about 6.3 μs. Barriers are initiated via writes
to a memory mapped IO register in the MU and completion is
detected by an MU memory mapped IO read. This logic can
also be used to support global interrupts across the network.

E. Network Router Arbitration

The network router logic implements a distributed
arbitration mechanism. Each sender broadcasts its link
available and token (free buffer space in the neighboring
node’s receiver) available signals for each virtual channel to all
receivers and injection FIFOs. Each point-to-point VC in a
receiver then selects a packet from the queues to serve and
sends an arbitration request to the receiver’s main arbiter when
the outgoing sender’s link and tokens are available. The
receiver main arbiter picks a winner from all requesters and
forwards the arbitration request to a sender. A point-to-point
injection FIFO arbitrates similarly to a receiver, but only
services one packet at a time.

Collective arbitrations are handled by the central collective
logic. When a collective packet arrives at a receiver’s collective
VC or at a collective injection FIFO, a request is raised to the
central collective logic until it is granted. The central collective
logic has separate up-tree and down-tree arbitration logic and
gives priority to system collective operations.

The sender arbitration logic gives grants in the following
priority order. Firstly, grants are given to collective or system
point-to-point requests. Within collective requests, priority is
given to down-tree broadcasts. Secondly, grants are given to
user high priority point-to-point requests. Thirdly, the lowest
priority is given to normal user (dynamic and deterministic)
traffic. For point-to-point traffic within each priority class, the
ratio of grants for cut-through traffic from receivers to grants
for injections can be programmed via a control register. Short
packets for barriers and link level protocols can be sent in
between data packets when needed.

F. Performance Counters, Protocols, RAS and Physical
Design

The network maintains a number of programmable
performance counters: four per sender and two per receiver.
The sender counters can be used to measure link utilization,
aggregating a number of VCs onto different performance
counters. For example, link utilization due to user point-to-
point, system point-to-point, user collective and system
collective traffic can be simultaneously and separately counted.
On the receiver side, the number of packets (programmable
over VCs) and the time integral of the number of packets in
queue can be counted. This permits measuring the mean packet
queue length, and by Little’s Law, L=�W, the mean waiting
time in a receiver can be inferred (e.g. [7]).

A standard, similar to BG/L, link level protocol is used. As
packets are sent on a link a copy is stored in a retransmission
FIFO for later retransmission if an appropriate
acknowledgement is not received within a programmable
timeout. Because of 8/10 encoding that occurs when packets go
over optical links (between midplanes), a single bit error on a
fiber can result in an 8 bit error burst. Two such errors in the
same packet can exceed the guaranteed detection properties of
most CRCs. As a result, symbol oriented Reed-Solomon (RS)
codes are used instead of CRCs and appended to the end of a
packet. There is a fixed 10 bit RS code word that covers the
unchanging part of a packet (e.g., excludes the link level
sequence number) and follows the packet all the way through
the network. In addition there are five 10 bit per hop RS code
words that cover the entire packet. This code is capable of
detecting any five symbol errors and has an escape rate of 2-50.
There are also extensive error consistency checks on the
packet’s network header, including an 8 bit Hamming code that
detects any three bits of error in the header. Like BG/L, there
are CRCs that cover all packets sent and all packets received
over a link. At the end of a run the paired sender and receiver
CRCs must be equal; else there was a packet level RS code
escape.

All data paths and internal buffers (VC, injection, reception,
retransmission) are covered by single bit correct, double bit
detect ECC codes. Most other critical latches, such as state
machine latches, use hardened latches and have parity
detection.

The network logic comprises just 3% of the chip’s area and
is 85% clock-gated to save power. The SerDes consumes an
additional 4% of the chip area.

G. Link Chip and Partitioning

As mentioned earlier, each board has a number of link chips (9
per 32-node board). These link chips provide support for the
optical modules, including encode/decode, fiber sparing and
on-the-fly single bit error correction using an IBM 8B/10B-P
code [8]. This code is a modification of the standard 8B/10B
code with Hamming distance two. The parity of several data
lanes is also encoded and sent over a spare fiber. If a single bit
error occurs on a fiber an invalid symbol is detected upon
reception. If one and only one single bit error occurs over the
parallel 8 bit words, the parity can be used to correct it. Error
counters on the link chip can detect when fibers are going bad;
the bad fiber can be replaced by a spare with only minimal
application impact.

For partitioning, the link chips can be programmed to loop
a midplane’s links back into the midplane, to the next
midplane, or individual links can be held in reset. This makes it
impossible for packets to cross from one partition to another. In
a dimension, if the full machine is of length n nodes, then a
torus is obtained when the partition size is either n or 4 nodes.
Otherwise, the partitioned dimension is a mesh.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 02,2021 at 17:17:00 UTC from IEEE Xplore. Restrictions apply.

 Page 5

III. MESSAGE UNIT

A. Overview

The message unit, as shown in Figure 2. provides the
interface between the network and the BG/Q memory system.
It is designed to provide low latency and high throughput,
enough to keep all the links busy. The MU provides similar
functionality to the BG/P DMA, supporting direct puts (RDMA
write), remote gets (RDMA read) and memory FIFO messages.
The MU maintains pointers to memory for up to 544 injection
memory FIFOs and 272 reception memory FIFOs. Cores
initiate messages by placing a 64 B descriptor into a slot of an
injection memory FIFO and updating that FIFO’s tail pointer.
A message may target one or more network injection FIFOs;
each packet of the message is placed into one of the specified
network injection FIFOs. The MU packetizes messages and
provides for simple address translation on the reception side.
Messages can have arbitrary byte alignment and incoming
packets can optionally cause processor interrupts. The MU
exploits the BG/Q L2 atomic functionality, so that message
byte counters are updated in memory via atomic increments. In
comparison, BG/P is limited to only 256 (memory mapped)
message byte counters that are stored in the DMA. The MU
can also transfer data to/from memory, performing an atomic
operation during the transfer. This may be useful for locks,
work queues, packet flow control, etc. Whereas the BG/P
DMA has two engines, one for injecting packets and one for
receiving packets, the MU has a multitude of engines; one
injection Messaging Engine (iME) for each network injection
FIFO and one reception Messaging Engine (rME) for each
network reception FIFO. The iMEs and rMEs share multiple
master ports on the BG/Q memory system crossbar switch. The
master port bandwidth is sufficient to support all 10 (user
mode) torus links of the network when the messages fit in L2.
Early VHDL logic simulation measurements show that up to
97.8% of the peak effective data utilization of the links is
obtained for a full 5D nearest neighbor exchange. These
simulations have been confirmed by hardware measurements.
The MU also has one slave port to the crossbar switch and thus
provides memory-mapped addresses for software to update
FIFO pointers, set up address translation, and handle certain
interrupt conditions.

The MU has extensive logic and checks to separate user
from system traffic, and to prevent user-space errors from
interfering with system messaging. All internal buffers and data
paths in the MU are ECC protected, providing very high
resistance to soft errors.

B. Interface to Local Memory System

1) Master ports
The MU contains multiple master ports that communicate

with 16 L2 blocks (L2 slices) via a crossbar switch. All MU
reads and writes pass through the globally shared L2 cache and
the MU depends on the L2 to manage coherency across the
node’s memory system. The master port bandwidth is sufficient
to keep all network links simultaneously busy. The master
ports are shared by requestors consisting of the iMEs, the
rMEs, and the message descriptor fetch logic. Although the
switch and master ports have separate read and write data paths

(thus read data can return while write data is being sent), the
crossbar can only schedule one read or one write request per
cycle per master port. Each of the requestors is fixed to one of
the master ports in an attempt to load balance evenly across the
master ports. Furthermore, each requestor assigns a priority to
its load/store request, which can be either system (highest),
user high-priority (medium), or user normal-priority (lowest).
The master port pseudo-randomly selects one requestor per
cycle while obeying the priorities. So it is possible for system
requests to block user requests but not vice-versa. System
message descriptor fetches are assigned system priority while
user message descriptor fetches are given a higher priority than
normal injection and reception traffic so that messages are
always queued up to inject and iMEs are not idle waiting for
message descriptors to return from memory.

Figure 2. The BG/Q Message Unit (MU) Logic

The master ports were optimized to reduce messaging
latency. There is a fast look-up-table (LUT) that responds to
requests that have been scheduled by the switch. This LUT
contains 16 slots, one slot per L2 slice, and is typically fed by a
slower request FIFO that preserves request ordering for a given
L2 slice target. Requests to different L2 slices are allowed to
proceed out-of-order. In the case that an empty slot exists in the
LUT and a new request arrives targeting that slot, it is allowed
to immediately populate that slot and bypass the FIFO provided
that the FIFO does not also have a queued request targeting that
same slot. The master port can buffer multiple requests for a
given destination L2 slice, but crossbar scheduling and latency
is best when striding accesses across the 16 different L2 slices.

Read data returns from the switch at a rate of 32 B per cycle
in either 32, 64, or 128 B chunks. The data is immediately
passed to the appropriate network injection FIFO. This
implementation provides low-overhead and high bandwidth
message injection.

2) Slave Port

�Slave port master ports

Crossbar Switch

DCR

Interrupts
& UPC

Global
Barrier
Control

& �
rMEs

�
 iMEs

Injection
Control &
Arbitration
IC

SRAM
MC

SRAM

Reception
Control

RC
SRAM

RPUT
SRAM

M
U

To Central
Global Barrier
Logic in ND

To ND
Injection
FIFOs

To ND
Reception

FIFOs

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 02,2021 at 17:17:00 UTC from IEEE Xplore. Restrictions apply.

 Page 6

The MU contains one slave port that communicates
exclusively with the cores at 800 MHz via the crossbar switch.
Software uses the slave to write and read the MU’s memory-
mapped IO (MMIO) registers and SRAM locations. All MMIO
accesses are 8 B wide. MMIO includes injection and reception
FIFO pointers, RDMA write base addresses (RDMA write base
addresses are used for memory translation as will be described
below), and various FIFO configuration registers. Unlike the
master port, slave operations are required to complete in-order
of arrival to ensure proper order of operations, e.g. one does not
want an MMIO store to enable an injection FIFO prior to the
preceding MMIO stores that set up the FIFO pointers.
Bandwidth is less of a concern for the slave port, and thus only
one slave port is necessary for the MU. The MU slave
communicates directly with the memory-mapped MU subunits,
such as the injection, reception, and RDMA write control logic,
as well as various memory mapped registers. Only one subunit
can be accessed via the slave at a time, however, those subunits
can be simultaneously processing messaging traffic.

C. Message Injection

On the sending side, software injects “descriptor” data
structures, defining the messages to be sent, into one or more
in-memory injection FIFOs (injection memory FIFOs,
imFIFOs). The MU hardware processes each descriptor by
splitting and packaging the message into network packets, and
injecting those packets into the network injection FIFOs. A
descriptor contains 64 B, including a 32 B packet header
template used by the MU to construct the header of each packet
of the message, a pointer to the payload of the message in the
local memory, the number of bytes in the message, interrupt
indicators, and an injection map indicating which network
injection FIFOs can be used to send the packets. The MU will
route each packet to one of the network injection FIFOs with
sufficient free space. Thus if the map permits multiple network
injection FIFOs, packets from the same message may be placed
into different network injection FIFOs. The MU supports local
memory copy, where the MU copies a message to another area
in the local memory. This feature is implemented using local
loopback network injection FIFOs. The MU supports prefetch
into L2, where the MU reads message data via a master port to
load it into L2, but does not send it to the network.

The injection control logic arbitrates the next message
descriptor to fetch for message injection into the network. The
injection control logic is connected to the MU slave and one of
the MU master ports. It contains the injection control SRAM
(ICSRAM) which stores start, size, head, and tail pointers for
each of the 544 injection memory FIFOs (imFIFOs). An
imFIFO is a circular buffer in memory. The ICSRAM also
stores the free space remaining in each imFIFO and a count of
the descriptors that have been injected from the corresponding
imFIFO. When free space in any imFIFO exceeds a
programmable threshold level, software can be notified by a
maskable threshold crossing interrupt that fires on a per-
imFIFO basis.

To send a message, software copies a descriptor into an
imFIFO at the location pointed to by the tail, and then moves
the tail past the descriptor. The MU sees that the imFIFO is
non-empty, and fetches descriptors starting at the location

pointed to by the FIFO’s head pointer. Once the message
associated with a descriptor has been sent, the MU moves the
head past that descriptor and begins to process the next
descriptor, until the head and tail pointers are equal and the
imFIFO is empty

While the descriptors in a given imFIFO are processed
sequentially, descriptors that are injected into different
imFIFOs are processed in parallel, hence the benefit of using
multiple imFIFOs. There are enough imFIFOs so that each
processor thread can have its own set of FIFOs, eliminating the
need to acquire locks.

Arbitration of descriptor fetches is performed by pseudo-
randomly selecting one winner from the set of non-empty
imFIFOs, while observing the necessary priorities. System
imFIFOs will always be selected first, followed by user high-
priority imFIFOs, followed by normal priority imFIFOs.
Descriptor fetch requests are queued prior to entering the
master port. This allows for descriptor fetch arbitration to
continue if the master port is busy servicing another requestor.
It is expected that at times the corresponding master port will
be very busy servicing descriptor fetches (e.g. software could
enable up to 32 imFIFOs in one cycle), so this master port is
purposely lightly loaded with other requestors.

The message control SRAM (MCSRAM) holds descriptors
fetched by the injection control logic for further processing by
iMEs. It can store up to one descriptor for each imFIFO, and up
to 544 descriptors in total. Subsequent message arbitration
logic assigns one of the descriptors available in MCSRAM to
an idle iME for further processing. It selects a descriptor
according to the three-level priority (system, high priority user,
normal user) associated with the originating imFIFO. When
there are multiple descriptors that have the same highest
priority, one of them is selected randomly. This arbitration
process is performed for each packet.

An iME builds a packet for the assigned descriptor and
stores it in the paired network injection FIFO for transmission.
It issues a request to a master port to fetch a portion of the
message data and puts it into the packet payload. It selects an
optimal master port request size out of the available sizes (32
B, 64 B, and 128 B), subject to the address alignment
requirements for each size. To support arbitrary alignment of
messages being sent, the iME issues an extra 32 B read for non
32 B aligned payload data to cover the packet’s entire payload.
As the packet flows out of the network injection FIFO, the
network logic packs the payload contiguously, dropping all
leading bytes not in the payload and zero filling the packet’s
trailing bytes. The iMEs can process different message
descriptors independently in parallel. Thus the MU can inject
packets into multiple network injection FIFOs in parallel,
keeping the network links busy.

D. Message Reception

On the reception side, the packets arrive in the network
reception FIFOs. The MU receives the packets and writes them
into the appropriate location in the memory system. The MU
distinguishes between three different types of packets, and
accordingly performs different operations:

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 02,2021 at 17:17:00 UTC from IEEE Xplore. Restrictions apply.

 Page 7

• Memory FIFO - The MU hardware copies the packets
from the network reception FIFOs into one of the in-
memory reception FIFOs (reception memory FIFOs,
rmFIFOs) as specified in the packet. Software polls the
rmFIFOs and processes the received packets.
Optionally the MU can raise an interrupt when the last
packet of a memory FIFO message has been received
and stored to the local memory.

• RDMA write - The MU hardware copies the payload
from the network reception FIFOs directly into the
predetermined location. After storing the payload, the
MU updates a reception byte counter in the local
memory system, via an L2 atomic operation. The write
locations for the data and byte counter are specified in
the packet. Software polls this byte counter to detect
message completion.

• RDMA read - The MU hardware treats the packet
payload as one or more descriptors and injects those
descriptors into a designated imFIFO so they can be
processed by the injection MU hardware. The imFIFO
is specified in the packet. In a typical usage, these
descriptors generate RDMA write packets to transmit
the desired data back to the sender node of the RDMA
read packet.

An rME reads out a received packet from the paired
network reception FIFO and stores it in the local memory,
subject to the semantics described above for each packet type.
The rMEs can operate independently in parallel. Thus the MU
can read out multiple network reception FIFOs in parallel,
keeping the network links busy. The rMEs pull data from the
network reception FIFOs at 4 B per 800 MHz cycle, which is
faster than the network can fill the reception FIFOs (4 B per
500 MHz network cycle). The rMEs buffer and align these data
before writing to the master ports.

An rmFIFO is a circular buffer in memory with head and
tail pointers held and managed by Reception Control SRAM
(RCSRAM). RCSRAM supports up to 272 rmFIFOs. When a
memory FIFO packet arrives, the MU copies the packet at the
tail of the rmFIFO designated in the packet, and moves the tail
past the received packet. Optionally RCSRAM raises an
interrupt when the free space in an rmFIFO falls below a
specified threshold as a result of receiving the new packet.
When software sees that the tail has moved (via polling),
software processes the packet (e.g. copies the payload to a user
buffer), moves the head past the packet, and continues
processing packets until the head and tail pointers are equal and
the rmFIFO is empty.

There are enough rmFIFOs so that each hardware thread
can have its own set of FIFOs, eliminating the need to acquire
locks for FIFOs. Note that dynamically routed packets from the
same message may arrive in a different order from which they
were sent and the MU makes no attempt to re-order such
packets upon reception.

To allow multiple rMEs to process packets targeting the
same rmFIFO at the same time, RCSRAM maintains a shadow
tail, besides the regular tail visible from the processors. This
shadow tail points to the location up to where the FIFO space

has been reserved for some rMEs to store packets. It is different
from the regular tail pointer which points to the location up to
where packets have been completely stored. When an rME
starts to receive a new memory FIFO packet, it reads the
shadow tail, and atomically increments it by the size of the
packet for the next rME. Then the rME stores the packet to the
location pointed to by the original shadow tail. After storing the
packet, the rME increments the regular tail past the received
packet, if the following condition is satisfied. When an rME
atomically gets and updates the shadow tail, a unique sequence
number is assigned to maintain ordering among the rMEs.
Using this sequence number, the RCSRAM enforces that an
rME updates the regular tail in the same order as it obtained the
shadow tail. This algorithm ensures that the regular tail always
contains the correct value.

For virtual to physical memory translation on RDMA write
transfers, the receiver uses a base address table (BAT) stored in
the MU to determine the target address. The BAT holds up to
544 base addresses. The packet header contains one BAT ID to
indicate which base address is being used to locate the memory
to receive the message, and another BAT ID to indicate which
base address is being used to locate the reception counter.
These base addresses are added with the “put offset” and
“counter offset” in the packet header to determine the memory
location for storing payload data and updating the counter,
respectively. This is similar to the translation mechanism on
BG/P and avoids the complexity of page table translations.
These offsets are computed by the MU as packets are injected
into the network, based on initial offsets specified in the
message descriptor. Software protocols are used to set up the
correct translation base address tables.

An RDMA write transfer uses a reception counter to track
how much of the message has been received. The reception
counter is located anywhere in the local memory. In a typical
usage, its value is initialized by software to the number of bytes
in the message. As the message data is received, the MU
decrements the counter’s value via an L2 atomic operation.
When the counter’s value hits zero, the entire message has been
received. The memory location can be occupied by the
reception counter during the message transfer, and can then be
reused for any other purpose afterwards.

E. DCR & UPC

The MU’s Device Control Register (DCR) unit provides a
convenient way to access the configuration and interrupt
registers. The DCR unit connects via a DCR slave interface to a
DCR ring that circumnavigates the BG/Q compute chip and is
clocked at 100 MHz to save power.

The MU also contains a universal performance counter
(UPC) module that connects directly to a UPC ring. The UPC
module provides useful performance counts of packets and
messages injected and received, master port throughput (can be
calculated using Little’s Law), and slave port read and write
accesses. Other counts of interest, such as message descriptors
fetched per imFIFO are accessible via MMIO.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 02,2021 at 17:17:00 UTC from IEEE Xplore. Restrictions apply.

 Page 8

F. Global Barrier

The global barrier (and interrupt) network is embedded in
the BG/Q torus and is accessed via the MU. A barrier is
initiated by writing a memory mapped control register with the
MU slave. The network notifies the MU of barrier completion
by writing a MMIO barrier status register in the MU that can be
polled by software through the MU slave port. The barrier
operation does not require injection of descriptors to imFIFOs.

G. Software error, SER, and Physical Design

The MU has extensive logic to protect the system from user
program errors. For example, the master ports have a set of
range registers to protect the local memory system. These
registers specify which address ranges in the local memory
space are accessible by the MU. Each request to a master port
is checked and rejected if it does not fall in a valid address
range. The MU also checks system/user permission where
applicable, to prevent a user program from affecting system
software.

All internal buffers and data paths in the MU are ECC
protected, providing very high resistance to soft errors. Most
other latches are protected with parity for single bit error
detection. Important state machines and control flags are
implemented using hardened latches. Upon detecting an
uncorrectable bit error, each submodule will stop operating to
prevent the bit error from propagating to the network or local
memory system.

The MU reports error conditions via DCR interrupt
registers. They are individually maskable and are consolidated
(programmably) into three groups, critical, non-critical, and
machine check interrupts.

The MU is only 1% of the total chip area and is over 92%
clock gated to save power.

IV. SOFTWARE SUPPORT

The BG/Q system’s software provides highly optimized C
inlines via the System’s Programming Interface (SPI) for
applications, message layer libraries, kernels and system’s
software to program the MU and the Torus interconnect via the
MU. The SPIs are a thin software abstraction layer of the BG/Q
network and MU hardware. They are flexible and a very large
number of message passing and resource allocation algorithms
can be implemented using the SPIs. For example, a message
layer library can implement point-to-point and collective
algorithms optimized for the semantics of MPI and PGAS
runtimes, while an application that requires different resource
management or different point-to-point or collective algorithms
can directly program to the SPIs for optimized performance. In
addition, kernels such as the Blue Gene Compute Node Kernel
can program the MU for function shipping I/O system calls to
the I/O nodes.

The BG/Q low level messaging software is itself layered as
shown in Figure 3.

Figure 3. SPI and HWI components.

In the top layer are the various message layers, kernels, and
applications that wish to send and receive messages using the
low-level messaging software, either using SPI or directly
programming through the Hardware Interface (HWI). The
message layer software typically supports initialization and
management of network resources and implements point-to-
point and collective algorithms. High level libraries (not shown
in figure) such as MPI are being built on top of message layers.

An MU HWI (Message Unit Hardware Interface) layer
defines the structures and bits used by the MU SPIs to
manipulate the MU hardware. Low level messaging users use
some of these definitions to describe the messages being sent.

There are two SPI layers providing the majority of the
interfaces:

1. MU-Kernel SPIs: This layer provides kernel neutrality to
the SPIs. These interfaces allocate, initialize, configure,
and free MU resources such as injection FIFOs, reception
FIFOs, base address table entries and collective class
routes. The implementation of these functions is kernel-
dependent, but the interfaces are standard across kernels.
The goal behind standardizing on the SPIs across kernels
is so a user, to the extent possible, does not have to
modify his or her application to run on the different
kernels. Release 1 of the BG/Q software stack will
contain a Compute Node Kernel (CNK) implementation
of the kernel SPI. As the MU descriptors require physical
addresses of source buffers, the Kernel SPIs also define
interfaces to translate virtual addresses to physical
addresses.

2. Message Unit (MU) SPIs: These interfaces build message
descriptors for the message being sent, inject descriptors
to initiate message send operations, receive message
packets, and check for message completion. They can be
used by all low-level messaging users regardless of
whether they are user-mode applications or kernel-mode
system code.

Applications or users of the SPIs must use the kernel
interfaces to allocate resources and then build descriptors to
define the communication patterns and then inject descriptors
to initiate communication. There are several descriptors to
define FIFO, remote put (RDMA write) and remote get
(RDMA read) operations for point-to-point and collective
communication.

Completion of sent messages is detected by observing the
descriptor counter in the MU injection FIFO. The MU

Inlines + System Calls

MU (Hardware)

MU HWIs

MU-Kernel SPIs

Message Layers,
Kernels, Applications

MU SPIs

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 02,2021 at 17:17:00 UTC from IEEE Xplore. Restrictions apply.

 Page 9

hardware increments a 64 bit counter after the all the data for a
descriptor has been injected on the network. On the receiver,
reception FIFOs can be polled to receive packets or counters
reaching zero can notify completion of RDMA reads to the
application.

For collective communication operations, a class-route that
describes the nodes in the collective must be configured via the
class route management SPIs on all the participating nodes
before the collective operation is initiated. For example, the
MPI library can configure class routes in the MPI_Comm_split
call to use network acceleration on the sub-communicator.
Similarly to point-to-point messages, broadcast and allreduce
messages are initiated by injecting collective descriptors into an
injection FIFO. The different target buffers in a broadcast or an
allreduce can have different alignments. A base address table
can be setup to store the buffer address and the descriptor can
have a single offset of 0 B on all the participating nodes.

V. PERFORMANCE MEASUREMENTS

We present performance results on up to 512 BG/Q pass 2
prototype nodes. We developed simple C language benchmarks
such as ping-pong, nearest neighbor, broadcast and allreduce
using the SPI calls and ran them on the prototype hardware.

A. Short Message Latency

Ping-Pong SPI benchmark results using direct put point-to-
point transfers are presented in Table 1. These results show
increased latency as the network hops increase. It also shows a
breakdown of where the time is being spent. The hardware
delay is time spent by the network and MU performing the
transfer (after injecting the descriptor until an indication of the
arrival of the message occurs). The software delay is time spent
by software injecting the descriptor, monitoring for completion,
and minor loop control.

Performance results show that the hardware latency varies
from 0.62 μs at 1 network hop to 1.17 μs at 13 network hops.
Software adds about 95 ns to 100 ns overhead. The delta hop
delay should be the expected 40 ns average delay through a
node plus card trace length, cable and linkchip delays. Thus the
actual measured delay depends on the path taken between the
nodes. In the measurements of Table 1, the ping node is always
(0,0,0,0,0), and pong node coordinate increases in the order of
A, B, C, D and E. There are no linkchips involved in any path.
The average latency (the 13 hop minus 1 hop latency divided
by 12 hops) is 45.3 ns. In a large 20 PFlops peak BG/Q system,
the average number of hops is 15.5 for random or all-to-all
communication patterns. In a multiple midplane system there
will be additional delays through linkchips and optical fibers.

Table 1 Ping-Pong Latency on a 512 Node Mesh
Network

Hops
Hardware

Latency (ns)
Delta Hop
Delay (ns)

Hardware+Software Latency
(ns)

1 622 718
2 671 49 769
3 713 41 813
4 760 47 856
5 808 48 906
6 849 41 950
7 891 42 989
8 940 49 1038

9 981 41 1080
10 1022 41 1122
11 1069 47 1166
12 1118 47 1216
13 1166 48 1264

B. Nearest Neighbor Throughput

We ran an SPI benchmark to measure the achievable
throughput to nearest neighbors on the 5D torus on a single
node, where the links are looped back. For example the A+
direction is looped back to the A- direction, so all out-going
data on the A+ direction arrives on the A- links and vice versa.
The benchmark allocated 10 injection FIFOs for the 10
different directions on a 5D torus. A RDMA write descriptor is
injected to initiate data movement on the looped back links.

Table 2 Nearest Neighbor Link Send+Receive Throughput
Message Size Throughput

(GB/sec)
% of Raw

Link
Bandwidth

% of Effective
Peak Data
Utilization

4 KB 17.0 42.5 47.2
8 KB 23.0 57.5 63.9

16 KB 27.9 69.8 77.5
32 KB 31.3 78.3 86.9
64 KB 33.3 83.3 92.5
128 KB 34.2 85.4 94.9
256 KB 34.9 87.1 96.8
512 KB 35.2 88.0 97.8
1 MB 35.4 88.4 98.3
2 MB 26.4 66.0 73.3
4 MB 24.7 61.8 68.6

256 MB 25.0 62.5 69.4

Table 2 shows the cumulative nearest neighbor link

throughput; send plus receive bandwidth for all 10 links. At 1
MB, the cumulative throughput achieved on the 10 links in
both directions is 35.4 GB/s which is an efficiency of 88.4% of
the raw link throughput and 98.3% of the peak 90% effective
data utilization of the links. This demonstrates the effectiveness
of the highly parallel network and MU design. When message
sizes are less than or equal to 1 MB, all 20 send plus receive
streams fit in the L2 and there is sufficient memory bandwidth
between the L2 and the MU. 2 MB and larger message sizes
spill L2 and degradation in throughput is observed. The
achievable bandwidth is limited by the DDR memory interface
instead of the MU and the network.

C. All-to-All performance

We ran an SPI-based all-to-all performance test where
each node sends a total of (n-1) messages, one to each of other
(n-1) nodes in the system. On a 512-node prototype, with 4
KB message size and dynamic routing, we obtained all-to-all
performance result at 95% of the theoretical peak. The
performance improved to 97% of peak for 32 KB message
sizes.

D. Collective communication performance

We ran collective latency and throughput benchmarks on
up to 512 nodes for floating point add reduction using direct
put messages.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 02,2021 at 17:17:00 UTC from IEEE Xplore. Restrictions apply.

 Page 10

Table 3 Collective Latency
Number of Nodes Total Hops

(Round Trip)
Latency (ns) Per Hop Delay

(ns)
2 2 641
4 4 742 50.5
8 6 876 67
16 8 984 54
32 10 1099 57.5
64 12 1203 52

128 14 1321 59
256 16 1443 61
512 18 1558 57.5

Table 3 shows the latency of 8 B collective floating point
add operations. The latency varies from 0.64 μs on 2 nodes to
1.56 μs on 512 nodes. The average per hop latency (16 hop
minus 2 hop latency divided by 14 hops) is 57.2 ns, which is
just over 12 ns (6 network cycles) greater than the average
ping-pong latency, in close agreement with earlier VHDL
simulation measurements. Due to measurement variation,
different paths, and somewhat different software used in the
ping-pong and collective tests, direct comparisons between the
collective and ping-pong latencies are not meaningful for a
small number of hops.

Table 4 Collective Throughput
Message

 Size
(KB)

Throughput
 (GB/sec)

% of Raw Link
Bandwidth

% of Effective Peak
Data Utilization

0.5 0.26 13.0 14.4

1 0.45 22.5 25.0
2 0.72 36.0 40.0

4 1.01 50.5 56.1

8 1.27 63.5 70.6

16 1.45 72.5 80.6
32 1.57 78.5 87.2

64 1.64 81.7 90.8

128 1.67 83.5 92.8

256 1.69 84.4 93.7

512 1.70 84.9 94.3

1024 1.70 85.1 94.6

Table 4 shows the throughput of long collective floating

point add operations measured on 512 nodes. Due to more
complex logic for collective sums the percent of peak is
slightly lower for collective communication than point-to-point
communication.

VI. CONCLUSION

This paper is the first description of the IBM Blue Gene/Q
interconnection network and message unit. The 5D torus
network with associated SerDes, and the highly parallel
message unit, which provides the functionality of a network
interface, are integrated onto the same chip as the processors
and cache memory, and consume 8% of the chip's area. BG/Q

integrates both collective and global barrier functions into the
torus network. A thin software layer enables applications to
achieve low-latency and high-throughput. For nearest neighbor
exchange using an SPI benchmark measured on real hardware,
best case throughput achieved on the 10 links in both directions
is 35.4 GB/s which is an efficiency of 88.4% of the raw link
throughput and 98.3% of the peak 90% effective data
utilization of the links. This demonstrates the effectiveness of
the highly parallel network and message unit design.

ACKNOWLEDGMENTS

The Blue Gene project is a team effort. We especially thank
the following people, whose contributions have touched the
network and MU in a variety of ways: R. Bellofatto, P. Boyle,
T. Bright, G. Chiu, P. Coteus, M. Giampapa, T. Gooding, R.
Haring, M. Kaufmann, G. Kopcsay, K.H. Kim, L. Lastras, J.
Marcella, M. McManus, T. Musta, B. Nathanson, M. Ohmacht,
B. Rosenburg, K. Sugavanam, T. Takken, J. Van Oosten, A.
Mamidala, J. Brunheroto, G. Dozsa, D. Miller, M. Blocksome
and B. Smith.

The Blue Gene/Q project has been supported and partially
funded by Argonne National Laboratory and the Lawrence
Livermore National Laboratory on behalf of the U.S.
Department of Energy, under Lawrence Livermore National
Laboratory subcontract no. B554331. We acknowledge the
collaboration and support of Columbia University and the
University of Edinburgh.

REFERENCES

[1] The IBM Blue Gene Team. “The Blue Gene/Q Compute Chip,”

Presented at the Hot Chips Conference 23, August 17-19, 2011.

[2] A. Gara et. al, “Overview of the Blue Gene/L system architecture,” IBM
Jorunal of Research and Development, vol 49, no. 2/3, pp. 195 – 212,
March/May 2005.

[3] The Blue Gene/P Team. “An overview of the BlueGene/P project,” IBM
Journal of Research and Development, vol. 52, no. 1/2, pp. 199 – 220,
January/March 2008.

[4] M.A. Adiga et. al, “Blue Gene/L torus interconnection network,” IBM
Jorunal of Research and Development, vol 49, no. 2/3, pp. 265 – 276,
March/May 2005.

[5] V. Puente, R. Beivide, J. A. Gregorio, J. M. Prellezo, J. Duato, and C.
Izu, ‘‘Adaptive Bubble Router: A Design to Improve Performance in
Torus Networks,’’ Proceedings of the IEEE 274 International
Conference on Parallel Processing, September 1999, pp. 58 – 67.

[6] S. Kumar, Y. Sabharwal, R. Garg and P. Heidelberger, Optimization of
All-to-all communication on the Blue Gene/L supercomputer, In
Proceedings of International Conference on Parallel Processing (ICPP),
Portland, Oregon, 2008.

[7] L. Kleinrock, Queueing Systems Volume II: Computer Applications.
New York: Wiley, 1976.

[8] A.X. Widmer, “Transmission code having local parity”, IBM US Patent
5,699,062, December 1997.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 02,2021 at 17:17:00 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

