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Abstract- This is the first paper describing the IBM Blue Gene/Q 
interconnection network and message unit. The Blue Gene/Q 
system is the third generation in the IBM Blue Gene line of 
massively parallel supercomputers. The Blue Gene/Q 
architecture can be scaled to 20 PF/s and beyond. The network 
and the highly parallel message unit, which provides the 
functionality of a network interface, are integrated onto the same 
chip as the processors and cache memory, and consume 8% of 
the chip's area. For better application scalability and 
performance, we describe new routing algorithms and new 
techniques to parallelize the injection and reception of packets in 
the network interface. Measured hardware performance results 
are also presented. 

Keywords- parallel computer architecture, interconnect 
technologies, router architecture, routing algorithms and 
techniques, network interface architecture 

I.  INTRODUCTION 

The IBM Blue Gene/Q (BG/Q) system is the third 
generation in the IBM Blue Gene line of massively parallel 
supercomputers. BG/Q can be scaled to 20 PF/s and beyond. 
An overview of BG/Q is given in [1], while the first generation 
Blue Gene/L and second generation Blue Gene/P are described 
in [2] and [3], respectively. This paper is the first detailed 
description of the BG/Q network and message unit. The highly 
parallel message unit (MU) provides the functionality of a 

network interface. Both the network logic and MU are 
integrated onto the same chip as the processors and cache 
memory and consume 8% of the chip’s area, including IO cells. 
The network, which is generally configured as a five 
dimensional torus, is described in Section II. Section III gives 
an overview of the MU. Software interfaces to the network and 
MU are described in Section IV and initial performance 
measurements are reported in Section V. 

 

II. INTERCONNECTION NETWORK 

A. Overview 

BG/Q systems consist of compute nodes and IO nodes. 
Applications run on the compute nodes while file IO is shipped 
from a compute to an IO node, where it is then sent over a PCIe 
interface to a file system. Compute nodes are interconnected 
via a five dimensional (5D) torus. To support a 5D torus, 10 
bidirectional ports, or links, are required. The logic implements 
an additional 11th link, the IO link, which is used to connect the 
compute and I/O nodes together. Each torus link, including the 
IO link, operates at 2 GB/s; each link/port can simultaneously 
send at 2 GB/s and receive at 2 GB/s. To match IO bandwidth 
to the external file system, only some compute nodes have the 
IO link attached to an IO node. Typically, an IO node is 
connected to two compute nodes. In addition, to save pins on 
the chip, IO nodes use the pins of one of the torus dimensions 
for the PCIe. The PCIe operates at 4 GB/s; the bandwidth of 
the two IO links from two compute nodes thus matches the 
PCIe bandwidth of the IO node. 

We now focus on the compute node torus and compare 
BG/Q to BG/L and BG/P. The network logic on BG/P is 
essentially identical to that of BG/L, the major difference being 
an increase in link bandwidth. BG/L has a 3D torus with 175 
MB/s per link. Thus each BG/Q link at 2 GB/s is 11.4 times 
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faster than a BG/L link and the total compute node torus 
bandwidth on BG/Q is 19 times that of BG/L. Similarly BG/P 
has a 3D torus with 425 MB/s links, so BG/Q links are 4.7 
times faster than BG/P links and the total BG/Q compute node 
torus bandwidth is 7.8 times that of BG/P.  

A 5D torus was chosen for three primary reasons. First, 
from a performance perspective, it achieves high nearest-
neighbor bandwidth while increasing bisection bandwidth and 
reducing the maximum number of hops (and latency) compared 
to a lower dimensional torus. For example, a 20 PF 
16x16x16x12x2 BG/Q has about 46 (19) times the bisection 
bandwidth than a 64x48x32 BG/L (BG/P) with the same 
number of nodes. Compared to BG/L, 11.4x of the 46x comes 
from increasing the link bandwidth from 175 MB/s to 2 GB/s 
and 4x comes from reducing the length of the maximum 
dimension, which for a fixed number of nodes is made possible 
by increasing the dimensionality of the network. Second, the 
torus permits partitioning a large machine into independent 
sub-machines; applications running in different partitions do 
not affect one another at all, except possibly for file IO. Third, 
from a packaging perspective, the torus permits most links, 
those within a midplane, to be electrical rather than optical, 
reducing cost. The links internal to a midplane (4x4x4x4x2) are 
through circuit cards. The links that are on the surface of this 5-
D cube connect through a link chip to an optical transceiver. 
The midplane is built from 2x2x2x2x2 boards; there are 32 
cards, each with one compute node, attached to the board. 
There are link chips on each board to connect via optics to 
boards in other midplanes. The dimensions are labeled 
A,B,C,D,E, with the opposing directions signified by, e.g., A- 
and A+. The last dimension E is constrained to always be of 
length two, thereby keeping its links entirely within a single 
board and reducing inter-board wiring within a midplane. The 
pins for the E dimension are used for PCIe on IO nodes. 

In addition to the torus network, BG/L and BG/P have a 
global barrier network and a collective network. To reduce 
cost, simplify inter-midplane cable connections and to maintain 
partitionability, since many applications do not use point-to-
point and collective messaging at the same time, BG/Q 
integrates barrier and collective functionality onto the torus 
network. 

Data packets on BG/Q include a 32 B header; 12 B for the 
network and 20 B for the MU. The data portion of the packet is 
from 0 to 512 B, in increments of 32 B chunks. With 8 trailing 
link level packet check bytes and protocol packet overhead, at 
most 90% of the raw link bandwidth, 1.8 GB/s, can be used for 
user data.  

On BG/Q, the 64 bit PowerPC cores operate at 1.6 GHz 
while the rest of the memory system, including the MU, 
operates at half that rate, 800 MHz. The internal network logic 
operates at 500 MHz; the network handles 4 B per network 
cycle thereby matching the 2 GB/s link bandwidth. 

The on-chip per hop latency for point-to-point packets on 
BG/Q is approximately 40 ns compared to approximately 97 ns 
on BG/L and 46 ns on BG/P. Of the 40 ns, which is 20 network 
cycles, 8 cycles are in the network logic (compared to 12 
network cycles on BG/L) with the rest being in the SerDes and 
high speed signaling. The worst case hardware one way point-

to-point latency on a large 16x16x16x12x2 system is expected 
to be about 2.6 μs, including cable delays. 

An overview of the network, showing its major units, is 
shown in Figure 1. There are 11 send units and 11 receive 
units; one for each of the links in the 5D torus and one for the 
IO link. All packets are injected into a network injection FIFO 
by the MU and all packets are pulled from a network reception 
FIFO by the MU. There are multiple injection and reception 
FIFOs divided up for normal priority user point-to-point data 
on the 5D torus, as well as intra-node local transfers, user high 
priority and system point-to-point data, and user and system 
collective data. The number of FIFOs is sufficient to ensure 
that all links can be kept busy simultaneously. Packets injected 
into any of the point-to-point injection FIFOs may go out any 
link, i.e., injection FIFOs are not tied to torus links. When a 
normal priority point-to-point packet arrives at its destination, 
it is placed into the reception FIFO associated with the receive 
unit on which the packet arrived. For example, packets arriving 
on the A- receiver are always placed in the A- reception FIFO. 
Upon reception, user high priority, system and collective 
packets are placed in their corresponding reception FIFOs. 

 
 
 
 
 
 
 
 

 
Figure 1.  The BG/Q Network Device (ND) Router  Logic 

B. Virtual Channels and Point-to-Point Routing 

To support an integrated network with user, system and 
collective traffic, BG/Q has more virtual channels (VCs) than 
BG/L. There are virtual channels (VCs) for point-to-point (user 
dynamic, user deterministic, user high priority, system) and for 
collective (user and system) traffic. Each receiver has separate 
buffers for each VC (with the exception that to reduce internal 
network VC storage, user commworld and system collective 
use the same physical VC; software ensures that these two 
logical VCs never use the same physical links) and there is 
virtual cut-through logic and token flow control similar to that 
in BG/L and described more fully in [4] and [5]. To improve 
BG/Q performance, we increased the number of packets that 
can be stored in each VC. To reduce head-of-line blocking, 
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BG/L and BG/P have two VCs for dynamic routing, but the 
deterministic VC is managed as a single queue FIFO. 
Improving upon that, a form of virtual output queuing is 
employed for BG/Q. Each point-to-point VC maintains 
multiple queues, each holding one or more packets. Packets in 
different queues requiring different links do not block one 
another, but deterministically routed packets in different queues 
that do require the same link are served in first-come-first-
served order, thus maintaining in-order delivery. When a 
dynamic packet is placed in a VC buffer, it selects the queue 
with the fewest number of packets in it. Packets in different 
dynamic VC queues do not block one another. Like BG/L, 
there are multiple data paths from each receiver so that multiple 
packets can be transferred simultaneously.   

Point-to-point routing is similar to BG/L in that “hint” bits 
specify which of the links can be used (at most one per 
dimension). However, there are several important 
improvements to boost performance, especially for asymmetric 
tori. First, the dimension order for deterministically routed 
packets is programmable whereas it was fixed on BG/L. This 
permits routing longest dimension first, which is typically most 
efficient. Second, for dynamically routed packets, “zone” 
routing is introduced in which several packet header bits 
indicate which set of programmable zone masks (stored in 
network control registers) are to be used. These permit dynamic 
routing but constrain the order in which dimensions are routed. 
For example, in a 16x16x12x12x2 torus, they can be 
programmed to route longest dimensions first; A or B first, 
then C or D, then E. As BG/L routing is very efficient on 
symmetric tori, this effectively breaks the routing into 
symmetric zones of decreasing size, thus packets tend to move 
from the busy links to either equally busy links, or more lightly 
loaded links [6]. This reduces pressure on internal network 
buffers, thereby improving performance. For example, detailed 
near cycle accurate (parallel) simulations of an all-to-all pattern 
of a 16x8x8x8 torus showed that performance improved from 
66% of network peak without zone routing to 93% of peak with 
zone routing. Simulations of zone routing on a 16x16x16x8 
torus achieved 99% of network peak. 

Routing from a compute node to an IO node is handled as 
follows. The packet destination specifies the coordinates of an 
“exit” node, that compute node whose IO link is attached to an 
IO node. The packet routes deterministically to the exit node. If 
a “toIO” bit in the packet header is set, the packet then routes to 
the attached IO node over the IO link, where it is received. 
When routing from an IO node to a compute node, the packet 
destination specifies the coordinates of the compute node 
destination. The packet routes over the IO link to the attached 
compute node, and then to its final compute node destination. 
Only system packets can route over the IO links. 

Like BG/L, BG/Q supports broadcasts down a line of a 
torus dimension using the point-to-point virtual channels. 

C. Collective Support 

BG/Q implements support for collective operations within 
the network. BG/Q support for collectives improves over BG/L 
in two primary ways. First, whereas BG/L required two passes 
over the collective network for floating point reductions, BG/Q 

incorporates logic for one pass double precision floating point 
sums. Second, BG/Q supports collective operations over MPI 
sub-communicators, provided they are contiguous sub-
rectangles of the torus (e.g., over lines, planes, 3D sub-cubes, 
etc).  

The collective unit supports floating point add, min and 
max as well as the following fixed point operations: signed and 
unsigned add, signed and unsigned min and max, bitwise AND, 
OR and XOR. Header-only packets (0 B payload) are valid 
collective packets as well, and can be used for short broadcasts 
or barriers. Broadcast, reduce to a single node and all reduce to 
all nodes are supported. In addition, a single node can 
broadcast a short remote get packet (rDMA read, see Section 
III) onto the network thereby causing a long message reduce or 
all reduce on the network. 

The nodes participating in a collective are defined by class 
routes, are programmed into control registers on each node and 
specify a contiguous (non-binary) tree which is embedded 
within the torus network. Packets go up the tree, being reduced 
on each hop and are turned around at the tree’s root and 
broadcast back down the tree. The class routes specify which 
links are inputs on the uptree path, which link is the uptree 
output (there is none at the root) and whether or not there is a 
contribution from the local node. Each node can participate in 
up to 16 different class routes, but there can be many more than 
16 class routes in the machine. For example, there could be a 
class route for each two dimensional AB plane and all of these 
could be active simultaneously without any interference 
between them. Packets can be flowing uptree and downtree at 
the same time, but at any given time the uptree (downtree) 
collective logic can be active processing packets from only one 
class route. For reductions, uptree packets are stored in the 
receiver’s VC buffers until packets from all of the class route’s 
inputs have been received. There can be up to 12 inputs: 11 
from each of the links and one local contribution. When the 
output link is free, the packets proceed through parallel, 
multilevel 2-input, 1-output ALUs with the combined packet 
being sent on the output link.  

Floating point additions are bit-reproducible; if each node 
inputs the same floating point numbers on two different runs on 
the same machine geometry and with the same class route, the 
results of the floating point additions will be the same in both 
runs. The collective logic has a floating point front end unit that 
computes the maximum exponent over all inputs. The ALUs 
operate at link speed, 4 B per network cycle. As the combined 
packet emerges from the ALUs it enters a floating point back 
end unit that formats the maximum exponent and combined 
mantissa into an IEEE compliant floating point number. When 
NaNs or integer overflows are generated by the collective 
logic, a maskable interrupt bit is set on the node and a flag bit 
that trails the packet is set so that all nodes in the class route 
can be informed of the exception.  

Reductions occur at near link bandwidth, up to 86% of the 
raw link bandwidth. Floating point reductions add an average 
of 6 network cycles (12 ns) to the per hop point-to-point 
latency (9 cycles uptree and 3 downtree). The hardware latency 
for a short allreduce on a 16x16x16x12x2 BG/Q is expected to 
be about 6.5 μs. 
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D. Barrier Support 

To further reduce the latency of barriers, BG/Q implements 
special barrier packets and logic. 16 barrier classes can be set 
up, similar to the collective classes. A global OR of the inputs 
of each class is performed on each node and when that 
changes, a barrier packet is sent up (or back down) the tree. 
The hardware latency for a barrier on a 16x16x16x12x2 BG/Q 
is expected to be about 6.3 μs. Barriers are initiated via writes 
to a memory mapped IO register in the MU and completion is 
detected by an MU memory mapped IO read. This logic can 
also be used to support global interrupts across the network.  

E. Network Router Arbitration 

The network router logic implements a distributed 
arbitration mechanism. Each sender broadcasts its link 
available and token (free buffer space in the neighboring 
node’s receiver) available signals for each virtual channel to all 
receivers and injection FIFOs. Each point-to-point VC in a 
receiver then selects a packet from the queues to serve and 
sends an arbitration request to the receiver’s main arbiter when 
the outgoing sender’s link and tokens are available. The 
receiver main arbiter picks a winner from all requesters and 
forwards the arbitration request to a sender. A point-to-point 
injection FIFO arbitrates similarly to a receiver, but only 
services one packet at a time. 

Collective arbitrations are handled by the central collective 
logic. When a collective packet arrives at a receiver’s collective 
VC or at a collective injection FIFO, a request is raised to the 
central collective logic until it is granted. The central collective 
logic has separate up-tree and down-tree arbitration logic and 
gives priority to system collective operations. 

The sender arbitration logic gives grants in the following 
priority order. Firstly, grants are given to collective or system 
point-to-point requests. Within collective requests, priority is 
given to down-tree broadcasts. Secondly, grants are given to 
user high priority point-to-point requests. Thirdly, the lowest 
priority is given to normal user (dynamic and deterministic) 
traffic. For point-to-point traffic within each priority class, the 
ratio of grants for cut-through traffic from receivers to grants 
for injections can be programmed via a control register. Short 
packets for barriers and link level protocols can be sent in 
between data packets when needed. 

F. Performance Counters, Protocols, RAS and Physical 
Design 

The network maintains a number of programmable 
performance counters: four per sender and two per receiver. 
The sender counters can be used to measure link utilization, 
aggregating a number of VCs onto different performance 
counters. For example, link utilization due to user point-to-
point, system point-to-point, user collective and system 
collective traffic can be simultaneously and separately counted. 
On the receiver side, the number of packets (programmable 
over VCs) and the time integral of the number of packets in 
queue can be counted. This permits measuring the mean packet 
queue length, and by Little’s Law, L=�W, the mean waiting 
time in a receiver can be inferred (e.g. [7]). 

A standard, similar to BG/L, link level protocol is used. As 
packets are sent on a link a copy is stored in a retransmission 
FIFO for later retransmission if an appropriate 
acknowledgement is not received within a programmable 
timeout. Because of 8/10 encoding that occurs when packets go 
over optical links (between midplanes), a single bit error on a 
fiber can result in an 8 bit error burst. Two such errors in the 
same packet can exceed the guaranteed detection properties of 
most CRCs. As a result, symbol oriented Reed-Solomon (RS) 
codes are used instead of CRCs and appended to the end of a 
packet. There is a fixed 10 bit RS code word that covers the 
unchanging part of a packet (e.g., excludes the link level 
sequence number) and follows the packet all the way through 
the network. In addition there are five 10 bit per hop RS code 
words that cover the entire packet. This code is capable of 
detecting any five symbol errors and has an escape rate of 2-50. 
There are also extensive error consistency checks on the 
packet’s network header, including an 8 bit Hamming code that 
detects any three bits of error in the header. Like BG/L, there 
are CRCs that cover all packets sent and all packets received 
over a link. At the end of a run the paired sender and receiver 
CRCs must be equal; else there was a packet level RS code 
escape.  

All data paths and internal buffers (VC, injection, reception, 
retransmission) are covered by single bit correct, double bit 
detect ECC codes. Most other critical latches, such as state 
machine latches, use hardened latches and have parity 
detection.  

The network logic comprises just 3% of the chip’s area and 
is 85% clock-gated to save power. The SerDes consumes an 
additional 4% of the chip area.   

G. Link Chip and Partitioning   

As mentioned earlier, each board has a number of link chips (9 
per 32-node board). These link chips provide support for the 
optical modules, including encode/decode, fiber sparing and 
on-the-fly single bit error correction using an IBM 8B/10B-P 
code [8]. This code is a modification of the standard 8B/10B 
code with Hamming distance two. The parity of several data 
lanes is also encoded and sent over a spare fiber. If a single bit 
error occurs on a fiber an invalid symbol is detected upon 
reception. If one and only one single bit error occurs over the 
parallel 8 bit words, the parity can be used to correct it. Error 
counters on the link chip can detect when fibers are going bad; 
the bad fiber can be replaced by a spare with only minimal 
application impact.  

For partitioning, the link chips can be programmed to loop 
a midplane’s links back into the midplane, to the next 
midplane, or individual links can be held in reset. This makes it 
impossible for packets to cross from one partition to another. In 
a dimension, if the full machine is of length n nodes, then a 
torus is obtained when the partition size is either n or 4 nodes. 
Otherwise, the partitioned dimension is a mesh.   
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III. MESSAGE UNIT 

A. Overview 

The message unit, as shown in Figure 2. provides the 
interface between the network and the BG/Q memory system. 
It is designed to provide low latency and high throughput, 
enough to keep all the links busy. The MU provides similar 
functionality to the BG/P DMA, supporting direct puts (RDMA 
write), remote gets (RDMA read) and memory FIFO messages. 
The MU maintains pointers to memory for up to 544 injection 
memory FIFOs and 272 reception memory FIFOs. Cores 
initiate messages by placing a 64 B descriptor into a slot of an 
injection memory FIFO and updating that FIFO’s tail pointer. 
A message may target one or more network injection FIFOs; 
each packet of the message is placed into one of the specified 
network injection FIFOs. The MU packetizes messages and 
provides for simple address translation on the reception side. 
Messages can have arbitrary byte alignment and incoming 
packets can optionally cause processor interrupts. The MU 
exploits the BG/Q L2 atomic functionality, so that message 
byte counters are updated in memory via atomic increments. In 
comparison, BG/P is limited to only 256 (memory mapped) 
message byte counters that are stored in the DMA. The MU 
can also transfer data to/from memory, performing an atomic 
operation during the transfer. This may be useful for locks, 
work queues, packet flow control, etc. Whereas the BG/P 
DMA has two engines, one for injecting packets and one for 
receiving packets, the MU has a multitude of engines; one 
injection Messaging Engine (iME) for each network injection 
FIFO and one reception Messaging Engine (rME) for each 
network reception FIFO. The iMEs and rMEs share multiple 
master ports on the BG/Q memory system crossbar switch. The 
master port bandwidth is sufficient to support all 10 (user 
mode) torus links of the network when the messages fit in L2. 
Early VHDL logic simulation measurements show that up to 
97.8% of the peak effective data utilization of the links is 
obtained for a full 5D nearest neighbor exchange. These 
simulations have been confirmed by hardware measurements. 
The MU also has one slave port to the crossbar switch and thus 
provides memory-mapped addresses for software to update 
FIFO pointers, set up address translation, and handle certain 
interrupt conditions.  

The MU has extensive logic and checks to separate user 
from system traffic, and to prevent user-space errors from 
interfering with system messaging. All internal buffers and data 
paths in the MU are ECC protected, providing very high 
resistance to soft errors. 

B. Interface to Local Memory System 

1)  Master ports 
The MU contains multiple master ports that communicate 

with 16 L2 blocks (L2 slices) via a crossbar switch. All MU 
reads and writes pass through the globally shared L2 cache and 
the MU depends on the L2 to manage coherency across the 
node’s memory system. The master port bandwidth is sufficient 
to keep all network links simultaneously busy. The master 
ports are shared by requestors consisting of the iMEs, the 
rMEs, and the message descriptor fetch logic. Although the 
switch and master ports have separate read and write data paths 

(thus read data can return while write data is being sent), the 
crossbar can only schedule one read or one write request per 
cycle per master port. Each of the requestors is fixed to one of 
the master ports in an attempt to load balance evenly across the 
master ports. Furthermore, each requestor assigns a priority to 
its load/store request, which can be either system (highest), 
user high-priority (medium), or user normal-priority (lowest). 
The master port pseudo-randomly selects one requestor per 
cycle while obeying the priorities. So it is possible for system 
requests to block user requests but not vice-versa. System 
message descriptor fetches are assigned system priority while 
user message descriptor fetches are given a higher priority than 
normal injection and reception traffic so that messages are 
always queued up to inject and iMEs are not idle waiting for 
message descriptors to return from memory.  

 

 

Figure 2.  The BG/Q Message Unit (MU) Logic 
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requests that have been scheduled by the switch. This LUT 
contains 16 slots, one slot per L2 slice, and is typically fed by a 
slower request FIFO that preserves request ordering for a given 
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LUT and a new request arrives targeting that slot, it is allowed 
to immediately populate that slot and bypass the FIFO provided 
that the FIFO does not also have a queued request targeting that 
same slot. The master port can buffer multiple requests for a 
given destination L2 slice, but crossbar scheduling and latency 
is best when striding accesses across the 16 different L2 slices. 

Read data returns from the switch at a rate of 32 B per cycle 
in either 32, 64, or 128 B chunks. The data is immediately 
passed to the appropriate network injection FIFO. This 
implementation provides low-overhead and high bandwidth 
message injection. 
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The MU contains one slave port that communicates 
exclusively with the cores at 800 MHz via the crossbar switch. 
Software uses the slave to write and read the MU’s memory-
mapped IO (MMIO) registers and SRAM locations. All MMIO 
accesses are 8 B wide. MMIO includes injection and reception 
FIFO pointers, RDMA write base addresses (RDMA write base 
addresses are used for memory translation as will be described 
below), and various FIFO configuration registers. Unlike the 
master port, slave operations are required to complete in-order 
of arrival to ensure proper order of operations, e.g. one does not 
want an MMIO store to enable an injection FIFO prior to the 
preceding MMIO stores that set up the FIFO pointers. 
Bandwidth is less of a concern for the slave port, and thus only 
one slave port is necessary for the MU. The MU slave 
communicates directly with the memory-mapped MU subunits, 
such as the injection, reception, and RDMA write control logic, 
as well as various memory mapped registers. Only one subunit 
can be accessed via the slave at a time, however, those subunits 
can be simultaneously processing messaging traffic. 

C. Message Injection 

On the sending side, software injects “descriptor” data 
structures, defining the messages to be sent, into one or more 
in-memory injection FIFOs (injection memory FIFOs, 
imFIFOs). The MU hardware processes each descriptor by 
splitting and packaging the message into network packets, and 
injecting those packets into the network injection FIFOs. A 
descriptor contains 64 B, including a 32 B packet header 
template used by the MU to construct the header of each packet 
of the message, a pointer to the payload of the message in the 
local memory, the number of bytes in the message, interrupt 
indicators, and an injection map indicating which network 
injection FIFOs can be used to send the packets. The MU will 
route each packet to one of the network injection FIFOs with 
sufficient free space. Thus if the map permits multiple network 
injection FIFOs, packets from the same message may be placed 
into different network injection FIFOs. The MU supports local 
memory copy, where the MU copies a message to another area 
in the local memory. This feature is implemented using local 
loopback network injection FIFOs. The MU supports prefetch 
into L2, where the MU reads message data via a master port to 
load it into L2, but does not send it to the network. 

The injection control logic arbitrates the next message 
descriptor to fetch for message injection into the network. The 
injection control logic is connected to the MU slave and one of 
the MU master ports. It contains the injection control SRAM 
(ICSRAM) which stores start, size, head, and tail pointers for 
each of the 544 injection memory FIFOs (imFIFOs). An 
imFIFO is a circular buffer in memory. The ICSRAM also 
stores the free space remaining in each imFIFO and a count of 
the descriptors that have been injected from the corresponding 
imFIFO. When free space in any imFIFO exceeds a 
programmable threshold level, software can be notified by a 
maskable threshold crossing interrupt that fires on a per-
imFIFO basis. 

To send a message, software copies a descriptor into an 
imFIFO at the location pointed to by the tail, and then moves 
the tail past the descriptor. The MU sees that the imFIFO is 
non-empty, and fetches descriptors starting at the location 

pointed to by the FIFO’s head pointer. Once the message 
associated with a descriptor has been sent, the MU moves the 
head past that descriptor and begins to process the next 
descriptor, until the head and tail pointers are equal and the 
imFIFO is empty 

While the descriptors in a given imFIFO are processed 
sequentially, descriptors that are injected into different 
imFIFOs are processed in parallel, hence the benefit of using 
multiple imFIFOs. There are enough imFIFOs so that each 
processor thread can have its own set of FIFOs, eliminating the 
need to acquire locks. 

Arbitration of descriptor fetches is performed by pseudo-
randomly selecting one winner from the set of non-empty 
imFIFOs, while observing the necessary priorities. System 
imFIFOs will always be selected first, followed by user high-
priority imFIFOs, followed by normal priority imFIFOs. 
Descriptor fetch requests are queued prior to entering the 
master port. This allows for descriptor fetch arbitration to 
continue if the master port is busy servicing another requestor. 
It is expected that at times the corresponding master port will 
be very busy servicing descriptor fetches (e.g. software could 
enable up to 32 imFIFOs in one cycle), so this master port is 
purposely lightly loaded with other requestors.  

The message control SRAM (MCSRAM) holds descriptors 
fetched by the injection control logic for further processing by 
iMEs. It can store up to one descriptor for each imFIFO, and up 
to 544 descriptors in total. Subsequent message arbitration 
logic assigns one of the descriptors available in MCSRAM to 
an idle iME for further processing. It selects a descriptor 
according to the three-level priority (system, high priority user, 
normal user) associated with the originating imFIFO. When 
there are multiple descriptors that have the same highest 
priority, one of them is selected randomly. This arbitration 
process is performed for each packet. 

An iME builds a packet for the assigned descriptor and 
stores it in the paired network injection FIFO for transmission. 
It issues a request to a master port to fetch a portion of the 
message data and puts it into the packet payload. It selects an 
optimal master port request size out of the available sizes (32 
B, 64 B, and 128 B), subject to the address alignment 
requirements for each size. To support arbitrary alignment of 
messages being sent, the iME issues an extra 32 B read for non 
32 B aligned payload data to cover the packet’s entire payload. 
As the packet flows out of the network injection FIFO, the 
network logic packs the payload contiguously, dropping all 
leading bytes not in the payload and zero filling the packet’s 
trailing bytes. The iMEs can process different message 
descriptors independently in parallel. Thus the MU can inject 
packets into multiple network injection FIFOs in parallel, 
keeping the network links busy. 

D. Message Reception 

On the reception side, the packets arrive in the network 
reception FIFOs. The MU receives the packets and writes them 
into the appropriate location in the memory system. The MU 
distinguishes between three different types of packets, and 
accordingly performs different operations: 
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• Memory FIFO - The MU hardware copies the packets 
from the network reception FIFOs into one of the in-
memory reception FIFOs (reception memory FIFOs, 
rmFIFOs) as specified in the packet. Software polls the 
rmFIFOs and processes the received packets. 
Optionally the MU can raise an interrupt when the last 
packet of a memory FIFO message has been received 
and stored to the local memory. 

• RDMA write - The MU hardware copies the payload 
from the network reception FIFOs directly into the 
predetermined location. After storing the payload, the 
MU updates a reception byte counter in the local 
memory system, via an L2 atomic operation. The write 
locations for the data and byte counter are specified in 
the packet. Software polls this byte counter to detect 
message completion. 

• RDMA read - The MU hardware treats the packet 
payload as one or more descriptors and injects those 
descriptors into a designated imFIFO so they can be 
processed by the injection MU hardware. The imFIFO 
is specified in the packet. In a typical usage, these 
descriptors generate RDMA write packets to transmit 
the desired data back to the sender node of the RDMA 
read packet. 

An rME reads out a received packet from the paired 
network reception FIFO and stores it in the local memory, 
subject to the semantics described above for each packet type. 
The rMEs can operate independently in parallel. Thus the MU 
can read out multiple network reception FIFOs in parallel, 
keeping the network links busy. The rMEs pull data from the 
network reception FIFOs at 4 B per 800 MHz cycle, which is 
faster than the network can fill the reception FIFOs (4 B per 
500 MHz network cycle). The rMEs buffer and align these data 
before writing to the master ports.  

An rmFIFO is a circular buffer in memory with head and 
tail pointers held and managed by Reception Control SRAM 
(RCSRAM). RCSRAM supports up to 272 rmFIFOs. When a 
memory FIFO packet arrives, the MU copies the packet at the 
tail of the rmFIFO designated in the packet, and moves the tail 
past the received packet. Optionally RCSRAM raises an 
interrupt when the free space in an rmFIFO falls below a 
specified threshold as a result of receiving the new packet. 
When software sees that the tail has moved (via polling), 
software processes the packet (e.g. copies the payload to a user 
buffer), moves the head past the packet, and continues 
processing packets until the head and tail pointers are equal and 
the rmFIFO is empty.  

There are enough rmFIFOs so that each hardware thread 
can have its own set of FIFOs, eliminating the need to acquire 
locks for FIFOs. Note that dynamically routed packets from the 
same message may arrive in a different order from which they 
were sent and the MU makes no attempt to re-order such 
packets upon reception. 

To allow multiple rMEs to process packets targeting the 
same rmFIFO at the same time, RCSRAM maintains a shadow 
tail, besides the regular tail visible from the processors. This 
shadow tail points to the location up to where the FIFO space 

has been reserved for some rMEs to store packets. It is different 
from the regular tail pointer which points to the location up to 
where packets have been completely stored. When an rME 
starts to receive a new memory FIFO packet, it reads the 
shadow tail, and atomically increments it by the size of the 
packet for the next rME. Then the rME stores the packet to the 
location pointed to by the original shadow tail. After storing the 
packet, the rME increments the regular tail past the received 
packet, if the following condition is satisfied. When an rME 
atomically gets and updates the shadow tail, a unique sequence 
number is assigned to maintain ordering among the rMEs. 
Using this sequence number, the RCSRAM enforces that an 
rME updates the regular tail in the same order as it obtained the 
shadow tail. This algorithm ensures that the regular tail always 
contains the correct value.  

For virtual to physical memory translation on RDMA write 
transfers, the receiver uses a base address table (BAT) stored in 
the MU to determine the target address. The BAT holds up to 
544 base addresses. The packet header contains one BAT ID to 
indicate which base address is being used to locate the memory 
to receive the message, and another BAT ID to indicate which 
base address is being used to locate the reception counter. 
These base addresses are added with the “put offset” and 
“counter offset” in the packet header to determine the memory 
location for storing payload data and updating the counter, 
respectively. This is similar to the translation mechanism on 
BG/P and avoids the complexity of page table translations. 
These offsets are computed by the MU as packets are injected 
into the network, based on initial offsets specified in the 
message descriptor. Software protocols are used to set up the 
correct translation base address tables. 

An RDMA write transfer uses a reception counter to track 
how much of the message has been received. The reception 
counter is located anywhere in the local memory. In a typical 
usage, its value is initialized by software to the number of bytes 
in the message. As the message data is received, the MU 
decrements the counter’s value via an L2 atomic operation. 
When the counter’s value hits zero, the entire message has been 
received. The memory location can be occupied by the 
reception counter during the message transfer, and can then be 
reused for any other purpose afterwards. 

E. DCR & UPC 

The MU’s Device Control Register (DCR) unit provides a 
convenient way to access the configuration and interrupt 
registers. The DCR unit connects via a DCR slave interface to a 
DCR ring that circumnavigates the BG/Q compute chip and is 
clocked at 100 MHz to save power.  

The MU also contains a universal performance counter 
(UPC) module that connects directly to a UPC ring. The UPC 
module provides useful performance counts of packets and 
messages injected and received, master port throughput (can be 
calculated using Little’s Law), and slave port read and write 
accesses. Other counts of interest, such as message descriptors 
fetched per imFIFO are accessible via MMIO. 
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F. Global Barrier 

The global barrier (and interrupt) network is embedded in 
the BG/Q torus and is accessed via the MU. A barrier is 
initiated by writing a memory mapped control register with the 
MU slave. The network notifies the MU of barrier completion 
by writing a MMIO barrier status register in the MU that can be 
polled by software through the MU slave port. The barrier 
operation does not require injection of descriptors to imFIFOs. 

G. Software error, SER, and Physical Design 

The MU has extensive logic to protect the system from user 
program errors. For example, the master ports have a set of 
range registers to protect the local memory system. These 
registers specify which address ranges in the local memory 
space are accessible by the MU. Each request to a master port 
is checked and rejected if it does not fall in a valid address 
range. The MU also checks system/user permission where 
applicable, to prevent a user program from affecting system 
software. 

All internal buffers and data paths in the MU are ECC 
protected, providing very high resistance to soft errors. Most 
other latches are protected with parity for single bit error 
detection. Important state machines and control flags are 
implemented using hardened latches. Upon detecting an 
uncorrectable bit error, each submodule will stop operating to 
prevent the bit error from propagating to the network or local 
memory system. 

The MU reports error conditions via DCR interrupt 
registers. They are individually maskable and are consolidated 
(programmably) into three groups, critical, non-critical, and 
machine check interrupts. 

The MU is only 1% of the total chip area and is over 92% 
clock gated to save power.   

IV. SOFTWARE SUPPORT 

The BG/Q system’s software provides highly optimized C 
inlines via the System’s Programming Interface (SPI) for 
applications, message layer libraries, kernels and system’s 
software to program the MU and the Torus interconnect via the 
MU. The SPIs are a thin software abstraction layer of the BG/Q 
network and MU hardware. They are flexible and a very large 
number of message passing and resource allocation algorithms 
can be implemented using the SPIs. For example, a message 
layer library can implement point-to-point and collective 
algorithms optimized for the semantics of MPI and PGAS 
runtimes, while an application that requires different resource 
management or different point-to-point or collective algorithms 
can directly program to the SPIs for optimized performance. In 
addition, kernels such as the Blue Gene Compute Node Kernel 
can program the MU for function shipping I/O system calls to 
the I/O nodes.  

The BG/Q low level messaging software is itself layered as 
shown in Figure 3.   

 

 
Figure 3.  SPI and HWI components. 

In the top layer are the various message layers, kernels, and 
applications that wish to send and receive messages using the 
low-level messaging software, either using SPI or directly 
programming through the Hardware Interface (HWI). The 
message layer software typically supports initialization and 
management of network resources and implements point-to-
point and collective algorithms. High level libraries (not shown 
in figure) such as MPI are being built on top of message layers.  

An MU HWI (Message Unit Hardware Interface) layer 
defines the structures and bits used by the MU SPIs to 
manipulate the MU hardware. Low level messaging users use 
some of these definitions to describe the messages being sent.  

There are two SPI layers providing the majority of the 
interfaces: 

1. MU-Kernel SPIs: This layer provides kernel neutrality to 
the SPIs. These interfaces allocate, initialize, configure, 
and free MU resources such as injection FIFOs, reception 
FIFOs, base address table entries and collective class 
routes. The implementation of these functions is kernel-
dependent, but the interfaces are standard across kernels. 
The goal behind standardizing on the SPIs across kernels 
is so a user, to the extent possible, does not have to 
modify his or her application to run on the different 
kernels. Release 1 of the BG/Q software stack will 
contain a Compute Node Kernel (CNK) implementation 
of the kernel SPI. As the MU descriptors require physical 
addresses of source buffers, the Kernel SPIs also define 
interfaces to translate virtual addresses to physical 
addresses.  

2. Message Unit (MU) SPIs: These interfaces build message 
descriptors for the message being sent, inject descriptors 
to initiate message send operations, receive message 
packets, and check for message completion. They can be 
used by all low-level messaging users regardless of 
whether they are user-mode applications or kernel-mode 
system code. 

Applications or users of the SPIs must use the kernel 
interfaces to allocate resources and then build descriptors to 
define the communication patterns and then inject descriptors 
to initiate communication. There are several descriptors to 
define FIFO, remote put (RDMA write) and remote get 
(RDMA read) operations for point-to-point and collective 
communication.  

Completion of sent messages is detected by observing the 
descriptor counter in the MU injection FIFO. The MU 

Inlines + System Calls 

MU (Hardware) 

MU HWIs 

MU-Kernel SPIs 

Message Layers, 
Kernels, Applications 

MU SPIs 
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hardware increments a 64 bit counter after the all the data for a 
descriptor has been injected on the network. On the receiver, 
reception FIFOs can be polled to receive packets or counters 
reaching zero can notify completion of RDMA reads to the 
application. 

For collective communication operations, a class-route that 
describes the nodes in the collective must be configured via the 
class route management SPIs on all the participating nodes 
before the collective operation is initiated. For example, the 
MPI library can configure class routes in the MPI_Comm_split 
call to use network acceleration on the sub-communicator. 
Similarly to point-to-point messages, broadcast and allreduce 
messages are initiated by injecting collective descriptors into an 
injection FIFO. The different target buffers in a broadcast or an 
allreduce can have different alignments. A base address table 
can be setup to store the buffer address and the descriptor can 
have a single offset of 0 B on all the participating nodes.  

V. PERFORMANCE MEASUREMENTS 

We present performance results on up to 512 BG/Q pass 2 
prototype nodes. We developed simple C language benchmarks 
such as ping-pong, nearest neighbor, broadcast and allreduce 
using the SPI calls and ran them on the prototype hardware.  

A. Short Message Latency 

Ping-Pong SPI benchmark results using direct put point-to-
point transfers are presented in Table 1. These results show 
increased latency as the network hops increase. It also shows a 
breakdown of where the time is being spent. The hardware 
delay is time spent by the network and MU performing the 
transfer (after injecting the descriptor until an indication of the 
arrival of the message occurs). The software delay is time spent 
by software injecting the descriptor, monitoring for completion, 
and minor loop control.   

Performance results show that the hardware latency varies 
from 0.62 μs at 1 network hop to 1.17 μs at 13 network hops. 
Software adds about 95 ns to 100 ns overhead. The delta hop 
delay should be the expected 40 ns average delay through a 
node plus card trace length, cable and linkchip delays. Thus the 
actual measured delay depends on the path taken between the 
nodes. In the measurements of Table 1, the ping node is always 
(0,0,0,0,0), and pong node coordinate increases in the order of 
A, B, C, D and E. There are no linkchips involved in any path. 
The average latency (the 13 hop minus 1 hop latency divided 
by 12 hops) is 45.3 ns. In a large 20 PFlops peak BG/Q system, 
the average number of hops is 15.5 for random or all-to-all 
communication patterns. In a multiple midplane system there 
will be additional delays through linkchips and optical fibers. 

Table 1 Ping-Pong Latency on a 512 Node Mesh 
Network 

Hops 
Hardware 

Latency (ns) 
Delta Hop 
Delay (ns) 

Hardware+Software Latency 
(ns) 

1 622  718 
2 671 49 769 
3 713 41 813 
4 760 47 856 
5 808 48 906 
6 849 41 950 
7 891 42 989 
8 940 49 1038 

9 981 41 1080 
10 1022 41 1122 
11 1069 47 1166 
12 1118 47 1216 
13 1166 48 1264 

B. Nearest Neighbor Throughput 

We ran an SPI benchmark to measure the achievable 
throughput to nearest neighbors on the 5D torus on a single 
node, where the links are looped back. For example the A+ 
direction is looped back to the A- direction, so all out-going 
data on the A+ direction arrives on the A- links and vice versa. 
The benchmark allocated 10 injection FIFOs for the 10 
different directions on a 5D torus. A RDMA write descriptor is 
injected to initiate data movement on the looped back links.  

Table 2 Nearest Neighbor Link Send+Receive Throughput 
Message Size Throughput 

(GB/sec) 
% of Raw 

Link 
Bandwidth 

% of Effective 
Peak Data 
Utilization 

4 KB 17.0 42.5 47.2 
8 KB 23.0 57.5 63.9 

16 KB 27.9 69.8 77.5 
32 KB 31.3 78.3 86.9 
64 KB 33.3 83.3 92.5 
128 KB 34.2 85.4 94.9 
256 KB 34.9 87.1 96.8 
512 KB 35.2 88.0 97.8 
1 MB 35.4 88.4 98.3 
2 MB 26.4 66.0 73.3 
4 MB 24.7 61.8 68.6 

256 MB 25.0 62.5 69.4 

 
Table 2 shows the cumulative nearest neighbor link 

throughput; send plus receive bandwidth for all 10 links. At 1 
MB, the cumulative throughput achieved on the 10 links in 
both directions is 35.4 GB/s which is an efficiency of 88.4% of 
the raw link throughput and 98.3% of the peak 90% effective 
data utilization of the links. This demonstrates the effectiveness 
of the highly parallel network and MU design. When message 
sizes are less than or equal to 1 MB, all 20 send plus receive 
streams fit in the L2 and there is sufficient memory bandwidth 
between the L2 and the MU. 2 MB and larger message sizes 
spill L2 and degradation in throughput is observed. The 
achievable bandwidth is limited by the DDR memory interface 
instead of the MU and the network.  

C. All-to-All performance 

We ran an SPI-based all-to-all performance test where 
each node sends a total of (n-1) messages, one to each of other 
(n-1) nodes in the system. On a 512-node prototype, with 4 
KB message size and dynamic routing, we obtained all-to-all 
performance result at 95% of the theoretical peak. The 
performance improved to 97% of peak for 32 KB message 
sizes. 

 

D. Collective communication performance 

We ran collective latency and throughput benchmarks on 
up to 512 nodes for floating point add reduction using direct 
put messages.  
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Table 3 Collective Latency 
Number of Nodes Total Hops 

(Round Trip) 
Latency (ns) Per Hop Delay 

(ns) 
2 2 641  
4 4 742 50.5 
8 6 876 67 
16 8 984 54 
32 10 1099 57.5 
64 12 1203 52 

128 14 1321 59 
256 16 1443 61 
512 18 1558 57.5 

 

Table 3 shows the latency of 8 B collective floating point 
add operations. The latency varies from 0.64 μs on 2 nodes to 
1.56 μs on 512 nodes. The average per hop latency (16 hop 
minus 2 hop latency divided by 14 hops) is 57.2 ns, which is 
just over 12 ns (6 network cycles) greater than the average 
ping-pong latency, in close agreement with earlier VHDL 
simulation measurements. Due to measurement variation, 
different paths, and somewhat different software used in the 
ping-pong and collective tests, direct comparisons between the 
collective and ping-pong latencies are not meaningful for a 
small number of hops. 

Table 4 Collective Throughput 
Message 

 Size 
(KB) 

Throughput 
 (GB/sec) 

% of Raw Link 
Bandwidth 

% of Effective Peak 
Data Utilization 

0.5 0.26 13.0 14.4 

1 0.45 22.5 25.0 
2 0.72 36.0 40.0 

4 1.01 50.5 56.1 

8 1.27 63.5 70.6 

16 1.45 72.5 80.6 
32 1.57 78.5 87.2 

64 1.64 81.7 90.8 

128 1.67 83.5 92.8 

256 1.69 84.4 93.7 

512 1.70 84.9 94.3 

1024 1.70 85.1 94.6 

 
Table 4 shows the throughput of long collective floating 

point add operations measured on 512 nodes. Due to more 
complex logic for collective sums the percent of peak is 
slightly lower for collective communication than point-to-point 
communication. 

VI. CONCLUSION 

This paper is the first description of the IBM Blue Gene/Q 
interconnection network and message unit. The 5D torus 
network with associated SerDes, and the highly parallel 
message unit, which provides the functionality of a network 
interface, are integrated onto the same chip as the processors 
and cache memory, and consume 8% of the chip's area. BG/Q 

integrates both collective and global barrier functions into the 
torus network. A thin software layer enables applications to 
achieve low-latency and high-throughput. For nearest neighbor 
exchange using an SPI benchmark measured on real hardware, 
best case throughput achieved on the 10 links in both directions 
is 35.4 GB/s which is an efficiency of 88.4% of the raw link 
throughput and 98.3% of the peak 90% effective data 
utilization of the links. This demonstrates the effectiveness of 
the highly parallel network and message unit design. 
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