
Chapter 2

Designing Charm++ Programs

Laxmikant V. Kale

Department of Computer Science, University of Illinois at Urbana-Champaign

2.1 Simple Stencil: Using Over-decomposition and Selecting Grain-size 17
2.1.1 Grainsize Decisions . 18
2.1.2 Multicore Nodes . 20
2.1.3 Migrating Chares, Load Balancing and Fault Tolerance 21

2.2 Multiphysics Modules Using Multiple Chare Arrays . 22
2.2.1 LeanMD . 24

2.3 SAMR: Chare Arrays with Dynamic insertion and Flexible Indices 28
2.4 Combinatorial Search: Task Parallelism . 29
2.5 Other Features and Design Considerations . 30
2.6 Utility of Charm++ for Future Applications . 31
2.7 Summary . 32

Acknowledgements . 33

We learned about the design philosophy, and basic concepts in Charm++,
as well as its features and benefits. In this chapter, we will review the pro-
cess of designing Charm++-based applications, and discuss the design is-
sues involved. Specifically, we will illustrate how to use individual features of
Charm++, through a series of examples.

2.1 Simple Stencil: Using Over-decomposition and Se-
lecting Grain-size

Let us first consider the process of developing a parallel implementation
of a simple stencil code. Through this example, we will illustrate how to spec-
ify over-decomposition in practice, and how to make practical grain size de-
cisions. We will use the same example to show how to extract automatic
communication-computation overlap (which is a benefit of the Charm++

model), and show how easy it is to exploit features such as load balancing
and fault tolerance.

Imagine that the data that we wish to deal with is represented by a three-
dimensional grid. Further, the computation we wish to carry out for each
cell involves using values from the neighboring cells in the grid. To make

17

18 Parallel Science and Engineering Applications: The Charm++ Approach

it concrete, let us consider a 7-point stencil: calculating the new value of a
cell located at location [x,y,z] in the grid requires values of the cells whose
coordinates di↵er by just one in exactly one of the dimensions involved. Other
than this somewhat abstract description of the pattern of data communication
needs, we will omit the rest of the details of the computation to keep the
description simple. Su�ce it to say that this communication pattern arises
in many science/engineering simulations, such as those involving solving the
Poisson equation, or fluid dynamics computations.

How should the three-dimensional grid be decomposed among the pro-
cessors? For simplicity of analysis, let us assume that the grid has a cubical
aspect ratio. That is, the number of cells along each of the dimensions is
the same. If one is designing the application with a traditional programming
model, such as MPI, one can consider several options: for example, the data
grid may be divided into horizontal slabs, with one slab assigned to each pro-
cessor. However, with a su�ciently large number of processors, it is known
that the communication volume (i.e. the amount of data being communicated
in total) is smaller if one divides the grid into cubes, and assigns one cube to
each processor.

Again, for the purpose of simplicity, let us assume that there is only one
processor core on each node. So, when we say “processor” in the above para-
graph, we simply mean a node. We will return to the issue of multicore nodes
in the context of Charm++ a little bit later.

Notice that the above strategy in case of the simple MPI programs requires
us to request a cubic number of processors. In addition, often the stencil codes
keep the number of cells on each processor exactly equal by requiring that the
total grid size along each dimension be a power of 2. This also helps keep the
code simple, in particular in the part where each processor needs to calculate
which portion of the global grid it owns. However, this decision now has an
unintended consequence: the number of processors has to be a cube of a power
of 2! Alternativey, one can write clever MPI code that can utilize a MxNxK
processor grid with some careful decomposition along each dimension, or even
write a much more sophisticated (and complex) multi-block code in MPI.

2.1.1 Grainsize Decisions

When we think about the same problem in Charm++, we should still
choose a cubic decomposition. The grid is represented by a three-dimensional
array of chare objects. Each object communicates with its neighboring objects
so as to send the boundary data that they need to complete the stencil compu-
tation. However, we pretty much ignore the number of processors in deciding
the decomposition. Below, we will describe several considerations one may use
in deciding how large each cube should be. However, the important thing to
note is that the number of processors is not a primary consideration.

A basic guideline in deciding how large each cube (and in general, each
chare object) should be is: make it as small as possible, but large enough

Designing Charm++ Programs 19

that its computation is significantly larger than the overhead of scheduling
all the method invocations it must handle. On current machines, typically, the
overhead of scheduling a single method invocation is hundreds of nanoseconds.
There may be memory allocation overheads that make it slightly larger. CPU
overhead for remote communication is of the order of a microsecond at most
in modern machines. In any case, since each one of the cubes must send and
receive about 6 asynchronous method invocations each cycle, if we make the
computation larger than, say, 100 microseconds, that should be adequate. As
we will see below, exact determination of the optimal grain-size is not needed.

Other considerations such as memory usage may push the application de-
velopers to use a larger grain size than that. In any case, a common approach
among Charm++ application developers is to parameterize the choice of grain
size, and to determine the size to use in production runs experimentally.

In applications that use a weak-scaling approach, where the amount of data
used on each processor remains roughly constant, these processor-independent
guidelines can be translated into processor dependent terms. For example,
an application developer may say that this application behaves reasonably
well when there are between 20 and 40 objects per processor. It should be
understood that the basic consideration is still the size of each object, and the
number of objects per processor (often called “the virtualization ratio”) is a
secondary, derived, metric.

So, the important point to remember: in most applications, it is not nec-
essary to precisely decide the grain size. As long as it is su�ciently large to
amortize the overheads, and small enough to make several chares on each pro-
cessor available to the adaptive runtime system, there is a range of grain size
values that yield similar, and close to optimal, performance.

If dynamic load balancing is necessary for the application, it helps to have
more than 10 objects per processor. It also is important in that situation that
no single object be too large. If a single object is larger than the average load
per processor, for example, there is nothing a load balancer can do to reduce
the execution time below a single object’s time. It is usually easy to meet
the constraints on the average grain size (described in the paragraphs above),
as well as this maximum grain size constraint, because of the broad range of
grain sizes that satisfy those constraints. In some rare applications, it may
become necessary to split objects that become too large computationally as
the application evolves. Charm++ supports dynamic insertion of new objects
for this purpose.

Returning to our simple stencil computation, we have now defined the
three-dimensional array of objects that is being distributed to processors under
the control of the runtime system. If we choose, we can describe a mapping (a
user-defined assignment of objects to processors). We may specify the mapping
to be immutable or just an initial mapping that the runtime system can change
as the application evolves. Programmers control which type of mapping and
dynamic reassignment they desire.

Even for this simple, regular, program we can see several benefits in a

20 Parallel Science and Engineering Applications: The Charm++ Approach

Charm++ based design. The program will run fine on any given number of
processors. It will just distribute all objects on available processors (See Figure
2.1, with a 2-D example, for simplicity). Sure, some processors may get one
more object than other processors, but this “quantization” error is certainly
acceptable as it is typically less than 5-10 % penalty, and applies only when
the number of processors does not evenly divide the number of objects. Typi-
cally, cache performance of the code improves because of the blocking e↵ect of
smaller objects, leading to improved performance compared with having just
one chunk of each processor. Communication is naturally overlapped with
computations; while some chunks are waiting for their communication, other
chunks can compute, the interleaving occurring without programmer inter-
vention, because of the message-driven execution model.

FIGURE 2.1: Chares for a 2D Stencil computation and their mapping to
physical processors

How does our execution model work for this application? Looking a bit
under the hood, on each processor we have a separate scheduler (See Fig-
ure 1.3 and the associated description in Chapter 1), working with a pool of
method invocations waiting to be executed. It picks one of them, delivers it
to the targeted object, and when (only when) the object returns control back
to the scheduler, it repeats the cycle. Notice how this naturally interleaves ex-
ecution of objects, adaptively and automatically overlapping communication
and computation.

2.1.2 Multicore Nodes

Let us return to the issue of multicore nodes now. The programmer
has multiple options for dealing with this. One is to assert that there is one
“PE” associated with each core (or even, with each hardware thread). One
still expects there to be multiple objects on each PE, and the model works
as described above, except (1) communication within a physical node is fast

Designing Charm++ Programs 21

because the RTS uses shared memory for implementing it. (2) When needed,
the application itself can use the shared memory in specific ways to optimize
performance. As a simple example, Charm++ supports read-only variables,
for whom only one copy needs to be made on each node.

A second option is to treat a collection of cores (say a NUMA domain: i.e.
a set of core sharing some level of cache and/or a memory controller) as a
single PE. In this case, the decomposition may employ chunkier objects. Now,
each PE may utilize multiple cores associated with it by using many possible
constructs: for example, OpenMP, or Charm++’s internal CkLoop construct
that can use the cores via their associated hardware threads.

With the second mode, message sizes are larger, and the memory locked up
in ghost regions (for our stencil example) is proportionately smaller. The for-
mer achieves better overlap of communication and computation, andmay have
cache performance benefits depending on patterns of data accesses. Which
method is better depends on many application dependent factors, and the
programmer can make the right choice. The essential characteristics of the
program are still unchanged with either option.

2.1.3 Migrating Chares, Load Balancing and Fault Tolerance

For various reasons, including load balancing, we may want the chares to
be able to migrate from one processor to another during the execution. To
facilitate this, the programmer must provide the system a bit of additional
information: how to serialize (i.e. pack and unpack) the data of the object. This
is done in Charm++ using a powerful and flexible PUP (pack-and-unpack)
framework. For every chare class that you wish to make migratable, you must
declare a PUP method. This method simply enumerates the variables of the
object, with a few notations to indicate sizes where they cannot be inferred.
The system will call the same PUP method of a chare for finding the size of
the chare, for serializing its contents, and for reconstructing (deserializing) it
from a packed message on the other processor.

Once the chares are made migratable, many new benefits follow. For ex-
ample, one can migrate “work to data” at will. Better still, you can let the
system do some load balancing for you. In this simple application, all chares
have equal amount of work (except for quantization e↵ect because the number
of rows and columns may not be divisible by the corresponding dimensions
of the chare array). Yet, suppose, this application is running on a cluster
consisting of processors of di↵ering speeds. 1 You can now just turn on load
balancing, insert a call to balance load only after first few iterations (so the
system has the load data to base its decisions on) and presto: the chares will be

1 Years ago, we had this situation at the CSAR (Center for Simulation of Advanced
Rockets): we had a cluster, and then new faster nodes were bought and added to the
cluster. Of course, most MPI jobs confined themselves to either the new partition or the
old partition entirely. However, Charm++ jobs were able to run on the combined system,
adjusting to the speed heterogeneity with its load balancers. [34]

22 Parallel Science and Engineering Applications: The Charm++ Approach

allocated in proportion to the speed of the processors, with faster processors
getting proportionately more work. This is achieved using chare migratability,
and the RTS’s ability to keep track of processor speeds and chare loads (as
well as chare communication patterns).

In fact, suppose we add some kind of dynamic load imbalance to the prob-
lem. Say, by adding particles to our simulation. The only additional change
you have to do is to make the call to balance load every few iterations, instead
of doing it at the very beginning.

Now, suppose, you want to checkpoint the state of the program pe-
riodically, so that you can start from the last checkpoint if the pro-
gram runs out of allocated time before it finishes. Well, since the sys-
tem knows how to migrate your chares to other processors, it can mi-
grate them to disk! The RTS has to perform some complicated maneu-
vering to ensure its own state is stored accurately when a checkpoint is
take; but for the application programmer, the code involved is simply call-
ing CkStartCheckpoint(char * dir, const CkCallback& cb) collectively
from every chare, every certain number of iterations. Additionally, for most
applications, you can restart using the saved files on a di↵erent number of
processors. The set of original chare objects is just scattered on a di↵erent
number of processors.

This kind of disk-based checkpoint is not quite true “fault-tolerance” be-
cause it does not include automatic restart. But Charm++ also supports true
fault tolerance strategy: it is called in-memory double checkpointing. In this
case, you would have to provide simple link-time and compile-time options
(the details of which can be found in the Charm++ manual and tutorials).
After that, in your code, you simply add a di↵erent call to checkpoint (instead
of the disk-based checkpoint call mentioned above). To test this, suppose this
program is running on a cluster of workstations. At any random point in time,
try just killing the application process on one of the processors (in Linux, just
kill -9 PID). The system will detect that one of the processes has died, re-
trieve the in-memory checkpoint, roll back to it, and continue execution from
it in less than a second! Of course, on proprietary machines such as Cray and
IBM installations, or clusters running under a job scheduler, there is a prob-
lem: the job schedulers running on today’s supercomputers will simply kill a
job if one node dies. However, as the schedulers get more sophisticated, they
will support such fault tolerance strategies; this is starting to happen on some
of the current supercomputers.

2.2 Multiphysics Modules Using Multiple Chare Arrays

One of the powerful techniques one can use in designing parallel Charm++

programs is to use multiple chare arrays. This can be used to eliminate un-

Designing Charm++ Programs 23

necessary “coupling” 2 between software modules, and to promote modularity
as well as facilitate collaborative development of software.

As a first simple example, consider a hypothetical simulation that involves

• a solid modeling component (e.g. structural dynamics) that requires
the use of unstructured (say, tetrahedral) meshes, which are partitioned
using a program such as ParMETIS or Scotch.

• a fluid modeling component that uses structured grids, partitioned using
a di↵erent partitioner.

In a traditional MPI application, one either uses spatial decomposition, di-
viding the set of processors between the two components, and thus sacrificing
e�ciencies of using idle times of one module for advancing the computation
of the other. Alternatively, one can decompose both computations on the
same set of processors. However, with the latter approach, multiple artificial
couplings develop. The number of partitions of solids must be the same as
that for fluids (equal to the number of processors). Further, the partitions
assigned to, say, the 200th processor for the fluids solids are simply brought
together because their partitioners called them 200’th! Of course, more so-
phisticated means can be used, but at a significant cost to the programmer.
With Charm++, the solids can be partitioned into n partitions, while the
fluid data is partitioned in m components (i.e. m and n are not necessarily
equal). Further, the runtime controls the mapping and may bring together the
pieces that communicate with each other the most.

Solid

Fluid

Solid

Fluid

Solid

Fluid

Solid

Fluid

1 2 3 P

Solid 1 Solid 2 Solid 3 Solid n

Fluid 1 Fluid 2 Fluid m

Traditional
MPI

Charm++

FIGURE 2.2: Decomposition in traditional MPI versus Charm++

Another example of the use of multiple chare arrays is provided by NAMD

2 In software engineering terminology, such coupling is considered detrimental to good
software structure.

24 Parallel Science and Engineering Applications: The Charm++ Approach

(See Chapter 4), which uses separate sets of chares for atoms, for pairwise
explicit force calculations, for bonded force calculations, and several chare
arrays for the particle-mesh Ewald sub-algorithm. Even more dramatic is the
use of over a dozen Chare arrays in OpenAtom (Chapter 5) for representation
of the electronic structure, as well as for intermediate parallel data structures.

Multiple chare arrays are also useful in building highly reusable libraries.
For example, a sorting library can use a chare array, that can be “bound”
to the application’s chare array (so that the corresponding elements migrate
together and are kept on the same common processor as each other), and can
carry out sorting of the data supplied by the application chares.

2.2.1 LeanMD

To illustrate the process of using multiple chare arrays for improving mod-
ularity and increasing parallelism, let us consider LeanMD. LeanMD is a mini-
app meant to mimic the structure of the dominant aspects of NAMD, and
illustrates this usage of multiple arrays in a much simpler context with a few
hundred lines of code [127, 126, 2].

The simulation consists of a set of particles (such as a set of inert gas
atoms). For simplicity, we will assume that the particles are confined to a 2-
dimensional periodic box. Each particle experiences a force due to every other
particle (for example, Van der Waal’s force); however, the force decays sharply
over distance (we assume), and so we can ignore forces due to all atoms beyond
a certain cut-o↵ distance. In each time-step, we calculate and add up the
forces experienced by each atom, and use them to calculate new accelerations,
velocities, and positions of each particle using standard Newtonian physics.

The first design decision is how to decompose the data into objects
(chares). A simple idea is linear decomposition: the first k particles go the
0’th chare, and so on. But then, every pair of chares will have to exchange
particles to see any of them exert forces on the other. Instead, we decompose
particles based on their coordinates into boxes. If we choose the size of each
box to be slightly larger than the cuto↵ distance, each box will need particles
from only the neighboring 8 boxes. With MPI, at this point in the design,
you will start thinking about a multiblock code, and writing the coordination
code for managing multiple boxes on a processor. But with Charm++, you
just think of each box as a virtual processor (i.e. a chare) by itself, and de-
scribe its life cycle in a coherent code, without thinking about the physical
processor. Also, at this point, you will do a simple grainsize analysis to de-
cide if it is worthwhile using a finer decomposition (say, sizes of boxes being
about half of the cuto↵ distance, and allowing interactions with boxes in a
larger neighborhood). For the simplicity of this example let us stay with the
basic decomposition. This immediately requires us to program for exchange of
particles after every timestep so that each particle is in the correct box. (We
can reduce that communication by increasing the box size slightly and doing
particle exchange after multiple steps.).

Designing Charm++ Programs 25

The interesting issue is the scheme for calculating forces. Since neighboring
boxes must interact, a straightforward idea is to send the particles of a box
to all the neighboring boxes, get the particles from the neighboring boxes,
and calculate and add up forces on your own particles from all the relevant
particles (that you now have). However, because of Newton’s third law, we
need to calculate forces between each pair of atoms (and by extension, each
pair of boxes) only once; so we are duplicating the force computation work.
Since this work is known to be over 90% of the overall computation, we wish
to avoid the duplication.

One could design complicated schemes for deciding which box calculates
forces for which neighbor. But a simpler alternative is presented by our ability
to use multiple chare arrays. For each pair of neighboring boxes, we postu-
late an interaction object (see Figure 2.3). These interaction objects can be
organized into a chare array. A good index structure for this array is to use
a 4-dimensional sparse array: The interactions between box (4,8) and (4,7)
is calculated by an interaction object with index (4,7,4,8). We sequence the
two indices in lexicographic order, so as to avoid duplication (so that we do
not think of this interaction object as (4,8,4,7) as well). As another benefit,
the interactions between two boxes can now be calculated on a third proces-
sor, di↵erent than the processors where the boxes live, if the load balancer
so desires. This idea (of force computations on a di↵erent processor), which
was later proposed independently by multiple researchers [69, 229, 30], was
used naturally in the original NAMD design [128] because we were thinking
in terms of object-based decomposition.

(3, 9) (4, 9) (5, 9)

(3, 8) (4, 8) (5, 8)

(3, 7) (4, 7) (5, 7)

(4, 8,
4, 9)

(4, 7,
4, 8)

(4, 8,
5, 8)

(3, 8,
4, 8)

(4, 8, 5, 9)

(3, 7, 4, 8)

(3
, 9

,

4,
8)

(4
, 8

,

5,
7)

FIGURE 2.3: Use of interaction objects for force calculations in LeanMD

Now that the design is done, and especially with factoring of the code
between the two types of objects, the code becomes relatively simple: The

26 Parallel Science and Engineering Applications: The Charm++ Approach

1 array [2D] Box {

2 ...

3 entry void run() { // the sdag entry method of a box

4 for (t=0; t<steps; t++) {

5 myInteractions.coordinates(C);

6 // broadcast coordinates to the section comprising

7 // interaction objects that need my coordinates

8

9 // forces received via a section reduction

10 when forces(vector <Force > f)

11 serial { integrate(f); } // and update coordinates C

12 send particles to neighbors;

13 for (i=0; i<numNeighbors; i++) {

14 when moveAtoms(vector <Atoms > A)

15 serial { mergein(A,C); }

16 }

17 if (t%M == 0) { BalanceLoad (); when doneBalancing () {} }

18 if (t%N == 0) { CkStartMemCheckpoint (..); when ckptDone

() {} }

19 }

20 };

21 ...

22 }

FIGURE 2.4: Skeletal code for the Box class

life-cycle of each object is very cleanly expressed: a box object repeatedly
broadcasts its coordinates to its associated interaction objects, receives forces
from them, adds them up and updates positions of each of its particles. It
then (periodically) sends particles that have moved out of its bounds to the
neighboring boxes. No particles move so fast as to cross more than one box
boundary; or else you are using too large a time step. The almost-real pseu-
docode in Figure 2.4 illustrates the box’s code. We omit the detailed syntax,
as well as details of initialization, to avoid getting into a tutorial discussion of
syntax, which is out of scope for this book. The complete example code, with
a 3-dimensional simulation, is available publicly [127].

The interaction object’s life-cycle is even simpler: in each iteration it waits
for particles form the boxes that are connected with it, calculates forces, and
sends them back to the two boxes. We showed that code in Chapter 1. We
just need to add the two lines for load balancing and fault-tolerance (based
on in-memory checkpoint with automatic restart) to that code to match the
box’s code above.

Of course, the sequential details of interaction and integration, and some
parallel initializations, must be coded by the user. The rest of the coordination
of which boxes and interface objects live on which processor, how to sequence
their execution to increase the overlap and so on, are left to the runtime
system. By writing simple PUP routines as described above the code can

Designing Charm++ Programs 27

1 array [4D] Interaction {

2 // Each Interaction object is a member of a 4D chare array

3 ...

4 entry void run() {

5 for (t=0; t<steps; t++) {

6 when coordinates(vector <Atom > C1),

7 coordinates(vector <Atom > C2)

8 serial { calculateInteractions(C1 , C2);

9 sendForcesBack ();}

10 if (t%M == 0) { BalanceLoad (); when doneBalancing () {} }

11 if (t%N == 0) { CkStartMemCheckpoint (..); when ckDone ()

{} }

12 }

13 };

14 }

FIGURE 2.5: Skeletal code for the Interaction class

do load balancing, automatic fault tolerance, (and/or checkpointing to disk),
with just a couple of additional lines of code, as shown in Figure 2.5.

28 Parallel Science and Engineering Applications: The Charm++ Approach

2.3 SAMR: Chare Arrays with Dynamic insertion and
Flexible Indices

The stencil example above showed that the chares can be organized into
two-dimensional or three-dimensional arrays. The LeanMD example uses a
two-dimensional and another four-dimensional array of chares. However, the
chares can be organized into even more sophisticated and general indexing
structures. In particular, one can use bit vectors as indices. In addition, one
can insert and delete elements (i.e. individual chare objects) from arrays of
chares, and this can be done dynamically as the computation evolves.

We will illustrate both these features using structured adaptive mesh re-
finement (SAMR) as an example. SAMR is used in physical simulations where
the degree of spatial resolution needed varies significantly from region to re-
gion. In one particular formulation that we will be our focus, the region is or-
ganized as an octree. For the sake of simplicity, let us consider a 2-dimensional
example, where we will use a quad-tree instead. The leaves of the tree repre-
sent regions that are being explicitly simulated, using a structured grid (i.e. a
mesh). The internal nodes in the tree represent regions that have been adap-
tively refined.

In a simple scenario, computation may begin with a tree of uniform depth.
Assume that each leaf has a 512x512 chunk of data. As the simulation evolves,
the numerics might indicate that some regions represented by some of the
leaves need higher resolution, and so need to be refined. With refinement, the
512x512 grid of the leaf needs to become a 1024x1024 grid. This is accom-
plished by creating 4 more leaves which become children of the leaf being
refined. Although each region can only be refined once during a single time
step, over a series of time steps some regions can get very deeply refined, so
the maximum and minimum depth of the tree can be widely di↵erent. Also, as
simulation progresses, some regions may not need the resolution we currently
have. If all the 4 children (which happened to be leaves) of an internal node N
wish to be coarsened, they can be absorbed in N, thus deleting the 4 leaves.

Charm++ provides a natural way of representing this computation. Each
node of the quad-tree, including the leaves, can be implemented as a chare be-
longing to a single chare array. Each element of this chare array is represented
by a bit vector index. In the current version of Charm++, array indices can
be 128 bits long. We create a natural indexing scheme that assigns a unique
index to each node of the tree as follows: We reserve 8 bits to encode the depth
of the node (the depth of the root being 0), and the remaining bits to encode
the branches one takes from the root to get to the node. Thus a node with
index (d, b) has 4 children, (d+1, b00), (d+1, b01), (d+1, b10) (d+1, b11),
encoded in the 128 bits in the obvious way, with the unused bits at the tail
end being set to 0. Figure 2.6 illustrates this indexing scheme, using a smaller
number of bits for ease of illustration. Note that the rightmost bits that are

Designing Charm++ Programs 29

not pertinent to the scheme (and are set to 0 for a canonical representation)
are omitted by showing them as blanks in the figure.

0000

0001 00 0001 01 0001 10 0001 11

0010 0101

0011 0101110011 010100

FIGURE 2.6: BitVector Indexing of Chares for AMR

With this indexing, a chare can find the index of its parent and the neigh-
bors (for boundary-exchanges) by simple local operations based on the knowl-
edge of its own index. Further, if a chare decides to refine, it can locally
calculate indices of the 4 new chares it must create and insert into the chare
array, as described in the above paragraphs. The Charm++ load balancer
decides on which processor each chare resides based on predicted loads, while
a built-in scalable location manager handles delivery of messages directed at
specific indices to the correct processor.

An additional benefit of the Charm++ model is that the code is written
from the point of view of each leaf, i.e. a block of uniformly refined mesh,
along with much simpler code for the chares corresponding to the internal
nodes of the tree. This is unlike typical codes for the same purpose in MPI,
which must be written from the point of view of a processor, where multiple
blocks are housed.

A specific implementation of the 2-D SAMR is described in a recent paper
[148]. This paper also illustrates how SAMR codes can benefit from the sup-
port for asynchrony in Charm++ by eliminating multiple synchronizations in
typical re-meshing steps in such codes.

2.4 Combinatorial Search: Task Parallelism

The phrase “task parallelism” is used by di↵erent researchers in dif-
ferent senses. For example, some researchers have used it to simply con-
note any use of message-driven execution. A when block (see Chapter 1)
in Structured Dagger is ready to execute as soon as the object has reached
the statement, and the relevant messages have arrived. This task is then kept

30 Parallel Science and Engineering Applications: The Charm++ Approach

in the local scheduler’s queue of ready tasks from where tasks are picked up
one at a time, non-preemptively. However, this is not what we mean here
by task parallelism. The pattern we are describing has been called “agenda
parallelism”, and it occurs in combinatorial search and divide and conquer
applications.

As an example, consider the problem of finding a k-coloring for a given
graph. One can begin with a state in which no vertex of the graph is colored;
when you consider each state, you select one of the vertices to color, color it
with each of the possible colors that are consistent with the constraint (that
no 2 neighboring vertices should have the same color), and thus create several
child states. This then defines a search tree.

How can one parallelize this application using Charm++? This is facili-
tated by Charm++’s support for dynamic creation of chares. The graph itself
does not change during the execution, and so can be represented as a read-
only variable/structure. Each chare’s state consists of a table of vertices that
have already been colored, and the assigned colors for those vertices. When it
starts execution, each chare heuristically selects an uncolored vertex, and fires
o↵ a new chare corresponding to each possible color that can be assigned to
the selected vertex, sending the color-map as a constructor message. Sophisti-
cated heuristics are used to ensure that the color assignment does not create
an easy-to-infer infeasibility, and for selecting a good vertex to color next.

One must exercise reasonable grain size control in this application to avoid
excessive overhead on one hand, and serialization on the other hand. Again,
the guiding principle is that no single chare should be too large (i.e. its com-
putational work should be substantially smaller than the average work per
chare), and the average work for each chare should be significantly larger
than the overhead of scheduling and load balancing it. A simple strategy is
to decide to explore a state sequentially when the number of vertices that re-
main to be colored falls below a threshold. More sophisticated strategies can
be used, as described in [125].

How do we stop such a computation? It is not adequate to specify that
once a chare finds a solution, it will print the solution and call CkExit(). For
one thing, you may be interested in all the solutions; in any case, you must
also cater to the case when there are no solutions. Both of these challenges
can be resolved by using Charm++’s built-in quiescence detection library. It
employs an algorithm that runs in the background, and reports via a callback
when no computations are executing, and no messages are in transit.

Interestingly, this kind of dynamic creation of tasks can co-exist (in a
single application) with more structured and iterative computations typically
expressed with chare arrays. The message-driven execution combined with
load balancing capabilities ensure that such an application is feasible and will
work e�ciently. At the most, depending on the context, it may require a more
specialized set of load balancers, since Charm++ uses separate balancers for
such dynamically created tasks.

Designing Charm++ Programs 31

2.5 Other Features and Design Considerations

Let us consider some additional features and discuss how and under what
conditions are they desirable.

Priorities: Recall that there are potentially multiple “messages” (i.e. asyn-
chronous method invocations and ready threads) awaiting execution in the
scheduler’s pool on any PE (processor). By default, the system executes them
in FIFO (first-in-first-out) order. However, in some situations the programmer
may wish to influence this order. This can be accomplished by associating a
priority with the method invocations (again, consult the manuals for the de-
tails of how to do this). One can also declare entry methods, and therefore all
invocations of them, to be “expedited”, in which case they bypass the priority
queue. In e↵ect, they are treated as the highest priority messages, and are
executed as soon as they are picked from the network by the scheduler.

How and when to leverage priorities? As an example, consider a situation
where the work consists of two types of messages: those that have only lo-
cal clients and those that have remote clients (i.e. when the work is done,
you have to send the result to a potentially remote chare). The latter work
should have higher priority, because someone else is waiting for them, and the
network latency will delay them. In general, work on the critical path of the
computation can be assigned higher priority. Decisions like this are often taken
after visualizing program performance via the Projections tool (See Chapter
3), and identifying possible bottlenecks.

Threads vs Structured Dagger: For truly reactive objects, which do not
know which of their methods will be called and how many times, the general-
ity provided by the baseline Charm++ methods is adequate and appropriate.
However, if an object’s life cycle is statically described, then one should use
either Structured Dagger or a threaded entry method to code it. Threaded
entry methods should only be used if Structured Dagger is inadequate to
express the control flow. This is because a Structured Dagger entry method
typically captures the parallel life cycle of an object, including all its remote
dependencies, in a simple script, separating parallel and sequential code nat-
urally. However, for example, if the control is deep in a function call stack,
and you need a remote value, it is more convenient to use a threaded method.
Threaded methods, although very e�cient, are still not as e�cient as the
Structured Dagger methods: their context switching time (which is typically
less than a microsecond) involves switching user-level stacks, and the need to
allocate and copy/serialize the stack also adds its own overhead. Scheduling
overhead for Structured Dagger (as well as baseline Charm++ methods) is
consists of a few function calls, amounting to tens to a hundred nanoseconds
on current machines.

32 Parallel Science and Engineering Applications: The Charm++ Approach

2.6 Utility of Charm++ for Future Applications

Even though Charm++ is a mature system, its signature strengths, aris-
ing from an introspective and adaptive runtime system, make it a system
well-suited for addressing the challenges of the upcoming era of increasingly
sophisticated applications and increasingly complex parallel machines. This
is true at both the extreme scale machines, beyond the current generation
of petascale computers, as well as the much smaller department-size parallel
machines that are expected to be ubiquitous.

Sophisticated applications, when given a larger computer, do not increase
the resolution everywhere; instead, they tend to use dynamic and adaptive re-
finements to best exploit the extra compute power. Sophisticated applications
also use multiple modules, typically for simulating di↵erent physical aspects
of the phenomena being studied. Both of these trends are likely to strengthen
in future. The dynamic load balancing capabilities, as well as the ability to
support multiple modules are critical for these applications. Yet as illustrated
in this chapter, with the solid-fluid example as well as the SAMR example,
Charm++ is well-suited to express such applications with high programmer
productivity.

Power and energy considerations make future machines more complex;
some predictions for the future also include components failing more frequently
than they do now. Again, the introspection and adaptivity, and the concomi-
tant dynamic load balancing and fault tolerance capabilities in Charm++,
help alleviate the programmer burden in dealing with such machines.

Thus, we expect the Charm++ programming model to serve the parallel
applications community very well in the coming years. Of course, the run-
time system itself will need improvements and modifications to cope with new
hardware challenges it will surely face.

2.7 Summary

We discussed, through a series of examples, how to go about designing
a Charm++ application. The stencil code illustrated how to keep the code
processor-independent, and how to think about and control the grainsize of
chares. Multi-physics codes such as the solid-fluid simulation, as well as molec-
ular dynamics codes, illustrated how multiple collections of chares (Chare
Arrays) can be used to cleanly express the logic of the program. Dynamic in-
sertion/deletion and flexible indexing structures were illustrated via the struc-
tured AMR example. We also saw how to deal with task parallelism. Finally,
we learned a bit more about how to use priorities and how to choose between

Designing Charm++ Programs 33

threaded, structured-dagger, and simple entry methods. Obviously, elaborat-
ing and describing the whole design process, with many additional features of
Charm++ and details of their use, is beyond the scope of this book. For this,
we request the reader to consult the online and other upcoming tutorials on
programming with Charm++.

Acknowledgements

Work on the Charm++ system was carried out over two decades by gen-
erations of graduate students and sta↵ members, and each has left his or her
stamp on the software and the design. Many research grants over those years
from U.S. agencies including the National Science Foundation, Department
of Energy, National Institutes of Health and National Aeronautics and Space
Administration have directly or indirectly contributed to the development of
Charm++ or its applications. Some recent grants that directly funded this
work are the NSF HECURA program (NSF 0833188) and the DOE FAST-
OS program (DE-SC0001845). I also thank all those who helped in writing
an preparing the first two chapters, including significant help from Abhinav
Bhatele, especially for many nice figures he created.

