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Abstract—The Blue Gene/Q machine is the next generation in the line of IBM massively parallel supercomputers, designed to scale to 
262144 nodes and sixteen million threads.  With each BG/Q node having 68 hardware threads, hybrid programming paradigms, which 
use message passing among nodes and multi-threading within nodes, are ideal and will enable applications to achieve high throughput 
on BG/Q.  With such unprecedented massive parallelism and scale, this paper is a groundbreaking effort to explore the design 
challenges for designing a communication library that can match and exploit such massive parallelism  In particular, we present the 
Parallel Active Messaging Interface (PAMI) library as our BG/Q library solution to the many challenges that come with a machine at 
such scale. PAMI provides (1) novel techniques to partition the application communication overhead into many contexts that can be 
accelerated by communication threads; (2) client and context objects to support multiple and different programming paradigms; (3) 
lockless algorithms to speed up MPI message rate; and (4) novel techniques leveraging the new BG/Q architectural features such as the 
scalable atomic primitives implemented in the L2 cache, the highly parallel hardware messaging unit that supports both point-to-point 
and collective operations, and the collective hardware acceleration for operations such as broadcast, reduce, and allreduce.  We 
experimented with PAMI on 2048 BG/Q nodes and the results show high messaging rates as well as low latencies and high throughputs 
for collective communication operations. 
 

I.      INTRODUCTION 
 

The Blue Gene/Q supercomputer [1] comprises several 
architectural innovations at different levels of the system 
architecture.  Each BG/Q node contains 18 compute cores, 
with each core having four hardware threads.  One of the cores 
is a spare core, and another is reserved for the Compute Node 
Kernel (CNK) lightweight operating system, leaving 16 cores 
with up to 64 threads for application processing.  These cores 
are connected via a crossbar switch to a shared L2 cache 
system consisting of 16 L2 cache banks (or slices).  Further, to 
support this high concurrency on a single node, the L2 cache 
also enables atomic transactions on any arbitrary 8 byte 
aligned memory address on the node.  The BG/Q nodes are 
connected via a five dimensional (5D) torus [2] designed to 
scale to 256 racks (256x1024 nodes).  The 5D torus boosts the 
bisection bandwidth of the machine accelerating the 
performance of applications that have all-to-all 
communication such as FFT.  Unlike its predecessors BG/L 
[3] and BG/P [4], the collective network on BG/Q is 
embedded in the 5D torus.  The supported operations over the 
collective network are barrier, broadcast, reduce, and 
allreduce.  Collective communication on contiguous 

rectangular subsets of nodes is also accelerated by the 
collective network by programming the classroutes of the 
hardware tree.  These operations are extremely scalable.   The 
projected Message Passing Interface (MPI) latencies for 
barrier and allreduce are expected to be under 9μs and 12μs 
respectively on 96 racks (96x1024 nodes) of BG/Q.  MPI [5] 
will continue to be the primary inter-node communication 
mode for applications, while OpenMP is likely to be used 
within the nodes.   
 
In this paper we present the Parallel Active Messaging 
Interface (PAMI) library that we use as a foundation to 
support MPI, and can also be used to efficiently enable other 
programming paradigms such as UPC [6] and ARMCI [7], and 
the parallel programming language Charm++ [8]. It is a 
challenge to design messaging libraries that enable 
applications to scale to millions of cores and over 10 million 
threads.  Our design supports up to 64 processes per node and 
sixteen million MPI processes in the largest BG/Q 
configuration.  However, having a large number of processes 
on a BG/Q node could exert pressure on node resources such 
as DRAM, network FIFOs and TLB entries, for certain classes 
of applications.  Therefore, we expect hybrid programming 
models that have fewer MPI processes to achieve the best 

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.73

763

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.73

763

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2021 at 14:39:59 UTC from IEEE Xplore.  Restrictions apply. 



 

performance on this architecture.  However, with fewer 
processes per node, several threads can call the messaging 
library stressing the thread scalability of the library.  MPI and 
the messaging libraries must deliver very high message rates 
for communicating messages from all threads efficiently.  The 
MPI community has been progressing towards the next 
version of the MPI standard, MPI 3.0.  The MPI 3.0 hybrid 
working group is exploring new concepts in Hybrid 
programming via Endpoints on each process rather than the 
processes communicating themselves.  We have designed the 
PAMI contexts following the developments in the MPI Forum 
for fine grained communication among threads.  The context 
“process-rank” pair is similar to an MPI 3.0 endpoint. 
 
PAMI contexts can also enable background communication 
threads to accelerate communication processing.  For example, 
with one MPI process per node (PPN) we can have up to 
sixteen contexts and sixteen acceleration communication 
threads.  PAMI leverages hardware features of BG/Q nodes 
such as a low overhead wakeup mechanism to awaken the 
communication threads.  The main application threads can 
hand off work to the communication threads via a 
PAMI_context_post function call to maximize messaging 
parallelism and drive high message rates even with MPI 2.2 
style point to point communication.  The parallelism extracted 
via PAMI needs to adhere to the MPI ordering rules which 
dictate the matching of a MPI send with that of the receive.  
Wildcard matching tags present an additional challenge which 
has to be dealt with carefully.  In this paper, we explore 
strategies to map the MPI thread level support to PAMI 
endpoint parallelism.  A hybrid MPI+OpenMP application, 
where typically the master thread initiates the communication 
calls, can benefit from the increased message rate.   
 
This paper makes the following contributions: 
• We present the Parallel Active Messaging Interface 

(PAMI) library, through which we answer many 
challenges in meeting BG/Q massive parallelism   

• While PAMI is used as a foundation to support MPI, it 
can also be used to efficiently enable other programming 
paradigms such as UPC [6] and ARMCI [7], and the 
parallel programming language Charm++ [8].  This is 
done with PAMI client and context objects.  A PAMI 
Client that is an independent network instance, while 
contexts provide independent communication channels 
that can be accessed from multiple threads  

• We describe lockless algorithms to accelerate MPI 
message rate 

• Novel techniques, that leverage the new architectural 
features in BG/Q such as the wakeup unit and the 
collective network, to optimize point to point and 
collective communication interfaces in PAMI 

• This is the first effort that presents performance results on 
2048 BG/Q nodes with 128K threads 
 

A. Related Work 
 

Active messages have also been explored in the runtimes for 
Myrinet such as GM and MX [17,18],  LAPI over IBM/SP 
[21], and DCMF over BG/P[9]. The Common Communication 
Interface (CCI) [19] is similar to PAMI as it uses endpoints. 
PAMI differs from the above as the highest abstraction of a 
network instance is a Client that encapsulates all the resources 
associated with that network instance. PAMI supports multiple 
clients that can enable simultaneous co-existence of multiple 
programming model runtimes. This feature can be used to a 
mixed programming model, like the one explored by 
researchers in [22], where UPC and MPI were used to scale a 
memory bound application.  In [16], the authors use parallel 
communication channels to speedup MPI message rate. PAMI 
extends and generalizes this notion of communication 
parallelism using PAMI Contexts and uses a new message 
handoff technique to accelerate message rate.  Finally, lockless 
queues using atomic primitives have been studied by many 
researchers including [20]. PAMI uses the very scalable L2 
atomic constructs described below for the high concurrency 
messaging operations.  
 

II.  BACKGROUND 

A.  BG/Q Overview 
 

Each BG/Q node is comprised of 18 Power ISA A2 64-bit 
embedded low power processor cores running at 1.6 GHz.  
Each core has four hardware threads.  The hardware threads 
have their own register files but share other resources such as 
the L1 and L2 caches.  The A2 core can issue two concurrent 
instructions per cycle, one fixed and one floating point, but 
each thread can issue only one instruction per cycle. It 
implements in-order dispatch and execution of the instruction 
pipeline.  The L1 total cache size is 32KB with the instruction 
and data caches of 16KB each.  The L2 cache size is 32MB 
and is divided into sixteen slices and interconnected to the A2 
cores by a crossbar switch.  Moreover, each core has a local 
L1 prefetch unit that can prefetch cache lines from L2 ahead 
of time. 
 
Scalable Atomic support in L2:  BG/Q nodes support different 
atomic operations such as load-increment, store-update, etc for 
64-bit integer words in DDR memory.  These are implemented 
by special atomic addresses that are aliases to the L2/DDR 
memory.  L2 atomics have significantly lower overheads than 
traditional mutexes.  The L2 atomics are scalable with only a 
few extra cycles for each additional atomic request.  L2 
atomics are used in several places including lock-less queues 
and messaging counters that are used to track communication 
progress. 
 
Wakeup unit: The main purpose of the wakeup unit is to 
increase application performance by avoiding software polling 
in A2.   The wakeup unit can be programmed to track and 
recognize memory addresses written by any of the A2 cores, 
messaging unit, or other devices.  It can also be configured to 
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recognize signals from the network and the A2 cores.  The 
thread can be put into a wait via a special instruction until a 
desired event occurs.  The thread is suspended until it receives 
a wakeup signal.  While the thread is suspended, it does not 
use core resources such as pipeline slots, arithmetic units, and 
load/store resources. 

B.  BG/Q Network Architecture 
 
Each link/port in the BG/Q 5D torus network [2] is capable of 
simultaneously sending and receiving data at a raw speed of 
2GB/sec.  As each packet has a 32 byte header and up to 512 
bytes of payload, in 32B increments. With other overhead 
such as packet consistency checks and protocol packets,  the 
maximum achievable throughput for application payload is 
1.8GB/sec.  Not only is the bidirectional bandwidth increased 
in BG/Q network compared to a lower dimensional torus with 
the same number of nodes, but also the 5 torus dimensions 
reduces the maximum number of hops to reach the farthest 
node.  The five dimensions are labeled A, B, C, D and E with 
opposing directions indicated by “+” and “-“.  Each node in 
the torus has multiple injection and reception FIFOS, enough 
so that user point-to-point, user collective, system point-to-
point and system collectives all have their own FIFOS.  Unlike 
BG/P, on BG/Q the point-to-point network, the collective 
network and the Global Interrupt (GI) network all share the 
same torus network.  The BG/Q network supports hardware 
acceleration for collectives such as barrier, broadcast, reduce, 
and allreduce for both MPI_COMM_WORLD as well as 
rectangular subcommunicators.  This is provided via a 
classroute that allows the user to program the routes of the 
collective tree.  Each classroute specifies the links that are the 
down tree inputs to the router and the uptree output.  The local 
contribution is also included, and the tree can skip the 
contribution from a node depending on whether this bit is 
on/off.  The number of classroutes in which a node can 
participate is 16; however some are reserved for system use.  
The collective network supports both integer and floating 
point operations such as add, min and max. 

C.  BG/Q Message Unit (MU) Architecture 
 
The BG/Q MU is responsible for moving data between the 
memory and the 5D torus network.  It supports three different 
point-to-point packet types: memory FIFO, RDMA read, and 
RDMA write.  For all such packet types, the data transfer is 
initiated by writing a 64B descriptor into one of the MU 
injection FIFOs.  Depending on the type of the packet, the data 
is either delivered into a MU reception FIFO or is directly 
written into the memory address included in the packet.  BG/Q 
architecture provides an extensive array of 544 MU injection 
FIFOs (32 per core) and 272 MU reception FIFOs (16 per 
core).  Also, there multiple message engines, compared to only 
two on BG/P, that operate in parallel for sending and receiving 
network packets.  Together, all these capabilities of the BG/Q 
MU provide a high degree of communication parallelism for 
the application to use.  Also, compared to BG/P, the 

collectives on BG/Q are RDMA capable.  For example, an 
allreduce is performed by the MU sending RDMA write 
packets that are summed on the network and the result stored 
in destination buffers on the nodes, also via RDMA writes.   

D.  Compute Node Kernel Overview  
 
The Compute Node Kernel (CNK) is a light weight kernel on 
BG/Q providing system interfaces to support efficient message 
passing operations.   
 
Communication Thread (commthread):  In addition to 
conventional pthreads, CNK provides a special pthread (one 
per hardware thread) having extended low and high priority 
levels. This special pthread known as commthread is used to 
make progress on the various communication operations of the 
messaging libraries.  The extended priorities allow the 
commthread to perform low-level communications operations 
without risk of being preempted (at highest priority) and also 
ensure the commthread is completely out of the way the rest of 
the time (at lowest priority).  Commthreads are reserved for 
use by BG/Q messaging software. 
 
CNK Support for Shared Address space: To aid message 
passing within the node, CNK provides global virtual 
addresses within the node.  These addresses are aliases to the 
virtual addresses of the processes and can be used by any 
process on the node to read the memory locations of its peers.  
CNK provides a separate global virtual to physical address 
translation table containing the global addresses of all the 
processes on the node.  This capability eliminates extra copies 
in the message passing operations between processes on the 
same node, both for point-to-point and collective operations.   
 

III.  PARALLEL ACTIVE MESSAGING INTERFACE 
 
In this section, we explain the challenges involved in 
designing efficient communication libraries for meeting the 
requirements of the high level programming models, such as 
MPI. Parallel Active Messaging Interface (PAMI) builds upon 
the techniques used in the DCMF library on BG/P [9] and 
LAPI [10] on PowerPC systems.  In addition, it also enables 
concurrency in messaging operations by taking advantage of 
the novel features of the BG/Q architecture.   

A.  Supporting multiple programming models 
 
PAMI Client:  A client can be thought of as an independent 
network interface with its own set of network and 
communication resources.  It encapsulates all communication 
data structures, such as contexts and endpoints, 
communication progress models, and the network/messaging 
unit resources such as access to the collective tree.  Each 
programming language runtime should create a PAMI client to 
make PAMI library calls.  Figure 1 gives an overview of 
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PAMI’s compontents. A client may instantiate one or more 
communication contexts.  A context is a collection of software 
communication devices, where progress is made by an 
application thread or communication thread. Progress is made 
via the PAMI_Context_advance call, that is thread unsafe and 
thread safety is a responsibility of higher level software. A 
thread-safe work queue provides an efficient lock-less hand-
off mechanism between application threads and 
communication threads.  Each software device in a context 
manages a physical partition of the hardware resources and 
can be advanced independent of other software devices.  For 
example, the shared memory hardware is used by the shared 
memory device to drive intranode communication, whereas 
the torus network hardware is used by the MU device to 
implement off-node communication. 
 

 
Figure 1. Overview of PAMI 

B.  PAMI messaging parallelism & concurrency 
 
PAMI Context:  A context defines a unit of thread parallelism. 
Messaging operations are initiated and progressed in the 
context independent of other co-existing contexts.  For 
example, two different threads can be pinned to two different 
contexts to achieve independent concurrent communication.   
Initiating a messaging operation involves either posting a work 
request via the PAMI_Context_post call to the context to be 
progressed later, or directly posting to the injection FIFOs of 
the MU via the PAMI_Send call.  The work request queues 
use L2 atomic operations to provide a low-overhead highly 
concurrent approach without the use of an explicit lock.  
Hence, multiple threads can post requests to a single context 
using this approach.  Two threads can simultaneously advance 
or send messages on two different contexts.  If the two threads 
must simultaneously access (e.g. perform send or collective 
operation) the same context, then they need to lock/unlock the 

context.  Alternatively, if communication threads are enabled, 
the main threads can post a work function to a lock-less queue 
to be executed on the communication thread.    
Lockless queues: The L2 Atomic operations provide 
convenient and scalable atomic constructs that can be used to 
design communication queues for different message passing 
operations.  One of the supported L2 Atomics operations is 
“bounded increment”.  This combines an atomic load-and-
increment with a compare against bounds, enabling atomic 
allocation of elements to a fixed-sized array used to implement 
a fast scalable queue.   This fixed-sized array is enhanced with 
an overflow queue to handle cases when the array is full.  The 
overflow queue is accessed through mutexes.   
 
PAMI Endpoint: An Endpoint is used to designate a 
communication address in PAMI.  Addressing is not based on 
processes or tasks but rather on Endpoints within the process.  
This can be used to provide finer grain addressing within a 
process that allows different threads to be pinned or attached 
to specific endpoints, thereby providing communication across 
different threads.  Hybrid programming models and the hybrid 
proposals for MPI-3.0 would directly benefit from this 
approach. 

C.  Exploiting Communication Threads 
 
Communication threads are helper threads that perform 
background “advance” on one or more PAMI contexts, thus 
providing communication parallelism in applications.  They 
also drive the MPI progress engine.  These threads are 
designed to be automatic in nature, such that when an 
application thread is spawned (or ready to run) on the same 
hardware thread, the commthread will voluntarily yield 
(change to lowest priority) and allow the application thread to 
run.  During execution, commthreads detect the condition 
where no communications are going on and will execute a 
PPC wait instruction using the Wakeup Unit, thus eliminating 
any impact on other compute threads.  This will ensure that 
compute threads get full access to the node resources when no 
communications are happening. 
 
A great advantage of communication threads is that they allow 
for communication/computation overlap.  Figure 2 
demonstrates the usage of communication threads.  When the 
main thread reaches a data movement or communication phase 
in the application, it can generate a work request (addressed to 
a particular context) and post it to the lock-less work queue, 
which resides in a “wake up” region/unit of shared memory.   
The work request can include processing memory FIFO 
packets, moving data within a node, or performing reduction 
arithmetic.  A pool of communication threads would be in a 
“wake up wait” state, which is a special instruction that halts 
processing for a particular hardware thread. The instruction 
causes the thread to consume no power nor generate heat 
while in that state.  The wake up unit is programmed to 
monitor the specific wake up region containing the work 
queue.  Once a work request is posted to the queue, the threads 
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wake up from the wait state and resume processing.  The 
thread that owns the context addressed by the work request 
will call the advance routine which basically dequeues the 
work request, performs the actual work specified in it, and 
then invokes the call back function, which sets the completion 
conditions for the main thread that posted the work. If there 
are no more incoming work requests addressed to this 
particular thread, it goes back to the wake up wait state.  Note 
that all of these events are happening in the background while 
the main thread is doing useful computation.  At some point, 
the main thread will poll to see if the work request has been 
satisfied 
 
 

 
Figure 2. Exploiting communication threads 
 

D.  Collective Acceleration 
 

In BG/Q, collective operations such as barrier, broadcast, 
reduce, and allreduce are directly supported by the collective 
network embedded in the 5D torus.  As explained earlier, 
classroutes provide the routing tree information for the packets 
to travel up the tree to the root and then down tree to all 
participating nodes of the collective.  In addition, the 
classroutes can be programmed to work on sub communicators 
which are contiguous rectangles (e.g.  lines, planes or cubes). 
  
On BG/Q, the collective operations are RDMA capable and 
the data that is being operated upon is directly read from or 
written to the memory.  This eliminates extra copies, 

improving the performance of the operation.  Moreover, 
together with the shared memory, integrated protocols can be 
designed to support effcient messaging when more than one 
process is running on a node, as explained in the next section. 
 
Classroutes are a limited resource on BG/Q, so MPI 
applications that use a large number of communicators will 
not be able to use the Collective Network for all of them, even 
if all are rectangular.  PAMI supports the ability to “optimize” 
and “deoptimize” a communicator for the Collective Network, 
such that an active set of communicators can access and reuse 
available classroutes.  This feature is exported to MPI users 
via MPIX extensions. 

E.  MU Device Software 
 
As mentioned previously, BG/Q has a sufficient number of 
hardware resources to enable concurrent communication per 
thread.  The 544 injection FIFOs and 272 reception FIFOs are 
partitioned across the PAMI contexts with each context having 
exclusive access to its own set of resources, thereby 
eliminating any need for locking and critical section 
protection.  The MU software creates independent entities for 
each context that have an independent set of protocol data 
structures and addressing mechanisms.  Messages are sent 
using the various protocols associated with these contexts, the 
important ones being the eager protocol for short messages via 
memory FIFOs and rendezvous for long messages.  Eager 
protocol has lower latency since it does not have a handshake 
phase.  However, it has lower throughput as the message 
payload must be copied from the memory FIFO to the 
application buffer.  In the rendezvous protocol, remote get is 
used to directly transfer the data from the source node to the 
destination node‘s buffer.  The progress for these protocols 
that involves posting/building descriptors and polling for the 
incoming messages is done on a per-context basis.  Also, to 
maintain MPI ordering, injection FIFOs are pinned statically 
for each destination so that the same FIFO is used every time 
for a given destination.  Eager messages and rendezvous 
headers use deterministic ordered routing to be matched with 
receives on the destinations in order.  We have explored 
optimized algorithms for active message send as well as one-
sided put and get over the MU hardware. 

F.  Shared memory software 
 
With multiple processes per node and several applications 
exhibiting locality characteristics, shared memory based 
communication has been a popular method to extract good 
performance within the node.  In addition, using shared 
memory in BG/Q enables applications to take advantage of the 
high throughput available in the L2 cache for intra-node 
communication. 
 
The shared memory software uses lockless queues that take 
advantage of L2 atomic increment instructions.  To enable 
good memory scaling, each process owns only one queue to 
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which others atomically write into.  It is important to note that 
we use the wakeup unit for advancing both the MU and shared 
memory communication paths.  This eliminates the need for a 
thread to actively poll for the message to arrive, therefore 
saving processor cycles. 

G.  Memory optimizations 
 
To reduce the memory requirements, we’ve developed space 
efficient topology structures in the PAMI library to handle a 
range of ranks and importantly defined an axial topology 
which defines the range of the ranks emanating from a given 
node.  These are used both for COMM_WORLD and sub 
communicators. 

IV.  MPI OVER PAMI 
 
We extended MPICH2 [11] from Argonne National 
Laboratory with a pamid device that implements the MPICH2 
ADI [12] and makes PAMI API calls for both point-to-point 
and collective communication.  PAMI provides low-level 
point-to-point protocols for messaging across the different 
endpoints of different source and destination processes or 
tasks.  These protocols are context-scoped and progress is 
made by advancing each individual context by the application 
thread or the commthread.  The protocols are active message 
based and a dispatch is triggered on the remote endpoint upon 
message arrival.  The dispatch function in the pamid device 
looks up the list of posted receives and if a match is found, it 
returns a buffer to the PAMI library to receive the message.   
If a match is not found, an entry is created in the unexpected 
queue, and a buffer is allocated to receive the message.  Inter-
node messaging uses the MU, while L2 Atomic based shared 
memory queues are used for intra-node communication. 

A.  Multi threaded MPI over PAMI 
 
By default, in MPICH2, each call has a global lock to protect 
access to shared resources such as receive queues, request 
allocators, and network resources.   Such an implementation is 
thread safe, but has limited scalability due to the global lock.  
We explored fine grained locking and lockless techniques in 
MPICH2 [13,16].  We extended request allocators by creating 
thread private pools to minimize locking overheads.  We also 
leveraged parallelism from PAMI contexts to hand off the 
work in MPI_Isends to build and inject MU descriptors to a 
communication thread.  The source PAMI context is computed 
by hashing the destination rank and communicator id, and the 
destination context on the remote node is computed by 
hashing the source MPI rank and communicator id.  Thus, all 
the messages between two processes use the same source and 
destination contexts for a given communicator.  This preserves 
MPI ordering for the messages as PAMI only orders messages 
between endpoints.  Since the destination ranks can be hashed 
to different contexts, concurrency is available to the messages 
sent to different remote destinations or using different 
communicators. 

Parallelizing the MPI_Irecv call is trickier.  The default 
MPICH2 receive queue is serial and needs to be protected.   
We have explored parallel receive queues with a separate 
queue for a subset of source nodes.   However, a wildcard any-
source receive can serialize receive processing as it must be 
matched before all receives posted after that wildcard.  We 
observed that the algorithms to process wild cards can be very 
complex and significantly limit performance in the presence of 
wild cards.   As wildcard receives are very commonly used in 
Blue Gene/Q applications, we used the default MPICH2 
receive queue algorithm with a low overhead L2 atomic mutex 
to serialize access to it.  The remainder of receive processing, 
such as the processing of incoming packets and copying 
packet payload to user buffers, is parallelized on different 
communication threads. 
 
The biggest challenge was to optimize the MPI_Waitall 
operation.  The MPI_Waitall is executed on the main thread 
that polls completion counters in request objects completed by 
communication threads.  There may be cache thrashing 
between the main thread and communication thread while 
accessing request objects, resulting in poor performance.  We 
designed a two phase waitall algorithm.  In the first phase, the 
MPI request IDs are converted to MPICH2 request object 
pointers via a hash function.  The execution of this step takes 
tens of processor cycles per request to complete.  We overlap 
the hash function computation with the load of another 
request’s completion counter that is likely to be a cache miss.   
If the requests have not completed they are inserted into a 
queue and polled for completion in the second phase.  As 
applications typically post several send and receive several 
messages before calling waitall, the two phase approach 
enables the request hashing overheads to overlap with the 
cache misses of already completed requests. 
 
We use the thread level in the MPI_Init_thread call to 
determine the level of thread parallelism required by the 
application.  If MPI_THREAD_MULTIPLE is requested, 
communication threads are automatically enabled to speedup 
message rate.  There is also an environment variable available 
for applications that do not generally use that threading model. 

B.  MPI Collectives over PAMI 
 
MPI collectives such as MPI_Barrier, MPI_Bcast 
MPI_Reduce, and MPI_Allreduce directly use the hardware 
collective network to achieve superior scaling in terms of 
latency and bandwidth.  Collective performance is further 
aided by the RDMA enabled collectives cutting down any 
extra copies, unlike the memory FIFO where the packets have 
to be transferred to the application buffers from FIFOs.  Also, 
using the shared memory within each BG/Q node, collective 
operations can be accelerated when more than one process is 
running on a node.  The RDMA and shared memory allow 
seamless integration of intra-node and inter-node protocols, 
boosting the performance of these collective operations.  For 
MPI_Barrier, we use the fast L2 atomics and the global 
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interrupt network to provide very low-overhead barrier across 
the entire machine. Moreover, we utilize the shared address 
approach on a node to get the best performance for broadcast 
and allreduce when running with more than one process per 
node. In the following, we detail the shared address approach. 

C. Shared Address Collectives over BG/Q 

 
Figure 3. Short allreduce with parallelization 

 

 
Figure 4. Long allreduce with parallelization 

 
As copy costs dominate the intra-node performance of a 
collective with multiple processes per node, we deploy the 
“shared address” approach to eliminate any extraneous 
movement of data within the node.  Using global addresses 
within the node, a process can read the data from its peers.  
This feature is very useful in implementing collectives such as 
MPI_Bcast and MPI_Allreduce.  In MPI_Bcast, a master 
process from each node is designated to post RDMA 
descriptors to the collective network and the data directly 
arrives to its own buffer.  Thereafter, other peers on the node 
can directly copy the data arrived using the global virtual 
address of the master.   
 
For MPI_Allreduce, we would have an extra logical step of 
doing the local math within the node.  Depending on the 

message size, we use two different approaches for performing 
math and pipelining with the network operations.  For short 
messages (Figure 3), the basic idea is to parallelize the local 
math and inject a single network descriptor describing the 
entire local result obtained.  Once again, all masters from all 
nodes are responsible for injecting descriptors and polling on 
the counters, checking for the arriving data.  The network sum 
from the collective network arrives directly into the master’s 
receive buffer as we use the RDMA write feature.  The other 
peers wait for the master and copy the final result directly 
from the master’s receive buffer.  For large messages, we use 
pipelining across the local math, network allreduce, and local 
broadcast to get the best performance.  To do this, each 
process operates on a slice of buffers as shown in Figure 4 and 
reports to the master after it is done.  The master injects all the 
slices and the ordering of injection is maintained across all the 
masters of the nodes.  The result is copied from the master’s 
buffer in the same manner as described above. 

V. PERFORMANCE ANAYLYSIS 
 
Our performance study measures the performance of the 
PAMI and MPI libraries on production-level BG/Q hardware 
with 2048 nodes.  We used micro benchmarks to measure 
latency and throughput of both point to point and collective 
communication as well as for measuring messaging rate.  We 
present results from 1 to 16 MPI processes per node and 32 in 
some cases.  Although 64 processes per node mode is 
supported, the current stage of the implementation focuses on 
functionality and is not optimized.   
 
 

TABLE 1. PAMI half round trip for 0B message 

 
TABLE 2. MPI half round trip for 0B message 

 
MPI 
Library 

Thread Mode Comm. 
Thread 
Disabled 

Comm. 
Thread 
Enabled 

Classic Thread Single 1.95us N/A 
Classic Thread Single 2.28us 8.7us 
Thread Opt. Thread Multiple 2.5us N/A 
Thread Opt. Thread Multiple 2.96us 3.25us 

 
 
Tables 1 and 2 show the half round trip latency for a zero byte 
message.  The latency of the PAMI library is 1.18μ using the 
PAMI_SendImmediate call that copies application payload 
into an internal buffer and also sends the message if injection 
FIFO resources are available.  This call is designed for short 
messages.  The latency in the MPI library is 1.95us.  MPI 
overheads are higher than PAMI, as MPI libraries must match 
receives with incoming packets.  In addition, there are 

 Single Threaded Latency 
PAMI Send Immediate 1.18us 

PAMI Send 1.32us 
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P1 
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P3 
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1. Parallel Reduce
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RDMA 

3. Local BroadcastP0 P1 P2 P3 
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overheads to construct request objects, hash functions to 
convert communicator and request identifiers to internal object 
pointers.   
 
The classic MPI library has a global lock for all library calls.  
The thread-optimized library uses thread pools and lock-free 
techniques and acquires a mutex only while accessing a shared 
resource such as the receive queue.  When the MPI library is 
initialized as MPI_THREAD_SINGLE, the classic library has 
the lowest overheads as the global locks are disabled.  As the 
thread optimized library has memory synchronization calls to 
keep memory state consistent with the communication threads, 
it has higher overheads in MPI_THREAD_SINGLE. 
As the classic library lacks fine grained locks, it must acquire 
the PAMI context locks to make progress on PAMI context 
resulting in higher latency in the presence of communication 
threads.   
 
We ran a PAMI benchmark to measure the message rate of the 
PAMI library.  Here each process on a reference node 
communicates with a peer process on a neighboring node.  
The neighboring nodes for the processes on the reference node 
are evenly distributed on the ten torus links out of a node.  The 
performance results are presented in Figure 5.  Observe we 
achieve 107 million messages per second with 32 processes 
per node.  We also ran a modified Sequoia [14] message rate 
benchmark to measure the performance of the MPI classic 
library without communication threads.  Figure 5 presents 
performance results where the processes on the reference node 
communicate with one neighbor process on a neighboring 
node.   The maximum performance achieved is 22.9 million 
messages per second (MMPS) at 32 processes per node.  
Much of the difference between the PAMI and MPI message 
rates is due to overheads such as tag matching and other 
overheads in MPI processing.  
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Figure 5. PAMI and MPI message rate (MMPS) on 32 nodes. 
 
Figure 5 also shows the performance enhancements resulting 
from the techniques that use communication threads to 
accelerate message rate from 1 to 16 processes per node.  
Right now, we do not enable communication threads at 32 
processes per node. Here, each process communicates with 
more than one neighbor process on different neighboring 
nodes.  We also add a barrier after all MPI receives have been 
posted to eliminate unexpected messages.  The barrier 
overhead is included in the message rate presented. We 

present the performance of both MPI_Irecv calls with source 
ranks and wild cards. We see a speedup of 2.4x for one 
process per node (PPN) where the most number of 
communication threads are available.  With more processes 
per node, there are fewer communication threads per process 
resulting in lower speedups. The best performance of 18.7 
MMPS is achieved when PPN=16 and communication threads 
are enabled. 

 
TABLE 3. MPI neighbor send + receive throughput (MB/s) 
for 1MB message varying number of neighbors 

Num. of Neighbors MPI Eager MPI Rendezvous 
1 3267 3333 
2 3360 6625 
4 6676 13139 
10 8467 32355 

 
Table 3 presents the bi-directional nearest neighbor throughput 
for a reference node (with one MPI process) and an increasing 
number of neighbors up to 10, each on a different link.  For 
rendezvous messages that use RDMA hardware capability we 
achieve 90% of peak network throughput.   As eager messages 
are processed on the receiver by copying payload from packets 
in the memory FIFO to application buffers, the maximum 
achieved throughput is lower. 
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Figure 6. MPI Barrier Latency 

 
The performance of the barrier collective via the global 
interrupt (GI) barrier network is presented in Figure 6.  On 
2048 nodes, MPI barrier latency is 2.7μs, 4.0μs and 4.2μs for 
PPN=1, 4, and 16 respectively.  Observe barrier overhead in 
our MPI library is small even with 16 processes per node, as 
the local barrier is implemented via the scalable L2 atomic 
increment operation.   
 
Performance of MPI_Allreduce double sum of a single double 
is presented in Figure 7.  For PPN=1, 4, and 16, the respective 
latencies on 2048 nodes are 5.5μs, 5.0μs, and 5.3μs.  Figure 8 
shows the MPI_Allreduce throughput on 2048 nodes.  We 
achieve a throughput of 1704MB/sec that corresponds to 95% 
of peak with PPN=1 for an 8MB allreduce.  At PPN of 4 and 
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16, the MPI library achieves a peak throughput of  1693MB/s 
(94% of peak) for a 2MB allreduce and 1643 MB/s (91%) for 
a 512KB allreduce respectively.  For larger messages, the send 
and receive buffers spill out of the L2 cache and must be read 
and stored to DDR respectively.  So the performance of 
allreduce is driven by DDR throughput which is lower than the 
level-2 cache.    
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Figure 7. MPI Allreduce (MPI_DOUBLE, MPI_SUM) latency 
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Figure 8. Allreduce throughput via collective network on 2048 

nodes (MPI_DOUBLE, MPI_SUM) 
 
The performance of collective network broadcast is presented 
in Figure 9.  With PPN=1, we achieve a performance of 
1728MB/sec which is close to 96% of hardware peak for a 
32MB broadcast.   At PPN=4, the best performance is 
1722MB/s with a 4MB buffer size, while at PPN=16, we 
achieve a peak throughput of 1701MB/s for a 1MB buffer.  
The performance for large messages at PPN=4 and 16 
saturates as the broadcast data spills out of the L2 cache and 
the performance is driven by DDR throughput.   
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Figure 9. Broadcast throughput via collective network on 2048 

nodes 
 
To improve broadcast performance, by up to a factor of nearly 
10, we also implemented a 10-color rectangle broadcast, 
where the root sends data to all the remaining nodes in the 5D 
torus via 10 edge disjoint spanning trees [15].  The peak 
throughput of this algorithm is 18 GB/s.  Figure 10 shows the 
performance of the rectangle algorithm on 2048 nodes of 
BG/Q.  With PPN=1, the maximum achieved throughput is 
16.9 GB/sec, about 94% of peak network throughput.   At four 
and sixteen processes per node, the incoming broadcast data 
has to be copied into four or sixteen buffers and this copy rate 
determines the throughput of the broadcast.  Again, for large 
messages, the broadcast buffers spill out of the L2 cache and 
DDR throughput determines broadcast performance. 
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Figure 10. Broadcast throughput on 2048 nodes via the multi-
color rectangle broadcast algorithm 

 

VI.  SUMMARY 
 
We presented the thread optimized and highly scalable PAMI 
messaging library with performance results on the BG/Q 
machine.  The MPI and PAMI libraries achieve message rates 
of 107 and 22.9 MMPS respectively via micro benchmarks.  
We exploit the wakeup unit and L2 atomic features of the 
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BG/Q compute node to accelerate MPI message rate via 
communication threads.  We achieve a speedup of 2.4x for 
message rate with one process per node.   Our collective 
performance results show under 4.2us latency for barrier and 
under 5.5us latency for allreduce double sum on 2048 nodes.  
We achieve high percent of peak for both nearest neighbor and 
collective throughput. The maximum broadcast throughput 
achieved is 16.9GB/sec. Due to L2 and DDR contention, 
collective throughput may decrease at 16 processes per node.  
This suggests that applications should be threaded and be run 
on fewer processes per node to get the best performance on 
this architecture.  The collective network on BG/Q is enabled 
for both MPI_COMM_WORLD and rectangular sub 
communicators.   
 
In the future we would like to explore performance 
optimizations for other collective operations such as all-to-all, 
scatter and gather.  We would also like to explore new 
algorithms for irregular sub-communicators.   
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