
203ARRAYS SHARED MEMORY PROGRAMMING

ADVANCES, APPLICATIONS AND
PERFORMANCE OF THE GLOBAL
ARRAYS SHARED MEMORY
PROGRAMMING TOOLKIT

Jarek Nieplocha1

Bruce Palmer1

Vinod Tipparaju1

Manojkumar Krishnan1

Harold Trease1

Edoardo Aprà2

Abstract

This paper describes capabilities, evolution, performance,
and applications of the Global Arrays (GA) toolkit. GA was
created to provide application programmers with an inter-
face that allows them to distribute data while maintaining
the type of global index space and programming syntax
similar to that available when programming on a single
processor. The goal of GA is to free the programmer from
the low level management of communication and allow
them to deal with their problems at the level at which they
were originally formulated. At the same time, compatibility
of GA with MPI enables the programmer to take advan-
tage of the existing MPI software/libraries when available
and appropriate. The variety of applications that have
been implemented using Global Arrays attests to the
attractiveness of using higher level abstractions to write
parallel code.

Key words: Global Arrays, Global Address Space, Shared
Memory, Data Distribution, Parallel Programming, Data
Abstraction

1 Introduction

The two predominant classes of programming models for
MIMD concurrent computing are distributed memory and
shared memory. Both shared memory and distributed mem-
ory models have advantages and shortcomings. Shared
memory model is much easier to use but it ignores data
locality/placement. Given the hierarchical nature of the
memory subsystems in modern computers this character-
istic can have a negative impact on performance and scal-
ability. Careful code restructuring to increase data reuse
and replacing fine grain load/stores with block access to
shared data can address the problem and yield perform-
ance for shared memory that is competitive with mes-
sage-passing (Shan and Singh 2000). However, this
performance comes at the cost of compromising the ease
of use that the shared memory model advertises. Distrib-
uted memory models, such as message-passing or one-
sided communication, offer performance and scalability
but they are difficult to program.

The Global Arrays toolkit (Nieplocha, Harrison, and
Littlefield 1994, 1996; Nieplocha et al. 2002a) attempts to
offer the best features of both models. It implements a
shared-memory programming model in which data local-
ity is managed by the programmer. This management is
achieved by calls to functions that transfer data between a
global address space (a distributed array) and local stor-
age (Figure 1). In this respect, the GA model has similarities
to the distributed shared-memory models that provide an
explicit acquire/release protocol, e.g. Zhou, Iftode, and Li
(1996). However, the GA model acknowledges that remote
data is slower to access than local data and allows data
locality to be specified by the programmer and hence
managed. GA is related to the global address space lan-
guages such as UPC (Carlson et al. 1999), Titanium (Yelick
et al. 1998), and, to a lesser extent, Co-Array Fortran1 (Num-
rich and Reid 1998). In addition, by providing a set of
data-parallel operations, GA is also related to data-parallel
languages such as HPF (High Performance Fortran Forum
1993), ZPL (Snyder 1999), and Data Parallel C (Hatcher
and Quinn 1991). However, the Global Array program-
ming model is implemented as a library that works with
most languages used for technical computing and does
not rely on compiler technology for achieving parallel
efficiency. It also supports a combination of task- and data-
parallelism and is available as an extension of the mes-

The International Journal of High Performance Computing Applications,
Volume 20, No. 2, Summer 2006, pp. 203–231
DOI: 10.1177/1094342006064503
© 2006 SAGE Publications
Figures 7–9, 13, 24 appear in color online: http://hpc.sagepub.com

1COMPUTATIONAL SCIENCES AND MATHEMATICS
DEPARTMENT, PACIFIC NORTHWEST NATIONAL
LABORATORY, RICHLAND, WA 99352.
(JAREK.NIEPLOCHA@PNL.GOV)
2WILLIAM R. WILEY ENVIRONMENTAL MOLECULAR
SCIENCES LABORATORY, PACIFIC NORTHWEST
NATIONAL LABORATORY, RICHLAND, WA 99352

204 COMPUTING APPLICATIONS

sage-passing (MPI) model. The GA model exposes to the
programmer the hierarchical memory of modern high-
performance computer systems (Nieplocha, Harrison, and
Foster 1996), and by recognizing the communication over-
head for remote data transfer, it promotes data reuse and
locality of reference. Virtually all the scalable architectures
possess non-uniform memory access characteristics that
reflect their multi-level memory hierarchies. These hier-
archies typically comprise processor registers, multiple
levels of cache, local memory, and remote memory. Over
time, both the number of levels and the cost (in processor
cycles) of accessing deeper levels has been increasing. It
is important for any scalable programming model to address
memory hierarchy since it is critical to the efficient exe-
cution of scalable applications.

Before the DoE-2000 ACTS program was established
(ACTS; DOE ACTS), the original GA package (Nieplocha,
Harrison, and Littlefield 1994, 1996; Nieplocha et al.
2002a) offered basic one-sided communication operations,
along with a limited set of collective operations on arrays
in the style of BLAS (Dongarra et al. 1990). Only two-
dimensional arrays and two data types were supported. The
underlying communication mechanisms were implemented
on top of vendor specific interfaces. In the course of ten
years, the package has evolved substantially and the under-
lying code has been completely rewritten. This included

separation of the GA internal one-sided communication
engine from the high-level data structure. A new portable,
general, and GA-independent communication library called
ARMCI was created (Nieplocha and Carpenter 1999).
New capabilities were later added to GA without the need
to modify the ARMCI interfaces. The GA toolkit evolved
in multiple directions:

• Adding support for a wide range of data types and vir-
tually arbitrary array ranks (note that the Fortran limit
for array rank is seven).

• Adding advanced or specialized capabilities that address
the needs of some new application areas, e.g. ghost cells
or operations for sparse data structures.

• Expansion and generalization of the existing basic func-
tionality. For example, mutex and lock operations were
added to better support the development of shared mem-
ory style application codes. They have proven useful
for applications that perform complex transformations
of shared data in task parallel algorithms, such as com-
pressed data storage in the multireference configuration
interaction calculation in the COLUMBUS package
(Dachsel, Nieplocha, and Harrison 1998).

• Increased language interoperability and interfaces. In
addition to the original Fortran interface, C, Python,
and a C++ class library were developed. These efforts

Fig. 1 Dual view of GA data structures (left). Any part of GA data can be accessed independently by any process at
any time (right).

205ARRAYS SHARED MEMORY PROGRAMMING

were further extended by developing a Common Com-
ponent Architecture (CCA) component version of GA.

• Developing additional interfaces to third party librar-
ies that expand the capabilities of GA, especially in the
parallel linear algebra area. Examples are ScaLAPACK
(Blackford et al. 1997) and SUMMA (VanDeGeijn and
Watts 1997). More recently, interfaces to the TAO opti-
mization toolkit have also been developed (Benson,
McInnes, and Moré).

• Developed support for multi-level parallelism based on
processor groups in the context of a shared memory pro-
gramming model, as implemented in GA (Nieplocha
et al. 2005; Krishnan et al. 2005).

These advances generalized the capabilities of the GA
toolkit and expanded its appeal to a broader set of appli-
cations. At the same time the programming model, with
its emphasis on a shared memory view of the data struc-
tures in the context of distributed memory systems with a
hierarchical memory, is as relevant today as it was in
1993 when the project started. This paper describes the
characteristics of the Global Arrays programming model,
capabilities of the toolkit, and discusses its evolution. In
addition, performance and application experience are pre-
sented.

2 The Global Arrays Model

The classic message-passing paradigm of parallel pro-
gramming not only transfers data but also synchronizes the
sender and receiver. Asynchronous (nonblocking) send/
receive operations can be used to diffuse the synchroniza-
tion point, but cooperation between sender and receiver is
still required. The synchronization effect is beneficial in
certain classes of algorithms, such as parallel linear alge-
bra, where data transfer usually indicates completion of
some computational phase; in these algorithms, the syn-
chronizing messages can often carry both the results and a
required dependency. For other algorithms, this synchro-
nization can be unnecessary and undesirable, and a source
of performance degradation and programming complex-
ity. The MPI-2 (MPI Forum) one-sided communication
relaxes the synchronization requirements between sender
and receiver while imposing new constraints on progress
and remote data access rules that make the programming
model more complicated than with other one-sided inter-
faces (Bariuso and Knies 1994; Shah et al. 1998). Despite
programming difficulties, the message-passing memory
paradigm maps well to the distributed-memory architec-
tures deployed in scalable MPP systems. Because the pro-
grammer must explicitly control data distribution and is
required to address data-locality issues, message-passing
applications tend to execute efficiently on such systems.
However, on systems with multiple levels of remote mem-

ory, for example networks of SMP workstations or com-
putational grids, the message-passing model’s classification
of main memory as local or remote can be inadequate. A
hybrid model that extends MPI with OpenMP attempts to
address this problem but is very hard to use and often
offers little or no advantages over the MPI-only approach
(Loft, Thomas, and Dennis 2001; Henty 2000).

In the shared-memory programming model, data is
located either in “private” memory (accessible only by a
specific process) or in “global” memory (accessible to all
processes). In shared-memory systems, global memory is
accessed in the same manner as local memory. Regardless
of the implementation, the shared-memory paradigm elim-
inates the synchronization that is required when message-
passing is used to access shared data. A disadvantage of
many shared-memory models is that they do not expose
the NUMA memory hierarchy of the underlying distrib-
uted-memory hardware (Nieplocha, Harrison, and Foster
1996). Instead, they present a flat view of memory, making
it hard for programmers to understand how data access
patterns affect the application performance or how to exploit
data locality. Hence, while the programming effort involved
in application development tends to be much lower than
in the message-passing approach, the performance is usu-
ally less competitive.

The shared memory model based on Global Arrays
combines the advantages of a distributed memory model
with the ease of use of shared memory. It is able to exploit
SMP locality and deliver peak performance within the
SMP by placing user’s data in shared memory and allow-
ing direct access rather than through a message-passing
protocol. This is achieved by function calls that provide
information on which portion of the distributed data is
held locally and the use of explicit calls to functions that
transfer data between a shared address space and local
storage. The combination of these functions allows users
to make use of the fact that remote data is slower to access
than local data and to optimize data reuse and minimize
communication in their algorithms. Another advantage is
that GA, by optimizing and moving only the data requested
by the user, avoids issues such as false sharing, data coher-
ence overheads, and redundant data transfers present in
some software-based distributed shared memory (DSM)
solutions (Cox et al. 1997; Bershad, Zekauskas, and Saw-
don 1993; Freeh. and Andrews 1996). These issues also
affect performance of OpenMP programs compiled to use
DSM (Basumallik, Min, and Eigenmann 2002).

GA allows the programmer to control data distribution
and makes the locality information readily available to be
exploited for performance optimization. For example,
global arrays can be created by 1) allowing the library to
determine the array distribution, 2) specifying the decom-
position for only one array dimension and allowing the
library to determine the others, 3) specifying the distribu-

206 COMPUTING APPLICATIONS

tion block size for all dimensions, or 4) specifying an
irregular distribution as a Cartesian product of irregular dis-
tributions for each axis. The distribution and locality infor-
mation is always available through interfaces to query 1)
which data portion is held by a given process, 2) which
process owns a particular array element, and 3) a list of
processes and the blocks of data owned by each process
corresponding to a given section of an array.

The primary mechanisms provided by GA for accessing
data are block copy operations that transfer data between
layers of memory hierarchy, namely global memory (dis-
tributed array) and local memory. Further extending the
benefits of using blocked data accesses, copying remote
locations into contiguous local memory can improve uni-
processor cache performance by reducing both conflict
and capacity misses (Lam, Rothberg, and Wolf 1991). In
addition, each process is able to access directly data held
in a section of a Global Array that is locally assigned to
that process and on SMP clusters sections owned by other
processes on the same node. Atomic operations are pro-
vided that can be used to implement synchronization and
assure correctness of an accumulate operation (floating-
point sum reduction that combines local and remote data)
executed concurrently by multiple processes and target-
ing overlapping array sections.

GA is extensible as well. New operations can be
defined exploiting the low level interfaces dealing with
distribution, locality and providing direct memory access
(nga_distribution, nga_locate_region, nga_
access, nga_release, nga_release_ update)
(Nieplocha et al. 2002b). These, for example, were used
to provide additional linear algebra capabilities by inter-
facing with third party libraries, e.g. ScaLAPACK (Black-
ford et al. 1997).

2.1 Memory Consistency Model

In shared memory programming, one of the issues central
to performance and scalability is memory consistency.
Although the sequential consistency model (Scheurich
and Dubois 1987) is straightforward to use, weaker con-
sistency models (Dubois, Scheurich, and Briggs 1986) can
offer higher performance on modern architectures and
they have been implemented on actual hardware. The GA
approach is to use a weaker than sequential consistency
model that is still relatively straightforward to understand
by an application programmer. The main characteristics
of the GA approach include:

• GA distinguishes two types of completion of the store
operations (i.e. put, scatter) targeting global shared mem-
ory: local and remote. The blocking store operation
returns after the operation is completed locally, i.e. the
user buffer containing the source of the data can be

reused. The operation completes remotely after either a
memory fence operation or a barrier synchronization is
called. The fence operation is required in critical sec-
tions of the user code, if the globally visible data is
modified.

• The blocking operations (load/stores) are ordered only
if they target overlapping sections of global arrays. Oper-
ations that do not overlap or access different arrays can
complete in arbitrary order.

• The nonblocking load/store operations complete in arbi-
trary order. The programmer uses wait/test operations
to order completion of these operations, if desired.

3 The Global Array Toolkit

There are three classes of operations in the Global Array
toolkit: core operations, task parallel operations, and data
parallel operations. These operations have multiple lan-
guage bindings, but provide the same functionality inde-
pendent of the language. The GA package has grown
considerably in the course of ten years. The current library
contains approximately 200 operations that provide a rich
set of functionality related to data management and com-
putations involving distributed arrays.

3.1 Functionality

The basic components of the Global Arrays toolkit are
function calls to create global arrays, copy data to, from,
and between global arrays, and identify and access the
portions of the global array data that are held locally.
There are also functions to destroy arrays and free up the
memory originally allocated to them. The basic function
call for creating new global arrays is nga_create. The
arguments to this function include the dimension of the
array, the number of indices along each of the coordinate
axes, and the type of data (integer, float, double, etc.) that
each array element represents. The function returns an
integer handle that can be used to reference the array in all
subsequent calculations. The allocation of data can be left
completely to the toolkit, but if it is desirable to control
the distribution of data for load balancing or other rea-
sons, additional versions of the nga_create function
are available that allow the user to specify in detail how
data is distributed between processors. Even the basic
nga_create call contains an array that can be used to
specify the minimum dimensions of a block of data on
each processor.

One of the most important features of the Global Arrays
toolkit is the ability to easily move blocks of data between
global arrays and local buffers. The data in the global
array can be referred to using a global indexing scheme
and data can be moved in a single function call, even if it
represents data distributed over several processors. The

207ARRAYS SHARED MEMORY PROGRAMMING

nga_get function can be used to move a block of dis-
tributed data from a global array to a local buffer and has
a relatively simple argument list. The arguments consist
of the array handle for the array that data is being taken
from, two integer arrays representing the lower and upper
indices that bound the block of distributed data that is
going to be moved, a pointer to the local buffer or a location
in the local buffer that is to receive the data, and an array
of strides for the local data. The nga_put call is similar
and can be used to move data in the opposite direction.
For a distributed data paradigm with message-passing, this
kind of operation is much more complicated. The block of
distributed data that is being accessed must be decom-
posed into separate blocks, each residing on different proc-
essors, and separate message-passing events must be set up
between the processor containing the buffer and the proc-
essors containing the distributed data. A conventional mes-
sage-passing interface will also require concerted actions
on each pair of processors that are communicating, which
contributes substantially to program complexity.

The one-sided communications used by Global Arrays
eliminate the need for the programmer to account for
responses by remote processors. Only the processor issu-
ing the data request is involved, which considerably reduces
algorithmic complexity compared to the programming
effort required to move data around in a two-sided com-
munication model. This is especially true for applications
with dynamic or irregular communication patterns. Even
for other programming models that support onesided com-
munications, such as MPI-2, the higher level abstractions
supported by GA can reduce programming complexity.
To copy data from a local buffer to a distributed array
requires only a single call to nga_put. Based on the data
distribution, the GA library handles the decomposition of
the put into separate point-to-point data transfers to each
of the different processors to which the data must be cop-
ied and implements each transfer. The corresponding
MPI_Put, on the other hand, only supports point-to-
point transfers, so all the decomposition and implementa-
tion of the separate transfers must be managed by the pro-
grammer.

To allow the user to exploit data locality, the toolkit
provides functions identifying the data from the global
array that is held locally on a given processor. Two
functions are used to identify local data. The first is the
nga_distribution function, which takes a proces-
sor ID and an array handle as its arguments and returns a
set of lower and upper indices in the global address space
representing the local data block. The second is the
nga_access function, which returns an array index
and an array of strides to the locally held data. In Fortran,
this can be converted to an array by passing it through a
subroutine call. The C interface provides a function call
that directly returns a pointer to the local data.

In addition to the communication operations that sup-
port task-parallelism, the GA toolkit includes a set of
interfaces that operate on either entire arrays or sections
of arrays in the data parallel style. These are collective
data-parallel operations that are called by all processes in
the parallel job. For example, movement of data between
different arrays can be accomplished using a single func-
tion call. The nga_copy_patch function can be used
to move a patch, identified by a set of lower and upper
indices in the global index space, from one global array
to a patch located within another global array. The only
constraints on the two patches are that they contain equal
numbers of elements. In particular, the array distributions
do not have to be identical and the implementation can
perform as needed the necessary data reorganization (so
called “M × N” problem (CCA-Forum)). In addition, this
interface supports an optional transpose operation for the
transferred data. If the copy is from one patch to another
on the same global array, there is an additional constraint
that the patches do not overlap.

3.2 Example

A simple code fragment illustrating how these routines
can be used is shown in Figure 2. A 1-dimensional array
is created and initialized and then inverted so that the
entries are running in the opposite order. The locally held
piece of the arrays is copied to a local buffer, the local data
is inverted, and then it is copied back to the inverted loca-
tion in the global array. The chunk array specifies mini-
mum values for the size of each locally held block and in
this example guarantees that each local block is a 100
integer array. Note that global indices are used through-
out and that it is unnecessary to do any transformations to
find the local indices of the data on other processors.

A more complicated example is a distributed matrix
multiply of two global arrays, which is illustrated sche-
matically in Figure 3. (This is not an optimal algorithm
and is used primarily to illustrate how the toolkit can be
used.) The matrix multiply requires three global arrays,
A, B, and the product array, C.

The nga_distribution function is used to iden-
tify the indices of the locally held block from the product
array C; this then determines what portions of the arrays
A and B need to be moved to each processor to perform
the calculation. The two data strips required to produce the
target block are then obtained using a pair of nga_get
calls. These calls will, in general, get data from multiple
processors. Once the data from the A and B arrays has
been copied to local buffers, the multiplication can be
performed locally using an optimized scalar matrix multi-
plication algorithm, such as the LAPACK dgemm sub-
routine. The product patch is then copied back to the C
array using an nga_put call.

208 COMPUTING APPLICATIONS

The Global Array toolkit also contains a broad spec-
trum of elementary functions that are useful in initializing

data or performing calculations. These include operations
that zero all the data in a global array, uniformly scale the
data by some value, and support a variety of (BLAS-like)
basic linear algebra operations including addition of arrays,
matrix multiplication, and dot products. The global array
matrix multiplication has been reimplemented over the
years, without changing the user interface. These different
implementations ranged from a wrapper to the SUMMA
(VanDeGeijn and Watts 1997) algorithm to the more
recently introduced high-performance SRUMMA algo-
rithm (Krishnan and Nieplocha 2004a,b) that relies on a
collection of protocols (shared memory, remote memory
access, nonblocking communication) and techniques to
optimize performance depending on the machine archi-
tecture and matrix distribution.

3.3 Interoperability with Other Packages

The GA model is compatible with and extends the distrib-
uted memory model of MPI. The GA library relies on the
execution/run-time environment provided by MPI. In par-
ticular, the job startup and interaction with the resource

Fig. 2 Example Fortran (left) and C++ (right) code for transposing elements of an array.

Fig. 3 Schematic representation of distributed matrix
multiply, C = A·B.

209ARRAYS SHARED MEMORY PROGRAMMING

manager is left to MPI. Thanks to the compatibility and
interoperability with MPI, GA can 1) exploit the existing
rich set of software based on MPI to implement some of
the capabilities such as linear algebra and 2) provide the
programmer with the ability to mix and match different
communication styles and capabilities provided by GA
and MPI. For example, the molecular dynamics module of
NWChem uses an MPI-based FFT library combined
with a GA-based implementation of different molecular
dynamics algorithms and data management strategies.

The GA package by itself relies on the linear algebra
functionality provided by ScaLAPACK. For example, the
ga_lu_solve is interfaced with the appropriate Sca-
LAPACK factorization pdgetrf and the forward/back-
ward substitution interface pdgetrs. Because the global
arrays already contain all the information about array dimen-
sionality and layout, the GA interface is much simpler (see
Figure 4).

Other important capabilities integrated with GA and
available to the programmer include numerical optimiza-
tion. These capabilities are supported thanks to the Toolkit
for Advanced Optimization (TAO) (Benson, McInnes, and

Moré; Benson et al. 2003). TAO offers these capabilities
while relying on the GA distributed data management
infrastructure and linear algebra operations.

Examples of other toolkits and packages that are inter-
operable and have been used with GA include the PETSc
PDE solver toolkit (Balay), CUMULVS toolkit for visu-
alization and computational steering (CUMULVS) and
PeIGS parallel eigensolver library (PeIGS).

3.4 Language Interfaces

One of the strengths of the GA toolkit is its ambivalence
toward the language that the end user application is
developed in. Interfaces in C, C++, Fortran, and Python
to GA have been developed (Figure 5). Mixed language
applications are supported as well. For example, a global
array created from a Fortran interface can be used within
a C function, provided that the corresponding data types
exist in both languages. The view of the underlying data
layout of the array is adjusted, depending on the language
bindings, to account for the preferred array layout native
to the language (column-based in Fortran and row-based
in C/C++/Python). A 50 × 100 array of double precision
data created from the Fortran interface is available as a
100 × 50 array of doubles through the C bindings.

Recently, Babel (Dahlgren, Epperly, and Kumfert 2003)
interfaces to GA have been developed. Babel supports
additional translation of the GA interfaces to Fortran 90
and Java.

4 Efficiency and Portability

GA uses ARMCI (Aggregate Remote Memory Copy Inter-
face) (Nieplocha and Carpenter 1999) as the primary com-

Fig. 4 ga_lu_solve operation is much easier to use
than the ScaLAPACK interfaces that are invoked
beneath this GA operation.

Fig. 5 Diagram of Global Arrays showing the overall structure of the toolkit and emphasizing different language
bindings.

210 COMPUTING APPLICATIONS

munication layer. Collective operations, if needed by the
user program, can be handled by MPI. Neither GA nor
ARMCI can work without a message-passing library that
provides the essential services and elements of the execu-
tion environment (job control, process creation, interaction
with the resource manager).The Single Program Multiple
Data (SPMD) model of computations is inherited from
MPI, along with the overall execution environment and
services provided by the operating system to the MPI pro-
grams. ARMCI is currently a component of the run-time
system in the Center for Programming Models for Scala-
ble Parallel Computing project (pmodels). In addition to
being the underlying communication interface for Global
Arrays, it has been used to implement communication librar-
ies and compilers (Carpenter 1995; Nieplocha and Carpen-
ter 1999; Parzyszek, Nieplocha, and Kendall 2000; Coarfa
et al. 2003). ARMCI offers an extensive set of functional-
ity in the area of RMA communication: 1) data transfer
operations; 2) atomic operations; 3) memory management
and synchronization operations; and 4) locks. Communi-
cation in most of the non-collective GA operations is
implemented as one or more ARMCI communication
operations. ARMCI was designed to be a general, porta-
ble, and efficient one-sided communication interface that
is able to achieve high performance (Nieplocha, Ju, and
Straatsma 2000; Nieplocha et al. 2002c, 2003; Tipparaju
et al. 2004). It also avoided the complexity of the progress
rules and increased synchronization in the MPI-2 one-
sided model (introduced in 1997), that contributed to its
delayed implementations and still rather limited adoption
(as of 2004).

During the ACTS project, development of the ARMCI
library represented one of the most substantial tasks asso-
ciated with advancements of GA. It implements most of the
low level communication primitives required by GA.
High performance implementations of ARMCI were devel-
oped under the ACTS project within a year for the predom-
inant parallel systems used in the US in 1999 (Nieplocha
and Carpenter 1999; Nieplocha, Ju, and Straatsma 2000)
and it has been expanded and supported since then on
most other platforms, including massively parallel scalar
and vector supercomputers (Nobes, Rendell, and Nieplocha,
2000) as well as clusters (Nieplocha et al. 2002c; Tippa-
raju et al. 2004).

GA’s communication interfaces combine the ARMCI
interfaces with a global array index translation layer, see
Figure 6. Performance of GA is therefore proportionate to
and in-line with ARMCI performance. GA achieves most
of its portability by relying on ARMCI. This reduces the
effort associated with porting GA to a new platform to
porting ARMCI. GA relies on the global memory manage-
ment provided by ARMCI, which requires that remote
memory be allocated via the memory allocator routine,
ARMCI_Malloc (similar to MPI_Win_malloc in MPI-2).

On shared memory systems, including SMPs, this approach
makes it possible to allocate shared memory for the user
data and consecutively map remote memory operations
to direct memory references, thus achieving sub-micro-
second latency and a full memory bandwidth (Nieplocha,
Ju, and Straatsma 2000). Similarly, on clusters with net-
works based on physical memory RDMA, registration of
allocated memory makes it suitable for zero-copy com-
munication. To support efficient communication in the
context of multi-dimensional arrays, GA requires and uti-
lizes the non-contiguous vector and multi-strided primi-
tives provided by ARMCI (Nieplocha and Carpenter
1999).

Many GA operations achieve good performance by
utilizing the low-overhead high-overlap non-blocking
operations in ARMCI to overlap computation with com-
munication. Even blocking one-sided GA operations inter-
nally use non-blocking ARMCI operations to exploit
available concurrency in the network communication.
Figure 6 shows how a GA Get call is implemented and
eventually translated to ARMCI Get call(s). The left side
represents a flow chart and the right side shows the corre-
sponding example for the flowchart. A GA Get call first
requires determination of data locality: the physical location
of the data in the distributed/partitioned address space
needs to be determined. Then indices corresponding to
where the data is located (on that process) need to be found.
When this information is available, multiple ARMCI non-
blocking Get calls are made, one for each remote destina-
tion that holds a part of the data. After all the calls are
issued, they are waited upon until completed. By issuing
all the calls first and then waiting on their completion, a
significant amount of overlap can be achieved when there
is more than one remote destination. When the wait is
completed, the data is in the buffer and the control is
returned to the user program.

On cluster interconnects, ARMCI achieves bandwidth
close to the underlying network protocols (Tipparaju
et al. 2004); see Figure 7. The same applies to latency if
the native platform protocol supports the equivalent remote
memory operation (e.g. elan_get on Quadrics). For plat-
forms that do not support remote get (VIA) the latency
sometimes includes the cost of interrupt processing
that is used in ARMCI to implement the get operation.
Although, relying on interrupt may increase the latency
over the polling-based approaches, progress in com-
munication is guaranteed regardless of whether or not the
remote process is computing or communicating. The per-
formance of inter-node operations in GA closely follows
the performance of ARMCI. Thanks to its very low over-
head implementation, ARMCI is able to achieve perform-
ance close to that of native communication protocols; see
Figure 7. These benefits are carried over to GA, making
its performance very close to native communication pro-

211ARRAYS SHARED MEMORY PROGRAMMING

tocols on many platforms. This can be seen in Figure 7,
which compares GA Get performance with ARMCI Get
performance and raw native network protocol perform-
ance on the Mellanox Infiniband and Elan4 (both are
popular high speed current generation cluster intercon-
nects). Figure 8 shows the performance of GA Get and Put
on Linux clusters. Figure 9 shows the performance of GA
Get/Put strided calls for square sections of a two-dimen-
sional array, which involve non-contiguous data trans-
fers. Latencies in GA and ARMCI operations are compared
in Table 1. The small difference between performances
of these two interfaces is due to the extra cost of the glo-

bal array index translation, see Figure 6. The differences
are considerable in the shared memory version because
simple load/store operation is faster than the index trans-
lation.

5 Advanced Features

The GA model was defined and implemented ten years
ago (Nieplocha, Harrison, and Littlefield 1994), and then
ported to the leading parallel machines of that time. In
addition to ports and optimizations that have been intro-
duced since then, the GA toolkit has evolved dramatically

Fig. 6 Left: GA_Get flow chart. Right: An example: Process P2 issues GA_Get to get a chunk of data, which is dis-
tributed (partially) among P–0, P–1, P–3 and P–4 (owners of the chunk).

212 COMPUTING APPLICATIONS

Fig. 7 Comparison of GA Get with ARMCI Get and native protocols performance Left: InfiniBand (IA64), Right:
Quadrics Elan4 (IA64).

Fig. 8 Performance of basic GA 1D operations on Linux clusters: get (left), put (right).

213ARRAYS SHARED MEMORY PROGRAMMING

in terms of its capabilities, generality, and interoperabil-
ity. In this section, advanced capabilities of the GA toolkit
are discussed.

5.1 Ghost Cells and Periodic Boundary Conditions

Many applications simulating physical phenomena defined
on regular grids benefit from explicit support for ghost
cells. These capabilities have been added recently to Glo-
bal Arrays, along with the corresponding update and shift
operations that operate on ghost cell regions (Palmer and

Nieplocha 2002). Examples of other packages that include
support for ghost cells include POOMA (Crotinger et al.
2000), Kelp (Baden et al. 2001), Overture (Brown, Hen-
shaw, and Quinlan 1999), and Zoltan (Douglas et al. 2002).
The update operation fills in the ghost cells with the visi-
ble data residing on neighboring processors. Once the
update operation is complete, the local data on each proc-
essor contains the locally held “visible” data plus data
from the neighboring elements of the global array, which
has been used to fill in the ghost cells. Thus, the local data
on each processor looks like a chunk of the global array

Fig. 9 Performance of basic GA 2D operations: get (left), put (right).

Table 1
Latency (in microseconds) in GA and ARMCI operations

Operation/platform
Linux

1.5GHz IA64
Elan-4

Linux
1GHz IA64 4X

Infiniband

Linux
2.4GHz IA32

Myrinet-2000/C card

Linux
2.4GHz IA32 shared

memory

ARMCI Get 4.54 16 17 0.162

GA Get 6.59 22 18 1.46

ARMCI Put 2.45 12 12 0.17

GA Put 4.71 16 13 1.4

214 COMPUTING APPLICATIONS

that is slightly bigger than the chunk of locally held visi-
ble data, see Figure 10. The update operation to fill in the
ghosts cells can be treated as a collective operation, ena-
bling a multitude of optimization techniques. It was found
that depending on the platform, different communication
algorithms (message-passing, one-sided communication,
shared memory) work the best. The implementation of
the update makes use of the optimal algorithm for each
platform. GA also allows ghost cell widths to be set to
arbitrary values in each dimension, thereby allowing pro-
grammers to improve performance by combining multi-
ple fields into one global array and using multiple time
steps between ghost cell updates. The GA update opera-
tion offers several embedded synchronization semantics:
no synchronization whatsoever, synchronization at the
beginning of the operation, at the end or both. They are
selected by the user by calling an optional function that
cancels any synchronization points in the update opera-
tion, see Section 5.5. This can be used to eliminate unnec-
essary synchronizations in codes where other parts of the
algorithm guarantee consistency of the data.

Along with ghost cells, additional operations are pro-
vided that can be used to implement periodic bound-
ary conditions on periodic or partially periodic grids. All
the onesided operations (put/get/accumulate) in GA are
available in versions that support periodic boundary con-
ditions. The syntax for using these commands is that the
user requests a block of data using the usual global index
space. If one of the dimensions of the requested block
exceeds the dimension of the global array, that portion of
the request is automatically wrapped around the array
edge and the data from the other side of the array is used
to complete the request. This simplifies coding of appli-
cations using periodic boundary conditions, since the data
can be copied into a local buffer that effectively “pads”
the original array to include the wrapped data due to peri-
odicity. This eliminates the need to explicitly identify
data at the edge of the array and makes coding much sim-
pler.

5.2 Sparse Data Management

Unstructured meshes are typically stored in a compressed
sparse matrix form where the arrays that represent the
data structures are one-dimensional. Computations on
such unstructured meshes often lead to irregular data
access and communication patterns. They also map to a
distributed, shared memory, parallel programming model.
Developing high-level abstractions and data structures
that are general and applicable to a range of problems and
applications is a challenging task. Therefore, our plan was
to identify a minimal set of lower level interfaces that
facilitate operations on sparse data format first and then
try to define higher level data structures and APIs after
gaining some experience in using these interfaces.

A set of functions was developed to operate on distrib-
uted, compressed, sparse matrix data structures built on top
of one-dimensional global arrays (Chatterjee, Blelloch, and
Zagha 1990; Blelloch, Heroux, and Zagha 1993). These
functions have been patterned after similar functions in
CMSSL, developed for Thinking Machines CM-2 and
CM-5 massively parallel computers in the late 80s and
early 90s. Some of them were also included in the set of
HPF intrinsic functions (High Performance Fortran Forum
1993). The types of functions that have been designed,
implemented and tested include: 1) enumerate; 2) pack/
unpack; 3) scatter_with_OP, where OP can be plus, max,
min; 4) segmented_scan_with_OP, where OP can be plus,
max, min, copy; 5) binning (i.e. N-to-M mapping); and 6)
a 2-key binning/sorting function. All the functions oper-
ate on one-dimensional global arrays and can form a foun-
dation for building unstructured mesh data structures.
Numerical operators defined on unstructured meshes typ-
ically have sparse matrix representations that are stored
as one-dimensional data structures. The Global Array func-
tions for manipulating one-dimensional arrays have been
adopted in mesh generation (NWGrid) and computa-
tional biophysics (NWPhys) codes.

The use of some of these functions can be seen by con-
sidering a sparse matrix multiplying a sparse vector. Sparse
data structures are generally stored by mapping them onto
dense, one-dimensional arrays. A portion of a sparse matrix
stored in column major form is shown in Figure 11 along
with its mapping to a corresponding dense vector. Only non-
zero values are stored, along with enough information about
indices to reconstruct the original matrix.

Generally, only compressed arrays are created, construc-
tion of the full sparse matrix is avoided at all steps in the
algorithm. The steps of a sparse matrix-vector multiply
are illustrated in Figure 12. The original sparse matrix and
sparse vector are shown in Figure 12(a). The sparse vec-
tor is then mapped onto a matrix with the same sparsity
pattern as the original sparse matrix (Figure 12(b)). This
mapping is partially accomplished using the enumerate

Fig. 10 An ordinary global array distributed on 9 proc-
essors (left) and the corresponding global array with
ghost cells (right).

215ARRAYS SHARED MEMORY PROGRAMMING

command. Note that the remapped sparse vector may
have many zero entries (shown as hatched elements in the
figure). Both the original matrix and the sparse matrix
representation of the vector are written as dense one-
dimensional arrays (Figure 12(c)). The multiplication can
be completed by multiplying together each component of
the two dense vectors and then performing a segmented_
scan_with_OP, where OP is addition, to get the final prod-
uct vector. The segmented_scan_with_OP adds together
all elements within a segment and can be used to add
together all elements in the product matrix corresponding
to an individual row (Figure 12(d)).

The pack/unpack functions can be used to work on
portions of the sparse data structure by masking portions
of the data structure and copying it into another array.
These can be used to implement the equivalent of the
HPF where statement. The binning routines can be used
to partition and manipulate structures. For example, the N-

to-M binning function can be used to spatially partition
an unstructured mesh using a regular mesh superimposed
on top of it.

5.3 Nonblocking Communication

Nonblocking communication is a mechanism for latency
hiding where a programmer attempts to overlap commu-
nication with computation. In some applications, by pipelin-
ing communication and computation, the overhead of
transferring data from remote processors can be overlapped
with calculations. The nonblocking operations (get/put/
accumulate) are derived from the blocking interface by
adding a handle argument that identifies an instance of the
non-blocking request. Nonblocking operations initiate a
communication call and then return control to the appli-
cation. A return from a nonblocking operation call indicates
a mere initiation of the data transfer process and the oper-
ation can be completed locally by making a call to the wait
(ga_wait) routine. Waiting on a nonblocking put or an
accumulate operation assures that data was injected into
the network and the user buffer can be now be reused.
Completing a get operation assures data has arrived into
the user memory and is ready for use. The wait operation
ensures only local completion. Unlike their blocking
counterparts, the nonblocking operations are not ordered
with respect to the destination. Performance is one reason,
another is that by ensuring ordering we incur additional
and possibly unnecessary overhead on applications that do
not require their operations to be ordered. For cases where
ordering is necessary, it can be done by calling a fence
operation. The fence operation is provided to the user to
confirm remote completion if needed.

It should be noted that most users of nonblocking com-
munication implicitly assume that progress in communi-
cation can be made concurrently in a purely computational
phase of the program execution. However, this assump-
tion is often not satisfied in practice – the availability of a
nonblocking API does not guarantee that the underlying
system hardware and native protocols support overlap-
ping communication with computation (White and Bova
1999).

A simple benchmark was performed in the context of
GA and MPI to demonstrate the overlap of communica-
tion with computation. We measure the overlap as follows:
we assume the time to issue a non-blocking call is a con-
stant, which can be represented by ti. The time to wait for a
non-blocking call (or the time taken to issue a wait for the
non-blocking call) is td + tw, where td represents time spent
waiting for the data to arrive and tw represents the time
taken to complete the wait call when the data has already
arrived. ti + (td + tw) is the total time taken when the non-
blocking call is issued and waited on immediately. This
time is typically the same as the time taken to issue a

Fig. 11 A portion of a sparse matrix in column major
form is remapped to a dense, one-dimensional array.
Rows 1–5 are converted to short segments in the one-
dimensional array.

Fig. 12 (a) original sparse matrix-vector multiply (b)
sparse vector has been expanded to a sparse matrix
(transpose of original sparse vector is included to
show how mapping is accomplished) (c) Compressed
versions of sparse matrix and vector (d) product vec-
tor after element-wise multiplication and segmented
scan with addition.

216 COMPUTING APPLICATIONS

blocking version of the same call. In the non-blocking
call, td represents the time that can be effectively be utilized
in doing computation. A very good measure for the effec-
tiveness of a non-blocking call is to see what percentage
of the total time td represents (td * 100)/(ti + (td + tw). A
higher percentage indicates more overlap is possible.

We performed an experiment on two nodes with one
node issuing a nonblocking get for data located on the
other, and then waiting for the transfer to be completed in
the wait call. We also implemented an MPI version of the
above benchmark; our motivation was to compare the
overlap in GA with the overlap in the MPI nonblocking
send/receive operations. In MPI, if one process (A) needs
a portion of data from another one (B), it sends a request
and waits on a nonblocking receive for the response. Proc-
ess A’s calling sequence is as follows: 1) MPI_Isend, 2)
MPI_Irecv, 3) MPI_wait (waits for MPI_Isend to com-
plete), 4) MPI_Wait (waits for MPI_Irecv to complete).
Process B’s calling sequence is: 1) MPI_Recv and 2) MPI_
Send. In process A, computation is gradually inserted
between the initiating nonblocking Irecv call (i.e. after
step 3) and the corresponding wait completion call. We
measured the computation overlap for both the GA and
MPI versions of the benchmark on a Linux cluster with
dual 2.4GHz Pentium-4 nodes and Myrinet-2000 inter-
connect. The results are plotted in Figure 13. The per-
centage overlap (represented by (td * 100)/(ti + (td + tw)))
is effectively a measure of the amount of time that a non-
blocking (data transfer) call can be overlapped with use-
ful computation. We observe that GA offers a higher degree
of overlap than MPI. For larger messages (>16K) where
the MPI implementation switches to the Rendezvous pro-
tocol (which involves synchronization between sender
and receiver), we were able to overlap almost the entire
time (>99%) in GA, where as in MPI, it is less than 10%.

The experimental results illustrating limited opportuni-
ties for overlapping communication and computation are

consistent with findings reported for multiple MPI imple-
mentations in White and Bova (1999), Lawry et al. (2002)
and Liu et al. (2003). Since the GA represents a higher–
level abstraction model and, in terms of data transfer,
simpler than MPI (e.g. it does not involve message tag
matching or dealing with early arrival of messages), more
opportunities for effective implementation of overlap-
ping communication with computation are available.

5.4 Mirroring: Shared Memory Cache for
Distributed Data

Caching distributed memory data in shared memory is
another mechanism for latency hiding supported in the
GA toolkit (Palmer, Nieplocha, and Apra 2003). It has been
primarily developed for clusters with SMP nodes; how-
ever earlier it was used for grid computing (Nieplocha and
Harrison 1996, 1997). Compared to most custom super-
computer designs, where the CPU power is balanced with
a high speed memory subsystem and high-performance
network, commodity clusters are often built based on very
fast processors using relatively low-performance net-
works. Mirrored arrays are designed to address these con-
figurations by replicated data across nodes but distributing
it and storing in shared memory within the SMP nodes
(Figure 14). This technique has several potential advan-
tages on clusters of SMP nodes, particularly if the inter-
node communication is slow relative to computation.
Work can be done on each “mirrored” copy of the array
independently of copies on other nodes. Within the node
the work is distributed, which saves some memory (on
systems with many processors per node, this savings can
be quite substantial relative to strict replication of data).
Intranode communication is via shared memory and is
therefore very fast. One-sided operations such as put, get,
and accumulate are only between the local buffer and the

Fig. 13 Percentage computation overlap for increas-
ing message sizes for MPI and GA on Linux/Myrinet.

Fig. 14 Example of a 2-dimensional array fully distrib-
uted (a), SMP mirrored (b), and replicated (c) on a two
4-way SMP cluster nodes.

217ARRAYS SHARED MEMORY PROGRAMMING

mirrored copy on the same node as the processor making
the request. Most operations that are supported for regular
global arrays are also supported for mirrored arrays, so
the amount of user code modification in transitioning from
fully distributed to mirrored schemes is minimal. Opera-
tions between two or more global arrays are generally
supported if both arrays are mirrored or both arrays are
distributed. Mirrored arrays can be used in situations
where the array is being exclusively accessed for either
reading or writing. For the DFT application described below,
data is read from one mirrored array using the nga_get
operation and accumulated to another mirrored array
using nga_acc. Mirrored arrays also limit the problem
size to systems that can be contained on a single node. In
fact, mirrored arrays are essentially using memory to off-
set communication, but because data is distributed within
the node they are more efficient than strict replicated data
schemes.

At some point the different copies of the array on each
node must be combined so that all copies are the same. This
is accomplished with the ga_merge_mirrored func-
tion. This function adds together all copies of the mirrored
array across all nodes. After merging, all copies of the
mirrored array are the same and equal to the sum of all
individual copies of the array. This function allows pro-
grammers to combine the work that is being done on sep-
arate SMP nodes together to get a single answer that is
easily available to all processors. In addition to creating
the new merge operation, the copy operations have been
augmented so that they work between a mirrored array
and a regular distributed array. The copy operation does
not implicitly perform a merge if the mirrored array is
copied into distributed array. The availability of an easy
conversion between mirrored and distributed arrays allows
programmers to convert some parts of their code to use
mirrored arrays and leave other parts of their code using
distributed arrays. Code that is limited by communication
can be converted to use mirroring while the remaining
code can be left using distributed arrays, thereby saving
memory.

5.5 Synchronization Control

GA includes a set of data-parallel interfaces that operate
on global arrays, including BLAS-like linear algebra oper-
ations. As a convenience to the programmer (especially
novice users), to simplify management of memory consist-
ency, most data parallel operations include at the begin-
ning and at the end a global barrier operation. The role of
the initial barrier is to assure safe transition from the task
parallel to the data parallel phase of computations. Spe-
cifically, before the data in a global array is accessed in
the data parallel operation, the barrier call synchronizes the
processors and completes any outstanding store operations

that could modify the data in the global array. Similarly, the
final barrier assures that all processors committed their
changes to the global array before it can be accessed
remotely. Although the barrier operation is optimized for
performance, and, where possible, uses hardware barri-
ers, it is a source of overhead, especially in fine-grain sec-
tions of the applications. The importance of reducing barrier
synchronization has been recognized and studied exten-
sively in the context of data-parallel computing (Gupta
and Schonberg 1996; Legedza and Weihl 1996; O’Boyle
and Stöhr 2002). In order to eliminate this overhead, the
toolkit offers an optional ga_mask_sync operation that
allows the programmer to eliminate either of the two bar-
riers before calling a data parallel operation. This opera-
tion updates the internal state of the synchronization flags
so that when the actual operation is called, one or both
barriers can be eliminated. The temporal scope of the
mask operation is limited to the next data parallel opera-
tion and when that is completed the status of the synchro-
nization flags is reset. The availability of this mechanism
enables the programmer, after debugging and analyzing
dependencies in his/her code, to improve performance by
eliminating redundant barriers.

5.6 Locks and Atomic Operations

Atomic operations such as fetch-and-add can be used to
implement dynamic load balancing (see Section 6.1) or
mutual exclusion. In addition, GA through ARMCI offers
explicit lock operations that help the programmer to pro-
tect critical sections of the code. ARMCI lock operations
are optimized to deliver better performance than the user
would otherwise be able to implement based on fetch-
and-add (Nieplocha et al. 2002c; Buntinas et al. 2003).

Moreover, GA offers an atomic reduction operation,
accumulate, that has built in atomicity and thus does
not require explicit locking. This operation is one of the
key functionalities required in quantum chemistry appli-
cations, and makes the use of locks in this application area
rare. This operation and its use in chemistry was the pri-
mary motivation for including mpi_accumulate in the
MPI-2 standard. One important difference is that GA,
unlike MPI with its distributed memory model, does not
specify explicitly the processor location where the modi-
fied data is located. In addition, GA provides an additional
scaling parameter that increases generality of this opera-
tion. This is similar to the BLAS daxpy operation.

5.7 Disk Resident Arrays

Global Arrays provide a convenient mechanism for
programs to store data in a distributed manner across
processors and can be considered as a level in a memory
hierarchy. This particular level can represent the memory

218 COMPUTING APPLICATIONS

of the entire system and is therefore much larger than the
memory on any single processor. However, many appli-
cations still require more memory than is available in
core, even when data is distributed. For example, in com-
putational chemistry there are two strategies for dealing
with this situation (Nieplocha, Foster, and Kendall 1998).
The first is to reorganize the calculation so that intermedi-
ate results are no longer stored in memory but are rec-
omputed when needed. This approach results in excess
calculations and the number of computations increase as
the memory requirements are decreased. The cost of these
excess calculations can be reduced by designing hybrid
algorithms that store some results and recompute the
remainder with the goal of choosing the partition in a way
that simultaneously minimizes recomputation and mem-
ory. The other approach is to write intermediate results to
disk, which typically can store much more data than mem-
ory. The tradeoff here is the cost of recomputing results
compared to the I/O cost of writing and reading the data
to a file. The advantage to this approach is that the amount
of data that can be stored to disk is usually orders of mag-
nitude higher than what can be stored in core.

Disk Resident Arrays (DRAs) are designed to extend
the concept of Global Arrays to the file system, in effect,
treating disk as another level in the memory hierarchy
(Nieplocha, Foster, and Kendall 1998; Nieplocha and
Foster 1996). A DRA is essentially a file, or collection of
files, that represent a global array stored on disk. Data
stored in a disk resident array can be copied back and forth
between global arrays using simple read and write com-
mands that are similar to the syntax of the Global Arrays
nga_copy_patch commands. This operation is illus-
trated schematically in Figure 15. The collective mode of
operation in DRA increases the opportunities for perform-
ance optimizations (Chen et al. 1997). Data in the DRA

can be referred to using a global index space, identical to
that used in Global Arrays. The details of how data is par-
titioned within a single file or divided between multiple
files are hidden from the user, however, the underlying
code is designed to partition data on the disk to optimize
I/O. The use of multiple files allows the system to read
and write data to disk from multiple processors. If the
local scratch space mounted on each node or a parallel file
system is used for these files, this can greatly increase the
bandwidth for reading and writing to the DRAs. The flow
of data for a write statement to a DRA distributed on sep-
arate disks is illustrated schematically in Figure 16.

This example represents a write request from a patch
of a global array to a patch of the DRA. The DRA patch
is first partitioned between the different files on disk.
Each file is controlled by a single processor, typically
one I/O processor per SMP node. Once the DRA patch
has been decomposed between files, the global array
patch is also decomposed so that each portion of the glo-
bal array is mapped onto its corresponding portion of the
DRA patch. Each piece of the global array data is then
moved to the I/O processor and copied into the I/O
buffer. Once the data is in the I/O buffer, it is then written
to disk. This operation can occur independently on each
I/O processor, allowing multiple read/write operations to
occur in parallel. The partitioning of data on the disk is
also chosen to optimize I/O for most data requests. In
addition to computational chemistry applications (Nie-

Fig. 15 Schematic of a write operation from a patch of
a global array g_a(glo:ghi) to a patch of a disk resident
array d_a(dlo:dhi).

Fig. 16 Write operation between a patch of a global
array to a patch of a disk resident array. Data flows
from the global array to the I/O processors and then is
written to disk.

219ARRAYS SHARED MEMORY PROGRAMMING

plocha, Foster, and Kendall 1998), DRAs have been used
to temporarily store large data sets to disk in image process-
ing applications (Jones et al. 2003).

5.8 GA Processor Groups

GA supports creating and managing arrays on processor
groups for the development of multi-level parallel algo-
rithms (Nieplocha et al. 2005). Due to the required com-
patibility of GA with MPI, the MPI approach to the
processor group management was followed as closely as
possible. However, in shared memory programming man-
agement of memory and shared data, rather than manage-
ment of processor groups itself, is the primary focus. More
specifically, we need to determine how to create, efficiently
access, update, and destroy shared data in the context of
the processor management capabilities that MPI already
provides. One of the fundamental group-aware GA oper-
ations involves the ability to create shared arrays on subsets
of processors. Every global array has only one associated
processor group specifying the group that created the array.
Another useful operation is the data-parallel copy opera-
tion that works on arrays (or subsections) defined on dif-
ferent processor groups as long as one group is a subset
of the other. Data can also be moved between Global arrays
defined on different groups using an intermediate local
buffer and the standard one-sided operations defined in the
GA library. These features enabled the development of
applications with nontrivial relationships between proc-
essor groups.

The concept of the default processor group is a power-
ful capability added to enable rapid development of new
group-based codes and simplify conversion of the existing
non-group aware codes. Under normal circumstances, the
default group for a parallel calculation is the MPI “world
group” (containing the complete set of processors originally
allocated by the user), but a call is available that can be
used to change the default group to a processor subgroup.
This call must be executed by all processors in the sub-
group. Once the default group has been set, all operations
are implicitly assumed to occur on the default processor
group unless explicitly stated otherwise. By default, GA
shared arrays are created on the default processor group
and global operations by default are restricted to the default
group. Inquiry functions, such as the number of nodes and
the node ID, return values relative to the default processor
group.

5.9 Common Component Architecture (CCA) GA
Component

The Common Component Architecture (CCA) is a com-
ponent model specifically designed for high performance
computing. Components encapsulate well-defined units

of reusable functionality and interact through standard
interfaces (CCA-Forum). The GA component, an object-
oriented CCA based component, provides interfaces to full
capabilities of GA. This component supports both classic
and SIDL interfaces, and it provides three ports: Global-
ArrayPort, DADFPort and LinearAlgebraPort. These
ports are the set of public interfaces that the GA compo-
nent implements and can be referenced and used by other
components. The GlobalArrayPort provides interfaces for
creating and accessing distributed arrays. The LinearAlge-
braPort provides core linear algebra support for manipulat-
ing vectors, matrices, and linear solvers. The DADFPort
offers interfaces for defining and querying array distribu-
tion templates and distributed array descriptors, following
the API proposed by the CCA Scientific Data Compo-
nents Working Group (CCA-DCWG). The GA compo-
nent is currently used in applications involving molecular
dynamics and quantum chemistry, as discussed in Ben-
son et al. (2003).

Figure 17 illustrates an example of CCA components
in action in a CCA (e.g. CCAFFEINE) Framework (Arm-
strong et al. 1999). The GA component adds the “pro-
vides” ports, which is visible to other components to the
CCA Services object. TAO component registers the ports
that it will need with the CCA Services object. The CCAF-
FEINE framework connects GA and TAO components and
transfers the LinearAlgebraPort(LA) to the TAO compo-
nent, using the GA Component’s Services object.

In MPI Forum, experimental results for numerical Hes-
sian calculation show that multilevel parallelism expressed
and managed through the CCA component model and GA
processor groups can be very effective for improving per-
formance and scalability of NWChem. For example, the
numerical Hessian calculation using three levels of paral-
lelism outperformed the original version of the NWChem

Fig. 17 CCA Components in action. TAO Component
uses the LA Port (Linear Algebra) provided by GA Com-
ponent for manipulating vectors and matrices.

220 COMPUTING APPLICATIONS

code based on single level parallelism by a factor of 90%
when running on 256 processors.

6 Applications of Global Arrays

The original application for GA was to support electronic
structure codes and it remains the de facto standard for man-
aging data transfer in most programs that perform large,
scalable electronic structure calculations. Electronic struc-
ture calculations involve the construction of large, dense
matrices. Once constructed, these are subsequently manip-
ulated using standard linear algebra operations to produce
the final answer. The construction of the matrices is highly
parallel in that it can be divided into a large number of
smaller tasks. Each task can be assigned to a processor,
which is then responsible for working on a portion of the
matrix and accumulating the results into a product matrix.
The tasks typically require copying a portion of one matrix
into a local buffer, doing some work on it, and then copying
and accumulating the result back into another matrix. The
natural decomposition of these tasks is easily formulated
in terms of the dimensions of the original matrices but
typically results in copying portions of the matrix that are
distributed over several processors to local buffers. The
copy operations between the local buffer and the distrib-
uted matrices therefore require communication with mul-
tiple processors and would be quite complicated if coded
using a standard message-passing interface. Global Arrays
can accomplish each copy with a single function call using
the global index space. The matrix operations that must be
performed to get the final answer are also highly non-triv-
ial for distributed data. GA supports many of these opera-
tions directly and also provides interfaces to other linear
algebra packages, such as SCALAPACK. Because all the
information about the matrix and how it is distributed are
already contained in the global array, these interfaces are
quite simple and reflect the algebra of the original prob-
lem, rather than the details of how the data is distributed.

The ability of Global Arrays to manage large distributed
arrays has made them useful in many other areas beyond
electronic structure. Any application that requires large,
dense, multi-dimensional data grids can make use of the
toolkit. Examples are algorithms and applications built
around dense matrices (e.g. electronic structure) and algo-
rithms on multi-dimensional grids (hydrodynamics and
other continuum simulations). Even algorithms that are
based on sparse data structures (unstructured grids in finite
element codes) often convert the original sparse data to a
dense 1-dimensional array. For most of these applications
it remains attractive to treat these data structures as single
arrays using a global index space that maps directly onto
the original problem. However, the large amount of data
typically involved means that the data must be distributed,
which makes the concept of a single local data structure

impractical. Data must now be accessed by referring to a
local index that identifies the data within a single proces-
sor, as well as an index identifying the processor that the
data is stored on. The connection between the original
problem and the data is lost and must now be managed by
the application programmer. GA provides higher level
abstractions that are designed to restore the connection
between the global index space of the original problem and
the distributed data by providing an interface that man-
ages all the necessary transformations between the global
index space and the local indices that specify where data
is actually located. This approach vastly simplifies pro-
gramming and thus improves productivity (Bernholdt,
Nieplocha, and Sadayappan 2004). The toolkit also pro-
vides mechanisms for identifying what data is held locally
on a processor, allowing programmers to make use of data
locality when designing their programs, and even provides
direct access to the data stored in the global array, which
saves on the time and memory costs associated with
duplication.

6.1 Molecular Dynamics

Molecular dynamics (MD) is a computer simulation tech-
nique where the time evolution of a set of interacting atoms
is followed by integrating their equations of motion. For
this application, the force between two atoms is approxi-
mated by a Lennard-Jones potential energy function U(r),
where r is the distance between two atoms. Good per-
formance and scalability in the application require an effi-
cient parallel implementation of the objective function and
gradient evaluation. These routines were implemented by
using GA to decompose the atoms over the processors and
distribute the computation of forces in an equitable man-
ner. The decomposition of forces between atoms is based
on a block decomposition of the forces distributed among
processors, where each processor computes a fixed subset
of inter-atomic forces (Plimpton and Heffelfinger 1992).
The entire array of forces (N × N) is divided into multiple
blocks (m × m), where m is the block size and N is the
total number of atoms. Each process owns N/P atoms,
where P is the total number of processors. Exploiting the
symmetry of forces between two particles halves the
amount of computation. The force matrix and atom coor-
dinates are stored in a global array. A centralized task list
is maintained in a global array, which stores the informa-
tion of the next block that needs to be computed.

To address the potential load imbalance in our test prob-
lem, we use a simple and effective dynamic load-balancing
technique called fixed-size chunking (Kruskal and Weiss
1985). This is a good example illustrating the power of
shared memory style management of distributed data that
makes the GA implementation both simple and scalable.
Initially, all the processes get a block from the task list.

221ARRAYS SHARED MEMORY PROGRAMMING

Whenever a process finishes computing its block, it gets
the next available block from the task list. Computation
and communication are overlapped by issuing a nonblock-
ing get call to the next available block in the task list, while
computing a block (Tipparaju et al. 2003). This imple-
mentation of the dynamic load-balancing technique takes
advantage of the atomic and one-sided operations in the
GA toolkit (see Figure 18). The GA one-sided operations
eliminate explicit synchronization between the processor
that executes a task and the processor that has the relevant
data. Atomic operations reduce the communication over-
head in the traditional message-passing implementations
of dynamic load balancing based on the master-slave
strategy. This master-slave strategy has associated scala-
bility issues because with the increased number of proc-
essors, management of the task list by a single master
processor becomes a bottleneck. Hierarchical master-slave
implementations (with multiple masters) (Matthey and Iza-
guirre 2001) address that part of the problem; however,
they introduce synchronization between multiple masters
that degrades performance. Moreover, the message-passing
implementation of this strategy can be quite complex. On
the other hand, the implementation of dynamic load bal-
ancing using GA atomics (fetch-and-increment operation)
involves only a couple of lines of code, while the overall
performance of the simulation is competitive with the
MPI-1 version (Tipparaju et al. 2003).

The experimental results of the molecular dynamics
benchmark on a Linux cluster with Myrinet indicate that
using GA resulted in improved application performance

over message-passing, see Figure 19 (Tipparaju et al. 2003).
This benchmark problem scales well when the number of
processors and/or the problem size is increased, thus prov-
ing the solution is cost-optimal. In best cases, the per-
formance improvement over MPI is greater than 40%.

6.2 Lattice Boltzmann Simulation

A scalar lattice Boltzmann code was converted to use the
Global Array libraries (Palmer and Nieplocha 2002). The

Fig. 18 Function gradient evaluation using GA (left). Speedup in the Lennard-Jones potential energy optimization
for 32,768 and 65,536 atoms (right).

Fig. 19 Performance improvement in the molecular
dynamics simulation involving 12,000 and 65,536
atoms.

222 COMPUTING APPLICATIONS

lattice Boltzmann algorithm is a method for simulating
hydrodynamic flows based on a discretized version of the
Boltzmann equation and is distinguished by its simplicity
and stability (Frisch et al. 1987). The lattice Boltzmann
algorithm is typically implemented on a regular square or
cubic lattice (other lattices, such as the hexagonal lattice
(Frisch, Hasslacher, and Pomeau 1986), are occasionally
used) and is composed of two basic steps. The first is an
equilibration step that can be completed at each lattice site
by using only data located at that site, the second is a stream-
ing step that requires data from all adjacent sites (depend-
ing on the particular implementation, this can include
corner and edge sites). The streaming step requires com-
munication because sites corresponding to the boundaries
of the locally held data will need data from other proces-
sors. This is accomplished by padding the locally held
data with ghost cells and using the GA update operation to
refresh the data in these ghost cell regions at each time
step. A graph of speedup versus processors is shown below
in Figure 20 for a simulation on a 1024 × 1024 lattice on
an IBM SP. The timings show good speedups until quite
large numbers of processors.

An earlier version of this code was created that just used
one-sided put/get calls to copy a suitably padded piece of
the global lattice to a local buffer. The update was then
performed and the result (minus the padded lattice points)
was copied back to the global array. If present, periodic
boundary conditions were handled using the periodic ver-
sions of the put/get operations. This approach is also quite
easy to implement, but has some disadvantages relative to
ghost cells. First, more memory is required since the lattice

must effectively be duplicated (once in the global array
and again in the local buffers) and second, no advantage
is taken of the potential for optimizing the communica-
tion involved in updating the boundary data.

6.3 Electronic Structure

As already mentioned, developers of electronic structure
codes have elected the Global Arrays toolkit as a de facto
standard as far as communication libraries are concerned.
Some of the most widely used electronic structure codes
make use of GA: NWChem (Kendall et al. 2000), Colum-
bus (Dachsel et al. 1997), MOLPRO (Dobbyn, Knowles,
and Harrison 1998), MOLCAS (Karlstrom et al. 2003),
QChem (Kong et al. 2000) and GAMESS-UK (Guest
et al.). Developers of GAMESS-US (Fletcher et al. 2000)
have developed their own distributed memory manage-
ment layer that implements a subset of GA functionality.
Another scalable chemistry code MPQC (Janssen, Seidl,
and Colvin 1995), has adopted ARMCI. Parallelization
of methods implemented in these codes involves the dis-
tribution of dense matrices among processing elements;
if N is defined as the number of basis functions used, meth-
ods like Hartree-Fock (HF) (Hartree 1928; Fock 1930) or
Density-Functional Theory (DFT) (Hohenberg and Kohn
1964; Kohn and Sham 1965) make use of matrices of size
N2, whereas correlated methods such as MP2 (Møller and
Plesset 1934) or Coupled Cluster (Cìzek 1969) use quan-
tities whose size scales as the fourth of higher power of N
(leading to larger storage requirements). Typically, N is also
proportional to the size of the system, so larger molecular
systems lead to rapid increases in both memory and com-
putational requirements. This makes it essential to dis-
tribute the data associated with each of the matrices. The
task based nature of the algorithms also implies that there
is extensive communication involved in copying back
and forth between the distributed arrays and local buff-
ers.

As an example of the performance of GA for these the-
oretical methods, some benchmark numbers are reported
for the DFT and MP2 methods (Figures 21 and 22).
While the DFT benchmark scaling requires low intercon-
nect latency, the MP2 runs necessitate high interconnect
bandwidth and high performing disk I/O; therefore, the
lower latency of Elan3 vs. Elan4 and of Infiniband vs.
Myrinet can be noticed in Figures 21 and 22.

6.3.1 Mirrored Arrays in Density Functional Theory
The mirrored arrays functionality has been implemented
in the Gaussian function-based DFT module of NWChem
(Kendall et al. 2000; Palmer, Nieplocha, and Apra 2003).
More precisely, it has been implemented in the evalua-
tion of the matrix representation of Exchange-Correlation
(XC) potential on a numerical grid (Becke 1988). Prior to

Fig. 20 Timings for a lattice Boltzmann simulation on
a 1024 x 1024 lattice on an IBM SP using ghost cells.

223ARRAYS SHARED MEMORY PROGRAMMING

the current work, this quantity was evaluated using a dis-
tributed data approach, where the main arrays were dis-
tributed among the processing elements by using the GA
library.

This algorithm is very similar to the Hartree-Fock
(a.k.a. SCF) algorithm, since both methods are character-
ized by the utilization of two main 2-dimensional arrays.
The major steps of this algorithm require the generation
of a density matrix from a parallel matrix multiply into a

distributed global array representing the density matrix.
Portions of this matrix must be copied to a local buffer
where they are used to evaluate the density, which is then
used to evaluate a portion of the Kohn-Sham matrix. This
is copied back out to another distributed array. The con-
struction of the Kohn-Sham matrix requires repeated use
of the nga_get, and nga_acc methods and involves
significant communication. Doing this portion of the cal-
culation on mirrored arrays guarantees that all this com-
munication occurs via shared memory and results in a
significant increase in scalability. Results for a DFT cal-
culation using the mirrored arrays on a standard chemical
system are shown in Figure 23. The system is a 1GHz
Itanium2 dual processor system with three different inter-
connects: Ethernet, Myrinet, or Elan3 (Quadrics). The
results show that scalability for the mirrored calculation
is improved on all three networks over the fully distrib-
uted approach, with especially large improvements for
the relatively slow Ethernet.

Surprisingly, Myrinet, which represents a network with
intermediate performance, shows the smallest overall impro-
vement on going from distributed to mirrored arrays. The
expectation would be that Elan3 would show the least
amount of improvement, since this is the fastest network
and latency would not be expected to contribute as signif-
icantly to overall performance.

Fig. 21 DFT LDA energy calculation on a Si8O7H18
zeolite fragment, 347 basis functions.

Fig. 22 MP2 Energy + gradient calculation on a (H2O)7
cluster, 287 basis functions.

Fig. 23 SiOSi3 benchmark using mirrored and fully
distributed approach on a 1GHz Itanium2 dual proces-
sor system with three different interconnects: Ether-
net, Myrinet, or Elan3 (Quadrics).

224 COMPUTING APPLICATIONS

6.4 AMR-based Computational Physics

Grid generation is a fundamental part of any mesh-based
computational physics problem. The NWGrid/NWPhys
package integrates automated grid generation, time-depend-
ent adaptivity, applied mathematics, and numerical analysis
for hybrid grids on distributed parallel computing systems.
This system transforms geometries into computable hybrid
grids upon which computational physics problems can
then be solved. NWGrid is used as the preprocessing grid
generator (Trease et al. 2002) for NWPhys, setting up the
grid, applying boundary and initial conditions, and defin-
ing the run-time parameters for the NWPhys calculations.
NWGrid provides the grid partitioning functions and the
time-dependent grid generation functions for adaptive mesh
refinement (AMR), reconnection, smoothing, and remap-
ping. The main tool used by NWGrid to perform partition-
ing is METIS (see references). To make use of METIS the
multi-dimensional, hybrid, unstructured mesh is trans-
formed into a two-dimensional graph, where nodes (or
elements) form the diagonal entries of the graph and node-
node (element-element) connections form the off-diagonal
entries. NWPhys moves the grid according to forcing func-
tions in non-linear physics drivers and NWGrid fixes it up
based on grid topology and grid quality measures. Exten-

sions of NWPhys include incorporating new packages for
fluid-solid interactions, computational electromagnetics,
particle transport, chemistry, and aerosol transport.

All of this functionality relies heavily on one dimen-
sional representations of the grid data and operators defined
on the grid. The package is implemented on top of GA,
and makes extensive use of the operations supporting sparse
data management, described above in Section 5.2. Figure 24
demonstrates performance of human lung modeling on a
Linux cluster, indicating excellent scaling for this appli-
cation. This problem involves one million grid elements
and the simulation involved 360 cycles. The scaling of
the absolute time and grind-time (time/cycle/element) is
approximately linear, mainly because of the (near) optimal
partitioning of the data and work per processor. Table 2
shows the timing results of a problem that grows as the
number of processors grows. The problem was defined to
have 10,000 elements per processor. So, 32 processors had
320,000 elements and 64 processors had 640,000 elements.
The scaling is relatively constant as the problem size and
number of processors grow. In numerous applications, the
performance has been demonstrated to scale linearly with
the number of processors and problem size, as most unstruc-
tured mesh codes that use optimal data partitioning algo-
rithms should.

Fig. 24 Human lung modeling using NWPhys/NWGrid – mesh discretization on the left for 16 processors and the
parallel execution timings on a Linux cluster on the right.

225ARRAYS SHARED MEMORY PROGRAMMING

7 Conclusions

This paper gives an overview of the functionality and per-
formance of the Global Arrays toolkit. GA was created to
provide application programmers with an interface that
allows them to distribute data while maintaining the type
of global index space and programming syntax similar to
what is available when programming on a single processor.
The details of identifying data location and mapping indi-
ces can be left to the toolkit, thereby reducing programming
effort and the possibility of error. For many problems, the
overall volume of code that must be created to manage data
movement and location is significantly reduced.

The Global Array toolkit has been designed from the
start to support shared memory style communication, which
offers numerous possibilities for further code optimiza-
tions beyond what are available in traditional message-
passing models. The shared communication model of GA
also maps closely to current hardware and the low level
communication primitives on which most communica-
tion libraries are built. In GA, the shared memory model
is supported by ARMCI, which is an explicitly one-sided
communication library. The availability of non-blocking

one-sided protocols provides additional mechanisms for
increasing the scalability of parallel codes by allowing
programmers to overlap communication with computa-
tion. By “pipelining” communication and computation,
the overhead of transferring data from remote processors
can be almost completely overlapped with calculations.
This can substantially reduce the performance penalty
associated with remote data access on large parallel
systems.

The Global Array toolkit also offers many high-level
functions traditionally associated with arrays, eliminating
the need for programmers to write these functions them-
selves. Examples are standard vector operations such as
dot products and matrix multiplication, scaling an array or
initializing it to some value, and interfaces to other paral-
lel libraries that can solve linear equations or perform matrix
diagonalizations. Again, this drastically cuts down on the
effort required from the application programmer and makes
coding less error prone.

The widespread availability and vendor support for
MPI has lead to a corresponding assumption that the
message-passing paradigm is the best way to implement
parallel algorithms. However, practical experience sug-
gests that even relatively simple operations involving the
movement of data between processors can be difficult to
program. The goal of the Global Array toolkit is to free
the programmer from the low level management of com-
munication and allow them to deal with their problems at
the level at which they were originally formulated. At the
same time, compatibility of GA with MPI enables the
programmer to take advantage of the existing MPI soft-
ware/libraries when available and appropriate. The variety
of applications that have been implemented using Global
Arrays attests to the attractiveness of using higher level
abstractions to write parallel code.

Appendix A

Figure A2 illustrates that programming based on GA is
relatively simple. The code size for the parallel transposition
of a 1-dimensional array (Figure A1) reduces by a factor of

Table 2
Timing results for a problem with 10,000
elements per processor and 1320 cycles. The
problem size increases proportionally to the
number of processors.

No. of processors Time(sec)

 1 1690

 2 1974

 4 2222

 8 2293

 16 2343

 32 2355

 64 2384

128 2390

Fig. A1 Example of parallel transposing of 1-d array (197 elements) on 4 processors. (a) Distributed integer array
with 50 elements each, except processor P3 with 47 elements. Array values initialized from 0 to 196. (b) Final result.

226 COMPUTING APPLICATIONS

Fig. A2 Parallel implementation of 1-dimensional array transpose: GA version shown on the left and MPI version on
the right.

/************ GA VERSION *************/
#define NDIM 1
#define TOTALELEMS 197

int main(int argc, char **argv) {
 int dims,chunk,nprocs,me,i,lo,hi,lo2,hi2,ld;
 int g_a, g_b, a[TOTALELEMS],b[TOTALELEMS];

 GA_Initialize();
 me = GA_Nodeid();
 nprocs = GA_Nnodes();
 dims = nprocs*TOTALELEMS;
 chunk = ld = TOTALELEMS;

 /* create a global array */
 g_a = GA_Create(C_INT, NDIM, dims, "array A", chunk);
 g_b = GA_Duplicate(g_a, "array B");

 /* INITIALIZE DATA IN GA */
 GA_Enumerate(g_a, 0);

 GA_Distribution(g_a, me, lo, hi);
 GA_Get(g_a, lo, hi, a, ld);
 // INVERT DATA LOCALLY
 for (i=0; i<nelem; i++) b[i] = a[nelem-1-i];
 // INVERT DATA GLOBALLY
 lo2 = dims - hi -1;
 hi2 = dims - lo -1;
 GA_Put(g_a,lo2,hi2,b,ld);

 GA_Terminate();
}

/************ MPI VERSION *************/
#define TOTALELEMS 197
#define MAXPROC 128
#define MIN(a,b) ((a) < (b) ? (a) : (b))

int main(int argc, char **argv) {
 int *a, *b, me, nprocs, i, j, np=0,start=-1,lo2, hi2;
 int global_idx,local_idx, rem, local_count, position, bytes;
 char *send_buf, **recv_buf;
 int lo[MAXPROC],hi[MAXPROC], count[MAXPROC];
 int nrecv[MAXPROC], nrecv2[MAXPROC], to[MAXPROC], elems_per_proc[MAXPROC];
 MPI_Status status;
 MPI_Request request[MAXPROC];

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &me);

 /* distributed array, where each process has elems_per_proc elements */
 rem = TOTALELEMS;
 elems_per_proc[0] = MIN(rem, TOTALELEMS/nprocs+1);
 lo[0]=0; hi[0]=elems_per_proc[0]-1;
 rem -= elems_per_proc[0];
 for(i=1; i<nprocs; i++) {
 elems_per_proc[i] = MIN(rem, TOTALELEMS/nprocs+1);
 lo[i]=hi[i-1]+1; hi[i]=lo[i]+elems_per_proc[i]-1;
 rem -= elems_per_proc[i];
 }
 /* initialize */
 a = (int*)malloc(sizeof(int)*elems_per_proc[me]);
 b = (int*)malloc(sizeof(int)*elems_per_proc[me]);
 for(i=0; i<elems_per_proc[me]; i++) a[i]=elems_per_proc[0]*me+i;
 for(i=0; i<elems_per_proc[me]; i++) b[i]=-1;
 for(i=0; i<nprocs; i++) nrecv[i]=0;

 /* INVERT DATA LOCALLY */
 for(i=0; i<elems_per_proc[me]; i++)
 b[i]=a[elems_per_proc[me]-1-i];

 /* identify where to send the data */
 lo2 = TOTALELEMS-1-hi[me];
 hi2 = TOTALELEMS-1-lo[me];

 /* find process(es) rank, where data has to be sent */
 for(i=0; i<nprocs; i++)
 if(lo2>=lo[i] && lo2<=hi[i])
 i=start; np=0;
 do {
 nrecv[i]=1;
 to[np]=i;
 ++np;
 }while (hi2>hi[i++]);

 /* count # of elems to be sent for each destination processes */
 count[0] = hi[start]-lo2+1;
 if(np>0) {
 for(i=start+1,j=1; i<start+np-1; i++,j++)
 count[j]=hi[i]-lo[i]+1;
 count[np-1] = hi2-lo[start+np-1]+1;
 }

 /* broadcast the number of recv's for each process */
 MPI_Allreduce(nrecv, nrecv2, nprocs, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

 /* INVERT DATA GLOBALLY */
 global_idx=lo2; local_idx=0;
 bytes = sizeof(int)*(elems_per_proc[me]+1);
 send_buf = (char*)malloc(bytes);
 recv_buf = (char**)malloc(nrecv2[me]*sizeof(char*));

 /* Post the receive's */
 for(i=0; i<nrecv2[me]; i++) {
 recv_buf[i] = (char*)malloc(bytes);

 MPI_Irecv(recv_buf[i], bytes, MPI_PACKED, MPI_ANY_SOURCE, 555,
MPI_COMM_WORLD, &request[i]);
 }

 for(i=0; i<np; i++) { /*pack global idx actual data*/
 position = 0;
 MPI_Pack(&global_idx, 1, MPI_INT, send_buf, bytes, &position,
MPI_COMM_WORLD);
 MPI_Pack(&b[local_idx], count[i], MPI_INT, send_buf, bytes, &position,
MPI_COMM_WORLD);
 MPI_Send(send_buf, position, MPI_PACKED, to[i], 555, MPI_COMM_WORLD);
 local_idx += count[i];
 global_idx = lo2+count[i];
 }

 for(i=0; i<nrecv2[me]; i++) {
 MPI_Wait(&request[i], &status);
 MPI_Get_count(&status, MPI_INT, &local_count);
 position = 0;
 MPI_Unpack(recv_buf[i], bytes, &position, &global_idx, 1, MPI_INT,
MPI_COMM_WORLD);
 local_idx = global_idx - me*elems_per_proc[0];
 MPI_Unpack(recv_buf[i], bytes, &position, &a[local_idx], local_count-1,
MPI_INT, MPI_COMM_WORLD);
 }

 MPI_Finalize();
}

227ARRAYS SHARED MEMORY PROGRAMMING

three when compared to the MPI version, thanks to the high-
level interfaces for array management provided by GA. In
the MPI version, each task has to identify where (tasks ranks)
to send the data. Following the example in Figure A1, task
P0 owns first 50 elements (i.e. 0–49) of the distributed
array and after transposition and the data owned by task P0
is moved to P2 and P3 (P0 sends elements 0–46 to task P3
and 47–49 to task P2). Similarly P3 sends the last 47 ele-
ments to P0, and P2 sends its last 3 elements to P0. Thus the
programmer has to identify how many receives (MPI_
Recv) each task has to post, to obtain the corresponding
data. Each task should also send the global indices of the
data to the receiving task. The MPI code for two-dimen-
sional arrays would be even more complicated. In the case
of GA, the programmer would only have to specify the
indices of the 2-dimensional array block to be transposed.

Acknowledgements

This work was performed under the auspices of the U.S.
Department of Energy (DOE) at Pacific Northwest National
Laboratory (PNNL) operated for DOE by Battelle Memo-
rial Institute. It was supported by the DoE-2000 ACTS
project, Center for Programming Models for Scalable Par-
allel Computing, both sponsored by the Mathematical,
Information, and Computational Science Division of DOE’s
Office of Computational and Technology Research, and
the Environmental Molecular Sciences Laboratory.
PNNL is operated by Battelle for the U.S. DOE under
Contract DE-AC06-76RLO-1830. The Global Arrays
toolkit would not exist without the invaluable contribu-
tions from computational scientists who provided require-
ments, feedback, and encouragement for our efforts, and
in some cases directly became involved in the toolkit devel-
opment.

Author Biographies

Dr. Jarek Nieplocha is a Laboratory Fellow and the
technical group leader of the Applied Computer Science
Group in Computational Sciences and Mathematics Divi-
sion of the Fundamental Science Division at Pacific North-
west National Laboratory (PNNL). He is also the Chief
Scientist for High Performance Computing in Compu-
tational Sciences and Mathematics Division. His area of
research has been in techniques for optimizing collective
and one-sided communication operations on modern net-
works, runtime systems, parallel I/O, and scalable pro-
gramming models. He received four best paper awards
at leading conferences in high performance computing:
IPDPS’03, Supercomputing’98, IEEE High Performance
Distributed Computing HPDC-5, and IEEE Cluster’03
conference, and an R&D-100 award. He authored and coau-
thored over 70 peer reviewed papers. Dr. Nieplocha par-

ticipated in MPI Forum in defining the MP-2 standard. He
is also a member of editorial board of International Jour-
nal of Computational Science and Engineering.

Manojkumar Krishnan is a senior research scientist
in the Applied Computer Science Group, Computational
Sciences and Mathematics Division of Pacific Northwest
National Laboratory. Krishnan’s research interests include
high-performance computing, parallel algorithms, run-time
systems, HPC programming models, and interprocessor
communications. Krishnan is working with the High Per-
formance Computing group at Pacific Northwest National
Laboratory towards the research and development of the
Global Arrays toolkit, ARMCI, and Common Component
Architecture. Krishnan authored and co-authored more
than 20 peer-reviewed conference and journal papers.

Vinod Tipparaju is one of the key developers of
ARMCI and Global Arrays in the Applied Computer
Science team at the Pacific Northwest National Labora-
tory. Vinod has played a key role in porting, maintaining
and optimizing ARMCI on many new networks and plat-
forms. His recent research includes an extensive study on
utilizing network concurrency and RMA in collective com-
munication operations and fault tolerant run-time systems.
Vinod Tipparaju received his Bachelors of Technology
in Computer Science from Nagarjuna University and
his Masters in Computer Science from the Ohio State
University. Vinod has authored several papers in the
HPC area.

Dr. Bruce J. Palmer received his Ph. D. in chemical
physics from Harvard University in 1986. After complet-
ing postdocs at Boston University and Pacific Northwest
National Laboratory (PNNL) he joined the staff at PNNL
in 1991. He is currently working on the development of
software toolkits for use in writing high performance par-
allel computer codes and the development of user inter-
faces for computation chemistry software packages. Dr.
Palmer has had long-standing interests in statistical physics
and molecular simulation and has done extensive research
in the areas of thermodynamics and structure of equilib-
rium and nonequilibrium fluids and mesoscale approaches
to modeling fluid dynamics. Other areas of expertise
include: developing lattice Boltzmann techniques for
simulating thermal fluid flow for both single and mul-
tiphase flows; molecular dynamics version of Gibbs ensem-
ble calculation for determining the phase diagram of atomic
and molecular fluids from simulations; application of
simple models for performing molecular dynamics simu-
lations of surfactant self-assembly in solution and studying
the behavior of complex surfactant solutions; simulation
of EXAFS spectra of ions in ambient and supercritical
solutions.

228 COMPUTING APPLICATIONS

Dr. Harold Trease is a Senior Research Scientist in the
Computational Science and Mathematical Division within
the Fundamental Science Directorate. He is currently lead-
ing the P3D Code Development Project at PNNL. P3D
is a computational physics simulation framework that
includes three-dimensional, unstructured, hybrid, parallel,
time-dependent mesh generation, setup, and computational
solvers. P3D is being developed as part of the DOE’s Sci-
DAC TSTT (Terascale Simulation Tools and Technologies)
Center, where Harold is the PNNL PI. The two codes that
form the basis of the P3D framework are NWGrid and
NWPhys. NWGrid is a mesh generation code system and
NWPhys is a discretization/solver code system. Harold is
applying his high-performance, parallel computing capa-
bilities in several areas, such as: computational biology
(i.e., the imaging, modeling and simulation of microbial cell
physiology/kinetics/dynamics, virtual organs, and virtual
humans), engineering simulations, atmospheric circulation
simulations, and subsurface flow simulations. His princi-
ple research interests are in the development and application
of parallel high-performance, three-dimensional, discrete
algorithms applied to the coupling of fluid dynamics,
structural mechanics, fluid/structure interaction, reaction/
diffusion, transport algorithms, and MHD. Besides the
NWGrid/NWPhys core codes, the development of the
computation simulation framework involves the design,
implementation and integration of parallel mesh genera-
tion, quantitative image processing tools, user interfaces,
graphical debugging/display tools, parallel communica-
tion libraries, database tools, and configuration manage-
ment. A website that contains additional information is
http://www.emsl.pnl.gov:2080/nwgrid.

Edoardo Aprà received his PhD in Chemistry from Turin
University in 1993 and joined Pacific Northwest National
Laboratory (PNNL) in 1998. Edoardo Aprà’s research
activity has been focused on activities related to high per-
formance computational algorithm and software develop-
ment as well as the use of this software in chemical
applications. Much of Dr. Aprà’s most recent research in
high performance computational chemistry has been cen-
tered on the development of the Density-Functional Theory
(DFT) module in the NWChem package. More specifi-
cally, Dr. Aprà is the primary developer of the DFT module
in NWChem that makes use of Gaussian basis functions
for the representation of the electronic density. Dr. Aprà is
responsible for determining the direction of the NWChem
project, ensuring that requirements for new functionality
are evaluated and scheduled into the implementation cycles
of NWChem, delivering new releases of the software
and ensuring robust and user friendly software from the
NWChem development team. NWChem has been distrib-
uted to over 800 sites worldwide and has been cited in
over 320 refereed journal articles.

Note
1 CAF does not provide explicit mechanisms for combining dis-

tributed data into a single shared object. It supports one-sided
access to so called “co-arrays”, arrays defined on every proc-
essor in the SPMD program.

References

ACTS – Advanced Computational Testing and Simulation.
http://www-unix.mcs.anl.gov/DOE2000/acts.html.

Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S.,
McInnes, L., Parker, S., and Smolinski, B. 1999. Toward
a common component architecture for high-performance
scientific computing. Proceedings of Eighth International
Symposium on High Performance Distributed Computing.

Baden, S., Collela, P., Shalit, D., and Van Straalen, B. 2001.
Abstract Kelp. Proceedings of International Conference
on Computational Science, San Francisco, CA.

Balay, S. PETSc home page. http://www.mcs.anl.gov/petsc.
Bariuso, R. and Knies, A. 1994. SHMEM’s User’s Guide. Cray

Research, Inc.
Basumallik, A., Min, S.-J., and Eigenmann, R. 2002. Towards

OpenMP execution on software distributed shared mem-
ory systems. Proceedings of Int’l Workshop on OpenMP:
Experiences and Implementations (WOMPEI’02).

Becke, A. D. 1988. A Multicenter Numerical-Integration Scheme
for Polyatomic-Molecules. Journal of Chemical Physics
88:2547–2553.

Benson, S., Krishnan, M., McInnes, L., Nieplocha, J., and
Sarich, J. 2003.Using the GA and TAO toolkits for solv-
ing large-scale optimization problems on parallel comput-
ers. Trans. on Mathematical Software, submitted to ACTS
Collection special issue, Preprint ANL/MCS-P1084-0903.

Benson, S., McInnes, L., and Moré, J. J. Toolkit for Advanced
Optimization (TAO) Web page. http://www.mcs.anl.gov/
tao.

Bernholdt, D. E., Nieplocha, J., and Sadayappan, P. 2004. Rais-
ing the Level of Programming Abstraction in Scalable
Programming Models. Proceedings of HPCA Workshop
on Productivity and Performance in High-End Computing
(P-PHEC 2004), Madrid, Spain.

Bershad, B. N., Zekauskas, M. J., and Sawdon, W. A. 1993.
Midway distributed shared memory system. Proceedings
of 38th Annual IEEE Computer Society International Com-
puter Conference – COMPCON SPRING’93, Feb 22–26
1993, San Francisco, CA, USA.

Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel,
J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G.,
Petitet, A., Stanley, K., Walker, D., and Whaley, R. C.
1997. ScaLAPACK: A Linear Algebra Library for Mes-
sage-Passing Computers. Proceedings of Eighth SIAM Con-
ference on Parallel Processing for Scientific Computing,
Minneapolis, MN.

Blelloch, G. E., Heroux, M. A., and Zagha, M. 1993. Segmented
Operations for Sparse Matrix Computation on Vector
Multiprocessor. Carnegie Mellon University CMU-CS-
93–173.

Brown, D. L., Henshaw, W. D., and Quinlan, D. J. 1999. Over-
ture: An Object-Oriented Framework for Solving Partial

229ARRAYS SHARED MEMORY PROGRAMMING

Differential Equations on Overlapping Grids. Proceedings
of SIAM Conference on Object-Oriented Methods for Sci-
entific Computing.

Buntinas, D., Saify, A., Panda, D. K., and Nieplocha, J. 2003.
Optimizing synchronization operations for remote mem-
ory communication systems. Proceedings of Parallel and
Distributed Processing Symposium.

Carlson, W. W., Draper, J. M., Culler, D. E., Yelick, K. Brooks,
E., and Warren, K. 1999. Introduction to UPC and Lan-
guage Specification. Center for Computing Sciences
CCS-TR-99-157.

Carpenter, B. 1995. Adlib: A distributed array library to support
HPF translation. Proceedings of 5th International Work-
shop on Compilers for Parallel Computers, University of
Malaga, Malaga, Spain.

CCA-DCWG. Comparison of distributed array descriptors
(DAD) as proposed and implemented for SC01 demos.
http://www.csm.ornl.gov/~bernhold/cca/data.

CCA-Forum. Common Component Architecture Forum. http://
www.cca-forum.org.

Chatterjee, S., Blelloch, G. E., and Zagha, M. 1990. Scan prim-
itives for vector computers. Proceedings of Supercomput-
ing, New York, New York, United States.

Chen, Y., Nieplocha, J., Foster, I., and Winslett, M. 1997. Opti-
mizing collective I/O performance on parallel computers:
a multisystem study. Proceedings of 11th International
Conference on Supercomputing, Vienna, Austria.

Cìzek, J. 1969.On the use of the cluster expansion and the tech-
nique of diagrams in calculations of the correlations
effects in atoms and molecules. Adv. Chem. Phys. 14:35.

Coarfa, C., Dotsenko, Y., Eckhardt, J., and Mellor-Crummey, J.
2003. Co-Array Fortran Performance and Potential: An
NPB Experimental Study. Proceedings of 16th Interna-
tional Workshop on Languages and Compilers for Paral-
lel Computing.

Cox, A. L., Dwarkadas, S., Lu, H., and Zwaenepoel, W. 1997.
Evaluating the performance of software distributed shared
memory as a target for parallelizing compilers. Proceed-
ings of 1997 11th International Parallel Processing Sym-
posium, IPPS 97, Apr 1–5 1997, Geneva, Switz.

Crotinger, J. A., Cummings, J., Haney, S., Humphrey, W., Kar-
mesian, S., Reynders, J., Smith, S., and Williams, T. J.
2000.Generic Programming in POOMA and PETE. Pro-
gramming Lecture Notes in Computational Science 1766:
218

CUMULVS. CUMULVS Home Page. http://www.csm.ornl.gov/
cs/cumulvs.html.

Dachsel, H., Lischka, H., Shepard, R., Nieplocha, J., and Harrison,
R. J. 1997. A massively parallel multireference configura-
tion interaction program: The parallel COLUMBUS pro-
gram. Journal of Computational Chemistry 18:430–448.

Dachsel, H., Nieplocha, J., and Harrison, R. J. 1998. An out-of-
core implementation of the COLUMBUS massively-par-
allel multireference configuration interaction program.
Proceedings of High Performance Networking and Com-
puting Conference, SC98.

Dahlgren, T., Epperly, T., and Kumfert, G. 2003. Babel/SIDL
Design-by-Contract: Status. Lawrence Livermore National
Laboratory UCRLPRES-152674.

Dobbyn, A. J., Knowles, P. J., and Harrison, R. J. 1998. Parallel
internally contracted multireference configuration interac-
tion. Journal of Computational Chemistry 19:1215–1228.

DOE ACTS Collection. http://acts.nersc.gov/.
Dongarra, J. J., Croz, J. D., Hammarling, S., and Duff, I. 1990.

Set of Level 3 Basic Linear Algebra Subprograms. ACM
Transactions on Mathematical Software 16:1–17.

Douglas, C., Hu, J., Ray, J., Thorne, D., and Tuminaro, R.
2002. Fast, Adaptively Refined Computational Elements
in 3D. Proceedings of International Conference on Scien-
tific Computing.

Dubois, M., Scheurich, C., and Briggs, F. 1986. Memory access
buffering in multiprocessors. Proceedings of 13th annual
international symposium on Computer architecture, Tokyo,
Japan.

Fletcher, G. D., Schmidt, M. W., Bode, B. M., and Gordon, M.
S. 2000. The Distributed Data Interface in GAMESS.
Computer Physics Communications 128:190–200.

Fock, V. A. 1930. Naherungsmethode zur Losung des quanten-
mechanischen Mehrkorperproblems. Zeit. für Phys 61:126.

Freeh, V. W. and Andrews, G. R. 1996. Dynamically control-
ling false sharing in distributed shared memory. Proceed-
ings of 1996 5th IEEE International Symposium on High
Performance Distributed Computing, Aug 6–9, Syracuse,
NY, USA

Frisch, U., d’Humieres, D., Hasslacher, B., Lallemand, P.,
Pomeau, Y., and Rivet, J-P. 1987. Lattice Gas Hydrody-
namics in Two and Three Dimensions. Complex Systems,
1:649

Frisch, U., Hasslacher, P., and Pomeau, Y. 1986. Lattice-Gas
Automata for the Navier-Stokes Equation. Phys. Rev. Lett.
56:1505.

Guest, M. F., Lenthe, J. H. V., Kendrick, J., Schoffel, K., and
Sherwood, P. GAMESS – UK: Version 6.3.

Gupta, M. and Schonberg, E. 1996. Static Analysis to Reduce
Synchronization Costs of Data-Parallel Programs. Pro-
ceedings of ACM Symposium on Principles of Program-
ming Languages (POPL).

Hartree, D. R. 1928. The Wave Mechanics of an Atom in a Non-
Coulomb Central Field. Proc. Camb. Phil. Soc. 24:89.

Hatcher P. J. and Quinn, M. J. 1991. Data-Parallel Program-
ming on MIMD Computers. The MIT Press.

Henty, D. S. 2000. Performance of hybrid message-passing and
shared-memory parallelism for discrete element mode-
ling. Proceedings of Supercomputing, 2000.

High Performance Fortran Forum. 1993. High Performance
Fortran Language Specification, version 1.0. Scientific
Programming 2.

Hohenberg, P. and Kohn, W. 1964. Inhomogenoeous electron
gas. Phys. Rev. vol. 136.

Janssen, C. L., Seidl, E. T., and Colvin, M. E. 1995. Object-ori-
ented implementation of a Parallel Ab-initio Program.
Parallel Computing in Computational Chemistry ACS Sym-
posium Series, 592:47. American Chemical Society,
Washington,DC

Jones, D. R., Jurrus, E. R., Moon, B. D., and Perrine, K. A. 2003.
Gigapixel-size Real-time Interactive Image Processing
with Parallel Computers. Proceedings of Workshop on
Parallel and Distributed Image Processing, Video Process-

230 COMPUTING APPLICATIONS

ing, and Multimedia, PDIVM 2003, IPDPS 2003 Work-
shops, Nice, France.

Karlstrom, G., Lindh, R., Malmqvist, P. A., Roos, B. O., Ryde,
U., Veryazov, V., Widmark, P. O., Cossi, M., Schimmelp-
fennig, B., Neogrady, P., and Seijo, L. 2003. MOLCAS: a
program package for computational chemistry. Computa-
tional Materials Science 28:222–239.

Kendall, R. A., Apra, E., Bernholdt, D. E., Bylaska, E. J.,
Dupuis, M., Fann, G. I., Harrison, R. J., Ju, J. L., Nichols,
J. A., Nieplocha, J., Straatsma, T. P., Windus, T. L., and
Wong, A. T. 2000. High performance computational chemis-
try: An overview of NWChem a distributed parallel appli-
cation. Computer Physics Communications. 128:260–283.

Kohn, S. and Sham, L. 1965. Self-consistent equations includ-
ing exchange and correlation effects. Phys. Rev. vol. 140.

Kong, J., White, C. A., Krylov, A. I., Sherrill, D., Adamson, R.
D., Furlani, T. R., Lee, M. S., Lee, A. M., Gwaltney, S.
R., Adams, T. R., Ochsenfeld, C., Gilbert, A. T. B.,
Kedziora, G. S., Rassolov, V. A., Maurice, D. R., Nair,
N., Shao, Y. H., Besley, N. A., Maslen, P. E., Dombroski,
J. P., Daschel, H., Zhang, W. M., Korambath, P. P.,
Baker, J., Byrd, E. F. C., Van Voorhis, T., Oumi, M.,
Hirata, S., Hsu, C. P., Ishikawa, N., Florian, J., Warshel,
A., Johnson, B. G., Gill, P. M. W., Head-Gordon, M., and
Pople, J. A. 2000. Q-chem 2.0: A high-performance ab
initio electronic structure program package. Journal of
Computational Chemistry 21:1532–1548.

Krishnan, M. and Nieplocha, J. 2004a. SRUMMA: a matrix
multiplication algorithm suitable for clusters and scalable
shared memory systems. Proceedings of Parallel and Dis-
tributed Processing Symposium, 2004.

Krishnan, M. and Nieplocha, J. 2004b. Optimizing Parallel
Multiplication Operation for Rectangular and Transposed
Matrices. Proceedings of 10th IEEE International Confer-
ence on Parallel and Distributed Systems (ICPADS’04).

Krishnan, M., Alexeev, Y., Windus, T. L., and Nieplocha, J.
2005. Multilevel Parallelism in Computational Chemistry
using Common Component Architecture and Global Arrays.
Proceedings of Supercomputing, Seattle, WA, USA, 2005.

Kruskal, C. P. and Weiss, A. 1985. Allocating independent sub-
tasks on parallel processors. IEEE Trans. Softw. Eng.
11:1001–1016.

Lam, M. S., Rothberg, E. E., and Wolf, M. E. 1991.Cache per-
formance and optimizations of blocked algorithms. Pro-
ceedings of 4th International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, Apr 8–11, Santa Clara, CA, USA.

Lawry, B., Wilson, R., Maccabe, A. B., and Brightwell, R.
2002. COMB: A Portable Benchmark Suite for Assessing
MPI Overlap. Proceedings of IEEE Cluster’02.

Legedza, U. and Weihl, W. E. 1996. Reducing synchronization
overhead in parallel simulation. Proceedings of 10th Work-
shop on Parallel and Distributed Simulation, Philadel-
phia, Pennsylvania.

Liu, J., Chandrasekaran, B., Wu, J., Jiang, W., Kini, S. P., Yu,
W., Buntinas, D., Wyckoff, P., and Panda, D. K. 2003.
Performance Comparison of MPI implementations over
Infiniband, Myrinet and Quadrics. Proceedings of Int’l
Conference on Supercomputing, (SC’03).

Loft, R. D., Thomas, S. J., and Dennis, J. M. 2001. Terascale
spectral element dynamical core for atmospheric general
circulation models. Proceedings of 2001 ACM/IEEE
conference on Supercomputing, (CDROM), Denver, Colo-
rado.

Matthey, T. and Izaguirre, J. A. 2001. ProtoMol: A Molecular
Dynamics Framework with Incremental Parallelization.
Proceedings of Tenth SIAM Conf. on Parallel Processing
for Scientific Computing (PP01)

METIS. http://www-users.cs.umn.edu/~karypis/metis.
Møller, C. and Plesset, S. 1934. Note on an Approximation

Treatment for Many-Electron Systems. Phys. Rev. vol. 46.
MPI Forum. Message Passing Interface Forum. MPI-2: Exten-

sions to the Message-Passing Interface. www.mpi-forum.
org.

Nieplocha, J. and Carpenter, B. 1999. ARMCI: A Portable
Remote Memory Copy Library for Distributed Array
Libraries and Compiler Run-time Systems. Proceedings
of RTSPP of IPPS/SDP’99.

Nieplocha, J. and Foster, I. 1996. Disk resident arrays: an array-
oriented I/O library for out-of-core computations. Pro-
ceedings of Frontiers of Massively Parallel Computing.

Nieplocha, J. and Harrison, R. J. 1996. Shared memory NUMA
programming on I-WAY. Proceedings of High Perform-
ance Distributed Computing.

Nieplocha, J. and Harrison, R. J. 1997. Shared memory pro-
gramming in metacomputing environments: The global
array approach. Journal of Supercomputing, 11:119–136.

Nieplocha, J., Apra, E., Ju, J., and Tipparaju, V. 2003. One-
Sided Communication on Clusters with Myrinet. Cluster
Computing 6:115–124.

Nieplocha, J., Foster, I., and Kendall, R. A. 1998. ChemIO:
High performance parallel I/O for computational chemis-
try applications. International Journal of High Perform-
ance Computing Applications 12:345–363.

Nieplocha, J., Harrison, R. J., and Foster, I. 1996. Explicit Man-
agement of Memory Hierarchy. In: Advances in High Per-
formance Computing pp. 185–200.

Nieplocha, J., Harrison, R. J., and Littlefield, R. J. 1994. Global
Arrays: A Portable Shared Memory Programming Model
for Distributed Memory Computers. Proceedings of
Supercomputing, 1994.

Nieplocha, J., Harrison, R. J., and Littlefield, R. J. 1996. Global
arrays: A nonuniform memory access programming
model for high-performance computers. Journal of Super-
computing 10:169–189.

Nieplocha, J., Harrison, R. J., Krishnan, M., Palmer, B., and
Tipparaju, V. 2002a. Combining shared and distributed
memory models: Evolution and recent advancements of
the Global Array Toolkit. Proceedings of POHLL’2002
workshop of ICS-2002, NYC.

Nieplocha, J., Ju, J. L., and Straatsma, T. P. 2000. A multiproto-
col communication support for the global address space
programming model on the IBM SP. Proceedings of
Euro-Par 2000 Parallel Processing, vol. 1900, Lecture
Notes in Computer Science, pp. 718–728.

Nieplocha, J., Ju, J., Krishnan, M., Palmer, B., and Tipparaju,
V. 2002b. The Global Arrays User’s Manual. Pacific
Northwest National Laboratory PNNL-13130.

231ARRAYS SHARED MEMORY PROGRAMMING

Nieplocha, J., Krishnan, M., Palmer, B., Tipparaju, V., and
Zhang, Y. 2005. Exploiting Processor Groups to Extend
Scalability of the GA Shared Memory Programming Model.
Proceedings of ACM Computing Frontiers, Italy, 2005.

Nieplocha, J., Tipparaju, V., Saify, A., and Panda, D. K. 2002c.
Protocols and strategies for optimizing performance of
remote memory operations on clusters. Proceedings of Com-
munication Architecture for Clusters (CAC’02) Workshop,
held in conjunction with IPDPS ‘02.

Nobes, R. H., Rendell, A. P., and Nieplocha, J. 2000. Computa-
tional chemistry on Fujitsu vector-parallel processors:
Hardware and programming environment. Parallel Com-
puting 26:869–886.

Numrich R. W. and Reid, J. K. 1998. Co-Array Fortran for par-
allel programming. ACM Fortran Forum 17:1–31.

NWGrid. NWGrid Home Page. http://www.emsl.pnl.gov/nwgrid.
NWPhys. The NWPhys homepage. http://www.emsl.pnl.gov/

nwphys.
O’Boyle, M. and Stöhr, E. 2002. Compile Time Barrier Syn-

chronization Minimization. IEEE Transactions on Paral-
lel and Distributed System, vol. 13.

Palmer, B. and Nieplocha, J. 2002. Efficient Algorithms for
Ghost Cell Updates on Two Classes of MPP Architectures.
Proceedings of Parallel and Distributed Computing and
Systems (PDCS 2002), Cambridge, USA.

Palmer, B., Nieplocha, J., and Apra, E. 2003. Shared memory
mirroring for reducing communication overhead on com-
modity networks. Proceedings of International Conference
on Cluster Computing.

Parzyszek, K., Nieplocha, J., and Kendall, R. A. 2000. General-
ized Portable SHMEM Library for High Performance
Computing. Proceedings of IASTED Parallel and Distrib-
uted Computing and Systems, Las Vegas, Nevada.

PeIGS. PeIGS Home Page. http://www.emsl.pnl.gov/docs/
nwchem/doc/peigs/docs/peigs3.html.

Plimpton, S. and Heffelfinger, G. 1992. Scalable parallel molecu-
lar dynamics on MIMD supercomputers. Proceedings of
Scalable High Performance Computing Conference.

pmodels. Center for Programming Models for Scalable Parallel
Computing. www.pmodels.org.

Scheurich C. and Dubois, M. 1987. Correct memory operation
of cache-based multiprocessors. Proceedings of 14th annual
international symposium on Computer architecture, Pitts-
burgh, Pennsylvania, United States.

Shah, G., Nieplocha, J., Mirza, J., Kim, C., Harrison, R.,
Govindaraju, R. K., Gildea, K., DiNicola, P., and Bender, C.
1998. Performance and experience with LAPI-a new high-
performance communication library for the IBM RS/6000
SP. Proceedings of International Parallel Processing Sym-
posium IPPS/SPDP, 1998.

Shan, H. and Singh, J. P. 2000. A Comparison of Three Pro-
gramming Models for Adaptive Applications on the Ori-
gin 2000. Proceedings of Supercomputing, 2000.

Snyder, L. 1999. A programmer’s guide to ZPL. MIT Press.
Tipparaju, V., Krishnan, M., Nieplocha, J., Santhanaraman, G.,

and Panda, D. 2003. Exploiting non-blocking remote mem-
ory access communication in scientific benchmarks. High
Performance Computing – HiPC vol. 2913, Lecture Notes
in Computer Science, pp. 248–258.

Tipparaju, V., Santhmaraman, G., Nieplocha, J. and Panda, D.
K. 2004. Host-assised zero-copy remote memory access
communication on Infiniband. Proceedings of Interna-
tional Parallel and Distributed Computing Symposium
(IPDPS), Santa Fe, NM, USA.

Trease, H. E. et al. 2002. Grid Generation Tools for Performing
Feature Extraction, Image Reconstruction, and Mesh Gen-
eration on Digital Volume Image Data for Computational
Biology Applications. Proceedings of 8th International
Conference On Grid Generation and Scientific Applica-
tions, Honolulu, Hawaii.

VanDeGeijn, R. A. and Watts, J. 1997.SUMMA: Scalable uni-
versal matrix multiplication algorithm. Concurrency-
Practice and Experience. 9:255–274.

White, J. B. and Bova, S. W. 1999. Where’s the overlap? Over-
lapping communication and computation in several popular
mpi implementations. Proceedings of Third MPI Devel-
opers’ and Users’ Conference.

Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B.,
Krishnamurthy, A., Hilfinger, P., Graham, S., Gay, D.,
Colella, P., and Aiken, A. 1998. Titanium: A high-perform-
ance Java dialect. Concurrency Practice and Experience
10:825–836.

Zhou, Y., Iftode, L., and Li, K. 1996. Performance Evaluation
of Two Home-Based Lazy Release Consistency Protocols
for Shared Virtual Memory Systems. Proceedings of
Operating Systems Design and Implementation Sympo-
sium, 1996.

