
Understanding the Behavior and Performance
of Non-blocking Communications in MPI�

Taher Saif and Manish Parashar

The Applied Software Systems Laboratory
Department of Electrical and Computer Engineering

Rutgers University, Piscataway, NJ 08854, USA
{taher,parashar}@caip.rutgers.edu

Abstract. The behavior and performance of MPI non-blocking mes-
sage passing operations are sensitive to implementation specifics as they
are heavily dependant on available system level buffers. In this paper
we investigate the behavior of non-blocking communication primitives
provided by popular MPI implementations and propose strategies for
these primitives than can reduce processor synchronization overheads.
We also demonstrate the improvements in the performance of a parallel
Structured Adaptive Mesh Refinement (SAMR) application using these
strategies.

1 Introduction

The Message Passing Interface (MPI) [1] has evolved as the de-facto message
passing standard for supporting portable parallel applications - with commercial
as well as public-domain implementations available for most existing platforms
including general purpose clusters to high-performance systems such as IBM SP.

An important design goal of the MPI standard is to allow implementations
on machines with varying characteristics. For example, rather than specifying
how operations take place, the MPI standard only specifies what operations do
logically. Consequently, MPI can be easily implemented on systems that buffer
messages at the sender, receiver, or do no buffering at all. It is typically left
to the vendors to implement MPI operations in the most efficient way as long
as their behavior conforms to the standards. As a result of this, MPI imple-
mentations on different machines often have varying performance characteristics
that are highly dependant on factors such as implementation design, available
hardware/operating system support and the sizes of the system buffers used.

The behavior and performance of MPI non-blocking message passing oper-
ations are particularly sensitive to implementation specifics as they are heavily
dependant on available system level buffers and other resources. As a result,

� The work presented here was supported in part by the National Science Foundation
via grants numbers ACI 9984357 (CAREERS), EIA 0103674 (NGS) and EIA 0120934
(ITR), and by DOE ASCI/ASAP (Caltech) via grant number PC295251.

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 173–182, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

174 T. Saif and M. Parashar

naive use of these operations without an understanding of the underlying im-
plementation can result in serious performance degradations, often producing
synchronous behaviors.

We believe that an efficient and scalable use of MPI non-blocking communi-
cation primitives requires an understanding of their implementation and its im-
plication on application performance. This paper has two key objectives: (1) To
investigate and understand the behavior of non-blocking communication primi-
tives provided by two popular MPI implementations: the public domain MPICH
[2] implementation on a Linux cluster, and the proprietary IBM implementation
on an IBM SP2 [3]. (2) To propose and evaluate usage strategies for these prim-
itives that the parallel programmer can implement to reduce processor synchro-
nization and optimize application performance. We use the proposed strategies
to optimize the performance of parallel implementations of scientific/engineering
simulations that use finite difference methods on structured adaptive meshes [4].

2 Non-blocking MPI: Behavior and Performance

The generic operation of a non-blocking MPI communication is a “three step”
process in which the implementation (of the non-blocking communication) de-
couples the send and receive operations by using system and/or application
buffers at the sender and receiver processes, allowing computation and commu-
nication to be overlapped. However, this decoupling is strictly limited by the
size of the buffers available to copy the message. MPI implementations typically
switch to a synchronous communication mode when the message size exceeds
the available buffer size, where the sender waits for an acknowledgement from
the receive side before sending out the data.

In this section we experimentally investigate the behavior and performance
of non-blocking MPI communications in two popular MPI implementations:
MPICH on a Beowulf cluster, and IBM MPI on the IBM SP2.

The test kernel used for these experiments - as illustrated in Figure 1 - is
a typical non-blocking communication implementation between two processes
in which one sends and the other receives. In this kernel the sending process
(process 0) issues MPI Isend (IS) at time-step T0 to initiate a non-blocking send
operation while the receiving process (process 1) posts a matching MPI Irecv
(IR) call. Both processes then execute unrelated computation before executing
an MPI Wait call at T3 to wait for completion of the communication. In the
following discussion we denote MPI Wait posted on the send side as Ws and the
MPI Wait posted on the receive side as Wr. The processes synchronize at the
beginning of the kernel and use deterministic offsets to vary values of T0, T1, T2
and T3 at each process. For each configuration (value of T0, T1, T2 and T3 at
each process) we conducted a number of experiments varying the message size,
system buffer size and number of messages exchanged. The objectives of these
experiments included determining thresholds at which the non-blocking calls
synchronize, the semantics of synchronization once this threshold is reached,
and possibility of deadlocks.

Understanding the Behavior of Non-blocking Communications in MPI 175

Fig. 1. Operation of the test kernel used in the experimental investigation.

2.1 MPICH on a Linux Beowulf Cluster

The first MPI implementation analyzed is MPICH version 1.2.5, release date
January 6, 2003 [3] on Frea, a 64 node Linux Beowulf SMP cluster at Rutgers
University. Each node of cluster has a 1.7 GHz Pentium 4 processor with 512
MB main memory. The MPICH profiling tool Upshot [14] is used for the profiles
and timing graphs presented below.

Our first experiment investigates the effect of message size on non-blocking
communication semantics. In this experiment the value of T0 - T3 are approx-
imately the same on the two processes, and the message size was varied. The
system buffer size was maintained at the default value of 16K. For smaller mes-
sage sizes (1KB), we observe that IS and IR return without blocking (Figure 2).
Furthermore, Ws and Wr, posted after local computations, return almost im-
mediately, indicating complete overlap. However, for message sizes greater than
or equal to 60 KB, IS blocks and returns only when the receiver process posts
Wr (Figure 3). We can further see from the Figure that Wr blocks until the
message delivery completes. This threshold is dependent on the system buffer
size as discussed below.

To further understand the synchronizing behavior of MPI Isend for large
message sizes, we modified our experiment to post a matching MPI Test (a non-
blocking variant of MPI Wait) on the receiver side (i.e. process 1) in the middle
of the computation phase. As shown in Figure 4, in this case MPI Isend returns
as soon as MPI Test is posted. It was also seen that the Wr posted after com-

Fig. 2. Profile of the test on MPICH where process 0 (top) sends a 1 KB message to
process 1 (bottom).

176 T. Saif and M. Parashar

Fig. 3. Profile of the test on MPICH where process 0 (top) sends a 60 KB message to
process 1 (bottom).

Fig. 4. Profile of the test on MPICH in which process 1 (bottom) posts an intermediate
MPI Test.

putation returns almost immediately, indicating that the message was already
delivered during the computation. This indicates that MPI Isend blocks for large
messages until the completion of the corresponding MPI Irecv is checked using
either blocking (MPI Wait) or non-blocking (MPI Test). Note that, as the MPI
implementation optimizes the number of messages sent to a single destination,
the message size threshold is cumulative. That is, in the above case MPI Isend
switches to blocking semantics when the cumulative size of outstanding messages
to a particular process is 60KB. For example, when we repeated the test using
3 sends of size 20KB each (instead of one of size 60KB), the same non-blocking
behavior was observed.

The experiment plotted in Figure 5 evaluates potential deadlocks if two pro-
cesses simultaneously send large messages to each other using MPI Isend and
block. The Figure shows that process 1 initially blocks but then returns after
a certain time instead of waiting for process 0 to post a Wr. Process 0 how-
ever blocks until Wr is posted on process 1. This behavior seems to indicate a
non-deterministic time out mechanism to ensure progress.

In the case of the Frea Beowulf cluster, default TCP socket buffer size
is 16KB. This can be increased by either using the environment variable
P4 SOCKBUFSIZE or using the command line option -p4sctrl bufsize=<size>.

Fig. 5. Profile of the test on MPICH in which both processes post MPI Isend. Message
size is 60Kb.

Understanding the Behavior of Non-blocking Communications in MPI 177

We repeated the experiments using messages of size 60KB but increased the
TCP socket buffer size. We observed that for a TCP socket buffer size of 64KB,
IS did not block.

Analysis and Discussion. To try to understand the behavior of the MPICH
non-blocking communication presented above let us consider its implementation.
MPICH has a layered software architecture [5] consisting of (a) a high level
MPI API layer (b) a middle Abstract Device Interface (ADI) layer and, (c) a
D1evice layer. The Device layer defines three protocols to send messages based
on the message size: short, eager (long) and rendezvous (very long). In the case
of relatively short messages, for example 1KB, MPICH can copy the message
directly into the system socket buffer and thus send the message out onto the
network using the eager protocol, allowing MPI Isend to return immediately.

In the case of larger messages (e.g. 60KB), the system socket buffer is not
large enough to accommodate the message and MPICH cannot directly copy the
message into the buffer. Instead, it switches to the rendezvous protocol, which
requires the sending process to synchronize with the receiving process before the
message is sent out. As a result MPI Isend, which should return immediately
irrespective of the completion mode, now has to wait for the corresponding
Wr for an acknowledgement(Figure 3). Similarly, when a matching MPI Test is
posted at the receiver process, it essentially sends an acknowledgement back to
the sender which caused the blocked MPI Isend to return. When the TCP/IP
socket buffer size is increased to 64 KB, MPICH can copy the 60 KB message
directly into the socket buffer and use the eager protocol allowing the MPI Isend
call to return without blocking.

Finally, due to MPICH optimizations, the blocking behavior of MPI Isend
depends on the system socket buffer and the cumulative size of the outstanding
messages rather than the actual number of messages sent. Consequently, reducing
the message size by breaking up the total message into smaller messages will not
yield any performance improvement.

Optimization Strategies. Based on the analysis presented above we identify
two strategies to address the blocking behavior of MPI Isend in MPICH. The
first strategy is obvious, increase the TCP socket buffer size. However this option
is not scalable since the total buffer space grows with the number of processes.
Further, every system imposes a hard limit on the total socket buffer size. As a
result this option has only limited benefits and any further optimization must
be achieved at the applications level.

It is clear from the analysis presented above that the only way to prevent
MPI Isend from blocking is for the receiving process to return an acknowledge-
ment using a (blocking or non-blocking) test for completion call. Our second
strategy is to use calls to the non-blocking test for completion (MPI Test or its
variant) on the receive side to release a blocked sender.

To illustrate this consider the code snippet (Figure 6) for a typical loose-
synchronous application, for example, a finite-difference PDE solver using ghost

178 T. Saif and M. Parashar

for m=1 to number_of_messages_to_receive {

}
COMPUTE
for n=1 to number_of_messages_to_send{
 MPI_ISEND(n, send_msgid_n)
 MPI_WAIT(send_msgid_n)
}
COMPUTE
MPI_WAITALL(recv_msgid_*)

 MPI_IRECV(m, recv_msgid_m)

Fig. 6. MPICH: Unoptimized algorithm.

for m=1 to number_of_messages_to_receive{
 MPI_IRECV(m, recv_msgid_m)
}
COMPUTE
for n=1 to number_of_messages_to_send{
 MPI_ISEND(n, send_msgid_n)
 MPI_WAIT(send_msgid_n)
}
MPI_TESTALL(recv_msgid_*)
COMPUTE
MPI_WAITALL(recv_msgid_*)

Fig. 7. MPICH: Optimized algorithm.

Fig. 8. MPICH: Unoptimized algorithm. Fig. 9. MPICH: Optimized algorithm.

communications. In this pseudo-code, each process posts non-blocking receive
calls before computing on its local region of the grid. After finishing computation,
it then sends its data to update the ghost regions of its neighboring processors
using the MPI Isend/MPI Wait pair. The process may do some further local
computation and then finally waits to update it own ghost regions, possibly
using an MPI Waitall. In this case, if the message size is greater than 60KB
the MPI Isend will block until the corresponding MPI Waitall is called on the
receiving process as shown in Figure 8.

If we now insert an intermediate MPI Testall call as shown in Figure 7,
MPI Isend returns as soon as the receiver posts the test (Figure 9). While the
MPI Testall call does have a cost, this cost is small compared to the performance
gain.

2.2 IBM MPI on the SP2

The second MPI implementation analyzed is the IBM native implementation
(version 3 release 2) [3] on the IBM SP2, BlueHorizon, a teraflop-scale Power3
based clustered SMP system at the San Diego Supercomputing Center. The ma-
chine consists of 1152 processors, each having 512 GB of main memory. Once
again, our first experiment investigates the effect of message size on non-blocking
communication semantics. For smaller message sizes (1KB), we observe the ex-
pected non-blocking semantics. This is also true for larger messages sizes (greater
than 100 KB) as shown in Figure 10.

Understanding the Behavior of Non-blocking Communications in MPI 179

Fig. 10. SP2: Ws and Wr posted at the
same time-step.

Fig. 11. SP2: Ws and Wr posted at dif-
ferent time-steps.

To further understand the effect of increasing message size on the behavior of
non-blocking communications in the IBM MPI, we moved Ws to T1, i.e. directly
after the send to simulate the situation where one might want to reuse the send
buffer. Wr remained at T3. In this case, for message sizes greater than or equal
to 100KB, Ws blocked until Wr was posted by the receiver at T3 (Figure 11).

In an experiment where both processes exchange messages, IS and IR are
posted at T0, process 0 posts Ws at T1 while process 1 posts Ws at T2, and
both processes post Wr at T3. The message size is maintained at 100KB. In this
case deadlock is avoided in an interesting manner since Ws, posted at T1 and
blocks on process 0, returns as soon as process 1 posts Ws at T2, rather than
waiting for the corresponding Wr on T3.

Analysis and Discussion. The SP2 parallel environment imposes a limit
(called the eager limit) on the total message size that can be sent out asyn-
chronously. When message sizes exceed this limit, the IBM MPI implementation
switches to a synchronous mode. However, in this case, it is the Ws call that
blocks until an acknowledgement is received from the receiver process. Conse-
quently in the experiment above, Ws blocks until Wr is posted at the receiving
process. The analysis above also shows that the synchronization call on the re-
ceive side need not be a matching wait. In fact the receiver may post any call to
MPI Wait (or any of its variants) to complete the required synchronization.

Optimizations Strategies. The POE users’ guide [3] specifies the environment
variable, MP EAGER LIMIT, which defines the size of MPI messages that can
be sent asynchronously. However, as the number of processes increase, trying to
increase MP EAGER LIMIT simply reduces the amount of memory available to
the application.

A more scalable strategy is to address this at the application level by ap-
propriatly positioning IS, IR, Ws and Wr calls. The basic strategy consists of
delaying Ws until after Wr and is illustrated in Figures 12 and 13.

To illustrate the strategy, consider a scenario in which two processes exchange
a sequence of messages and the execution sequence is split into steps T0-T3. Both
processes post MPI Irecv (IR) calls at T0 and Wall denotes a MPI Waitall call.
Assume that, due to load imbalance, process 0 performs computation until T2
while process 1 computes only till t1. Ws posted on process 1 at T1 will block
until process 0 posts Ws at T2. For a large number of messages, this delay can

180 T. Saif and M. Parashar

 MPI_IRECV(n, msgid_n)
}
COMPUTE
for n=1 to number_of_messages_to_send{
 MPI_ISEND(n, send_msgid_n)
 MPI_WAIT(send_msgid_n)
}
MPI_WAITALL(recv_msgid_*)

for n=1 to number_of_messages_to_receive{

Fig. 12. SP2: Unoptimized algorithm.

for n=1 to number_of_messages_to_receive{
 MPI_IRECV(n, msgid_n)
}
COMPUTE
for n=1 to number_of_messages_to_send{
 MPI_ISEND(n, send_msgid_n)
}
MPI_WAITALL(recv_msgid_*+send_msgid*)

Fig. 13. SP2: Optimized algorithm.

become quite significant. Consequently, to minimize the blocking overhead due
to Ws on process 1, it must be moved as close to T2 as possible. Now, if Ws is
removed from the send loop and a collective MPI Waitall is posted as shown in
Figure 13, it is observed that process reaches T2, it has already posted IS for
all of its messages and is waiting on Wall, thus reducing synchronization delays.

3 Evaluation of Communication Performance in SAMR

Dynamic Structured Adaptive Mesh Refinement (SAMR) techniques [4] for solv-
ing partial differential equations provide a means for concentrating computa-
tional effort to appropriate regions in the computational domain. These methods
(based on finite differences) start with a base coarse grid with minimum accept-
able resolution that covers the entire computational domain. As the solution
progresses, regions in the domain requiring additional resolution are recursively
tagged and finer grids are laid over these tagged regions of the coarse grid [4].

Parallel implementations of hierarchical SAMR applications typically parti-
tion the adaptive heterogeneous grid hierarchy across available processors, and
each processor operates on its local portions of this domain in parallel [7]. Due to
their irregular load distributions and communication requirements across levels
of the grid hierarchy, parallel SAMR applications make extensive use of non-
blocking MPI primitives so as to overlap intra-level communications with com-
putations on the interior region.

A typical implementation of intra-level communications in parallel SAMR
applications is similar to the ghost communication associated with parallel fi-
nite difference PDE solvers as described in Section 2. Clearly, the optimizations
proposed by us in Section 2 can be applied here to reduce the synchronization
costs.

Evaluation Using the RM3D Kernel. To evaluate the impact of the pro-
posed optimization strategies on application performance we used the 3-D ver-
sion of the compressible turbulence application kernel (RM3D) which uses SAMR

Understanding the Behavior of Non-blocking Communications in MPI 181

Fig. 14. Comparison of execution and communication times on Frea (MPICH).

Fig. 15. Comparison of execution and communication times on SP2 (IBM POE).

techniques to solve the Richtmyer-Meshkov instability [9]. The experiments con-
sist of measuring the message passing and application execution times for the
RM3D application kernel before and after incorporating our optimizations strate-
gies outlined in this paper, on both Frea and Blue Horizon. Except for the op-
timizations in the message passing algorithm, all other application-specific and
refinement-specific parameters are kept constant. The results of the evaluation
for MPICH on Frea for 16, 32 and 64 processors are shown in Figure 14. These
runs used a base grid size of 128*32*32 and executed 100 iterations. We observe
that the reduction in communication time is approximately 27%.

On the SP2 the evaluation run used a base grid size of 256*64*64 and exe-
cuted 100 iterations. Figure 15 shows the comparisons of the execution times and
communication times respectively for 64, 128 and 256 processors. In this case
we observe that the reduction in communication time is approximately 44%.

4 Summary and Conclusions

In this paper we experimentally analyzed the behavior and performance of non-
blocking communication provided by two popular MPI implementations. It is
important to note that the blocking behavior described by us is not a bug in
the message passing softwares. Rather it is due to inherent limitations in the
underlying hardware architectures.

We used the strategies proposed in this paper to optimize the performance
of the SAMR-based Richtmyer-Meshkov compressible turbulence kernel. Our
evaluation shows that the proposed strategies improved the performance by an
average of approximately 27% for MPICH and 44% for IBM MPI.

182 T. Saif and M. Parashar

References

1. The MPI Forum. The MPI Message-Passing Interface Standard 2.0.
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html,
September 2001.

2. MPICH - A Portable MPI Implementation.
http://www-unix.mcs.anl.gov/mpi/mpich/

3. Parallel Environment (PE) for AIX V3R2.0: Operation and Use, Vol. 1. December,
2001.

4. M. Berger and J. Oliger, “Adaptive Mesh Refinement for Hyperbolic partial Differ-
ential Equations”, Journal of Computational Physics, Vol. 53, pp. 484-512, 1984.

5. W. Gropp, E. Lusk, A. Skjellum and N. Doss, “MPICH: A High-Performance,
Portable Implementation for MPI Message-Passing Interface”, Parallel Computing,
22, 1996, pp. 789-828.

6. W. Gropp and E. Lusk, “MPICH Working Note: The Second-Generation ADI for
the MPICH Implementation of MPI”, http://www-unix.mcs.anl.gov/mpi/mpich/,
1996.

7. M. Parashar and J. C. Browne, “On Partitioning Dynamic Adaptive Grid Hierar-
chies”, Proceedings of the 29th Annual Hawaii International Conference on System
Sciences, Maui, Hawaii, IEEE Computer Society Press, pp. 604-613, January 1996.

8. V. Herrarte and E. Lusk, “Studying Parallel Program Behavior with upshot”, Tech-
nical Report ANL-91/15, Argonne National Laboratory, 1991.

9. J. Cummings, M. Aivazis, R. Samtaney, R. Radovitzky, S. Mauch, and D. Meiron,
“A virtual test facility for the simulation of dynamic response in materials” Journal
of Supercomputing, 23:39-50, 2002.

	1 Introduction
	2 Non-blocking MPI: Behavior and Performance
	2.1 MPICH on a Linux Beowulf Cluster
	2.2 IBM MPI on the SP2

	3 Evaluation of Communication Performance in SAMR
	4 Summary and Conclusions
	References

