
UCX: An Open Source Framework for HPC
Network APIs and Beyond

Pavel Shamis, Manjunath Gorentla Venkata, M. Graham Lopez, Matthew B. Baker, Oscar Hernandez

Oak Ridge National Laboratory

Yossi Itigin, Mike Dubman, Gilad Shainer, Richard L. Graham, Liran Liss, Yiftah Shahar

Mellanox Technologies

Sreeram Potluri, Davide Rossetti, Donald Becker, Duncan Poole, Christopher Lamb

NVIDIA Corporation

Sameer Kumar, Craig Stunkel

IBM

George Bosilca, Aurelien Bouteiller

University of Tennessee, Knoxville

Abstract—
This paper presents Unified Communication X (UCX), a set

of network APIs and their implementations for high throughput
computing. UCX comes from the combined effort of national
laboratories, industry, and academia to design and implement
a high-performing and highly-scalable network stack for next
generation applications and systems. UCX design provides the
ability to tailor its APIs and network functionality to suit a
wide variety of application domains and hardware. We envision
these APIs to satisfy the networking needs of many programming
models such as Message Passing Interface (MPI), OpenSHMEM,
Partitioned Global Address Space (PGAS) languages, task-based
paradigms and I/O bound applications. To evaluate the design
we implement the APIs and protocols, and measure the perfor-
mance of overhead-critical network primitives fundamental for
implementing many parallel programming models and system
libraries. Our results show that the latency, bandwidth, and
message rate achieved by the portable UCX prototype is very
close to that of the underlying driver. With UCX, we achieved
a message exchange latency of 0.89 us, a bandwidth of 6138.5
MB/s, and a message rate of 14 million messages per second.
As far as we know, this is the highest bandwidth and message
rate achieved by any network stack (publicly known) on this
hardware.

I. INTRODUCTION

Given the importance of parallel programming models

for developing successful scientific applications on high-

This work was supported by the United States Department of Defense
and used resources of the Extreme Scale Systems Center located at the
Oak Ridge National Laboratory (ORNL). This manuscript has been authored
by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the
U.S. Department of Energy. The United States Government retains and
the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doepublicaccessplan). This research used
resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

performance computing (HPC), system vendors typically pro-

vide customized network hardware along with low-level in-

terfaces optimized to meet the functionality and performance

requirements of these programming models. Some examples

include Cray’s Gemini network hardware with its proprietary

uGNI and DMAPP interfaces; the IBM Torus network exposed

through their Parallel Active Message Interface (PAMI); and

InfiniBand hardware from multiple vendors which uses the

Open Fabrics Alliance (OFA) Verbs and the emerging Libfab-

rics low-level interfaces. Because of the variety of network

technology drivers ecosystem, it is a challenging task to de-

sign and implement portable high performance programming

models that can be map efficiently to the current and next

generation hardware. Furthermore, augmenting this with a

portability capability extending the life-expectancy of these

programming models and their corresponding communication

libraries to span over multiple generations of hardware only

deepen this challenge. This lead to a situation where a sig-

nificant amount of duplicated efforts are spend, at all levels

of the software stack, to design, tailor and optimize higher-

level communication libraries to multiple low-level interface.

This situation can be clearly seen in many open software

efforts supporting multiple hardware, such as with Open MPI,

implemented using proprietary interfaces including, Cray’s

uGNI, Mellanox’s MXM, and Qlogic’s PSM.

There have been multiple efforts to provide a common,

high-performance networking interface, but typically they are

either optimized for a single programming model or limited

to a particular network hardware. These efforts includes GAS-

Net [1], ARMCI [2], MXM, PSM, CCI [3], DMAPP [4], and

Portals [5]. PSM and MXM are proprietary communication in-

terfaces provided by InfiniBand vendors Qlogic and Mellanox

respectively, while the Portals network architecture is geared

towards MPI but was recently extended to support PGAS

based models. GASNet and ARMCI are tailored towards

PGAS programming models including UPC and OpenSH-

MEM [6], and CCI was developed to provide a uniform

2015 IEEE 23rd Annual Symposium on High-Performance Interconnects

978-1-4673-9160-3/15 $31.00 © 2015 IEEE

DOI 10.1109/HOTI.2015.13

40

2015 IEEE 23rd Annual Symposium on High-Performance Interconnects

978-1-4673-9160-3/15 $31.00 © 2015 IEEE

DOI 10.1109/HOTI.2015.13

40

2015 IEEE 23rd Annual Symposium on High-Performance Interconnects

978-1-4673-9160-3/15 $31.00 © 2015 IEEE

DOI 10.1109/HOTI.2015.13

40

2015 IEEE 23rd Annual Symposium on High-Performance Interconnects

978-1-4673-9160-3/15 $31.00 © 2015 IEEE

DOI 10.1109/HOTI.2015.13

40

2015 IEEE 23rd Annual Symposium on High-Performance Interconnects

978-1-4673-9160-3/15 $31.00 © 2015 IEEE

DOI 10.1109/HOTI.2015.13

40

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2021 at 14:44:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: UCX Architecture

UC-T (Hardware Transports) - Low Level API
 RMA, Atomic, Tag-matching, Send/Recv, Active Message

Transport for InfiniBand VERBs
driver

RC UD XRC DCT

Transport for intra-node host memory communication

SYSV POSIX KNEM CMA XPMEM

Transport for
Accelerator Memory

communucation

GPU

Transport for
Gemini/Aries

drivers

GNI

UC-S
(Services)

Common utilities

UC-P (Protocols) - High Level API
Transport selection, cross-transrport multi-rail, fragmentation, operations not supported by hardware

Message Passing API Domain:
tag matching, randevouze

PGAS API Domain:
RMAs, Atomics

Task Based API Domain:
Active Messages

I/O API Domain:
Stream

Utilities
Data

stractures

Hardware

MPICH, Open-MPI, etc. OpenSHMEM, UPC, CAF, X10,
Chapel, etc. Parsec, OCR, Legions, etc. Burst buffer, ADIOS, etc.

Applications

U
C

X

Memory
Management

OFA Verbs Driver Cray Driver OS Kernel Cuda

interface for scientific applications’ I/O needs. DMAPP was

specifically designed with distributed global memory as a

target programming model and supports both compiler-based

(CAF and UPC) or library-based (e.g. Cray SHMEM) one-

sided programming models.

To address the functionality and performance portability

challenges, in this paper we present UCX, a framework for

network APIs and stacks. Our approach is to unify the APIs,

protocols, and implementation into a single framework, while

providing the ability to tailor the functionality for particular

programming model without sacrificing efficiency. For this

we are leveraging on expertise of University of Tennessee
Knoxville (UTK) on Open MPI and PaRSEC, ORNL and

the University of Houston (UH) on OpenSHMEM and PGAS

languages such as Co-Array Fortran, NVIDIA’s on highly

multi-threading models on GPUs (CUDA, OpenACC), and

IBM expertise on MPI, OpenSHMEM and X10 programming

models and runtimes.

Besides addressing the portability challenges, UCX focuses

on providing APIs and network stacks for next generation

applications and emerging architectures such as systems with

massively threaded nodes, heterogeneous hierarchal memories,

computing accelerators (GPUs), and applications using hybrid

programming models. For example, we consider the typical

use case of an application employing both MPI and OpenACC
or OpenMP programming models, executing on Titan [7]

—a Cray XK7 system with AMD CPUs, NVIDIA GPUs

and Gemini network— moving to Summit [8] —an IBM

system with POWER CPUs, NVIDIA GPUs, and InfiniBand

network. With the unified low level UCX interface, multiple

programming models, managed in their own separate runtime,

can communicate between multiple devices and with a better

orchestration of communication. The benefit is then twofold:

the high level programming runtimes, relying on an unified

communication infrastructure, better interoperate with one

another and the application, if it itself uses UCX, and the

portability of the entire software stack is greatly improved:

when new hardware is delivered, implementing the small

UCX interface is sufficient to implement support for multiple

programming paradigms and applications.

Another goal of UCX is to develop production grade

software, while also providing a platform for researchers to

innovate and continually add novel elements to the implemen-

tation. To achieve these competing goals, UCX is co-designed

by researchers and engineers from national laboratories, indus-

try and academia. This collaboration includes ORNL, UTK,

UH, Mellanox, NVIDIA, and IBM. The UCX design and

implementation incorporates ideas from, and can be seen as

a continuation and unification of Mellanox’s MXM, IBM’s

PAMI, and the UCCS [9]. In the remainder of this paper, we

go into further details about the design of UCX and present

some preliminary results.

II. DESIGN

UCX is a network API framework for modern interconnects.

The goal of the API is to establish a set of interfaces

for implementing multiple programming model libraries and

languages that are portable, scalable, and efficient.

The framework is designed with careful consideration for

emerging exascale technologies such as massively parallel

computing nodes, accelerators, and hierarchical memories.

The UCX architecture exposes software constructs for many-

thread driven high-performance communications, communica-

tions within heterogeneous memory hierarchies, and hybrid

programming models including I/O and data centric libraries.

Rather than building a single interface as a “one-size-fits-all”

solution, we design a framework that provides the necessary

components for building various communication protocols

using different levels of abstraction. Such a design delivers

a high degree of flexibility enabling the implementation of

new network protocols for emerging and future programming

models.

For example, accelerators are expected to be a key compo-

nent in exascale system design. New capabilities like GPUDi-

4141414141

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2021 at 14:44:23 UTC from IEEE Xplore. Restrictions apply.

rect RDMA [10] and GPUDirect Async [11] allow GPU-

based workflows to operate with minimal CPU intervention,

leaving the CPU for other, more generic, tasks. The hierarchies

that evolve in connecting GPUs to the node using PCIe and

NVLink, and the performance characteristics they entail, need

special consideration when designing a runtime for com-

munications to/from/within GPU memory. More specifically,

performance in highly-threaded environments is critical in

order to realize a vision of supporting communication from

inside GPU kernels [12]. UCX provides a separate transport

for accelerator memory which allows implementations to be

customized to the inter-GPU communication design need.
The UCX framework consists of the three main components:

UC-Services (UCS), UC-Transports (UCT), and UC-Protocols

(UCP). Each one of these components exposes a public API

and can be used as a stand-alone library (Figure 1).
UCS is a service layer that provides the necessary func-

tionality for implementing portable and efficient utilities. This

layer exposes the following services:

• an abstraction for accessing platform specific functional-

ity (atomic operations, thread safety, etc.)

• tools for efficient memory management (memory pools,

memory allocators, and memory allocators hooks)

• commonly used data structures (hashes, trees, lists)

UCT is a transport layer that abstracts the differences across

various hardware architectures and provides a low-level API

that enables the implementation of communication protocols.

The primary goal of the layer is to provide direct and efficient

access to hardware network resources with minimal software

overhead. For this purpose UCT relies on low-level drivers

provided by vendors such as InfiniBand Verbs, Cray’s uGNI,

libfabrics, etc. In addition, the layer provides constructs for

communication context management (thread-based and ap-

plication level), and allocation and management of device-

specific memories including those found in accelerators. In

terms of communication APIs, UCT defines interfaces for

immediate (short), buffered copy-and-send (bcopy), and zero-

copy (zcopy) communication operations. The short operations

are optimized for small messages that can be posted and

completed in place. The bcopy operations are optimized for

medium size messages that are typically sent through a so-

called bouncing-buffer. Finally, the zcopy operations expose

zero-copy memory-to-memory communication semantics.
UCP implements higher-level protocols that are typically

used by message passing (MPI) and PGAS programming

models by using lower-level capabilities exposed through

the UCT layer. UCP is responsible for the following func-

tionality: initialization of the library, selection of transports

for communication, message fragmentation, and multi-rail

communication. Currently, the API has the following classes

of interfaces: Initialization, Remote Memory Access (RMA)

communication, Atomic Memory Operations (AMO), Active

Message, Tag-Matching, and Collectives.
Initialization: This subset of interfaces defines the com-

munication context setup, queries the network capabilities,

and initializes the local communication endpoints. The context

represented by the UCX context is an abstraction of the net-

work transport resources. The communication endpoint setup

interfaces initialize the UCP endpoint, which is an abstraction

of all the necessary resources associated with a particular

connection. The communication endpoints are used as input

to all communication operations to describe the source and

destination of the communication.

RMA: This subset of interfaces defines one-sided com-

munication operations such as PUT and GET, required for

implementing low overhead, direct memory access commu-

nications constructs needed by both distributed and shared

memory programming models. UCP includes a separate set

of interfaces for communicating non-contiguous data. This

functionality was included to support various programming

models’ communication requirements and leverage the scat-

ter/gather capabilities of modern network hardware.

AMO: This subset of interfaces provides support for atom-

ically performing operations on the remote memory, an im-

portant class of operations for PGAS programming models,

particularly OpenSHMEM.

Tag Matching: This interface supports tag-matching for

send-receive semantics which is a key communication seman-

tic defined by the MPI specification.

Active Message: A subset of functionality where the in-

coming packet invokes a sender-specified callback in order to

be processed by the receiving process. As an example, the

two-sided MPI interface can easily be implemented on top

of such a concept [13]. However, these interfaces are more

general and suited for other programming paradigms where the

receiver process does not prepost receives, but expects to react

to incoming packets directly. Like RMA and tag-matching

interfaces, the active message interface provides separate APIs

for different messages types and non-contiguous data.

Collectives: This subset of interfaces defines group com-

munication and synchronization operations. The collective

operations include Barrier, All-to-one, All-to-all, and reduction

operations. When possible, we will take advantage of hardware

acceleration for collectives, e.g. InfiniBand Switch collective

acceleration.

III. RESULTS

This evaluation demonstrates preliminary functionality of

the UCT layer within the UCX framework. In this context,

we use the InfiniBand transport layer, although UCT currently

fully supports InfiniBand, uGNI, and shared memory inter-

faces, with comparable performance overheads. At this point,

these results are considered preliminary and do not yet fully

represent our expected performance overheads.

The evaluation system is equipped with two HP ProLiant

DL380p Gen8 servers, each with two Intel Xeon E5-2697

2.7GHz CPUs for a total of 24 CPU cores. The servers

are connected to a Mellanox SX6036 switch using a single-

port Mellanox Connect-IB FDR host channel adapter (HCA)

running firmware version 10.10.5056 and Mellanox OFED

2.4-1.0.4. In addition, we used a prototype implementation of

4242424242

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2021 at 14:44:23 UTC from IEEE Xplore. Restrictions apply.

����

����

����

����

����

����

��	�

��
�

����

����

����

����

�
 �
 	
 �
 ��
 ��
 �	

�
��
��
��
	

�
�

�������
����
�������

�������	�
���
���
�������	�
���
���
���������
���
���

�������	�
��
���
�������	�
��
���
���������
��
���

(a) Latency of UCT short/bcopy-put and
bcopy-get operations

��

��

��

��

��

��

��

	�

�� ��� �
 ��
 ��

�
��
�
�
��
��
�	

�
�

�

�

��
����
�����

�

��������	
���
���
��������	
��
���
��������	
���
���
��������	
��
���

(b) Bandwidth of UCT put and get zcopy
operations

��

��

��

��

��

�	�

���

�
�

���

���

���

�

 �
 �
 ��
 �

 ��

�
��
��
�
��
�
�	
��

�
��
��
�

�
����

���

����
��

���������
����
��
���������
���
��
���������
����
��
���������
���
��

(c) Message Rate of the UCT short and bcopy
operation

Fig. 2: UCX operations using VERBS RC (VERBS) and Accelerated VERBS RC (AVERBS) interfaces

the Accelerated Verbs driver developed in the context Open

Fabrics Alliance (OFA) Verbs working group.

To measure the message rate, the bandwidth, and the latency

of various operations, we implemented a set of UCT micro-

benchmarks. The latency of PUT operations is measured using

the ping-pong communication pattern where the initiator of

the communication sends a short or bcopy PUT request from

one node to another. Then, the target of the PUT operation

replies with a response message. The latency is then the

average of half of the round-trip time. The latency of the

GET operation is measured using a one-sided benchmark

where the initiator reads memory from the target process and

reports the average of a full round-trip time. From Fig. 2a

we can see that the UCT short operation achieves 0.89μs
latency for a one byte message using Accelerated Verbs and

0.91μs latency with regular Verbs driver. The UCT bcopy
latencies are higher due to an overhead imposed by a memcpy
operation, used for the message transfer to the bouncing buffer.

For a one byte GET operation, we observe 1.79 and 1.83μs
latency for the accelerated and regular Verbs, respectively. A

similar benchmark is used to measure bandwidth, with the

difference that a UCT zcopy operation is used; the operations

are optimized for bandwidth-bounded operations. Fig. 2b

highlights that the zcopy operation achieves 6138.5 MB/s

bandwidth, which is the maximum practical peak supported

at the hardware level for a single FDR (4x) InfiniBand port.

Moreover, similar bandwidths can be observed for both one-

sided communication, PUT and GET. The message rate is

measured by initiating multiple short or bcopy PUT requests

from one node to another. From Fig. 2c we can see that UCT

short and bcopy operations with the Accelerated Verbs driver

outperforms the same operations on top of the regular Verbs

driver by more than a factor of two and reaches the rate of 14

million operations per second for a single CPU core.

IV. CONCLUSION AND FUTURE WORK

UCX is a framework for network APIs, protocols, and

implementations. In this paper, we have described the design

and architecture of the framework, the interfaces, and proto-

cols for implementing parallel programming models. Further,

we evaluated our design decisions by providing a prototype

implementation, and analyzing the performance characteristics

of important basic primitives required for implementing MPI

and OpenSHMEM. Our future work will initially focus on im-

plementing MPI and OpenSHMEM using proposed interfaces

and protocols, and later extend UCX to accommodate hybrid

programming models and support I/O applications.

V. ACKNOWLEDGMENTS

We want to thank Stephen Poole, a co-founder of this

project, who helped us with countless hours of technical

discussions that made this project a reality. We also want to

thank the UH, including Tony Curtis, Pengfei Hao and Aaron

Welch for their feedback.

REFERENCES

[1] D. Bonachea, “GASNet Specification, v1.1,” Berkeley, CA, USA, Tech.
Rep., 2002.

[2] J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote Memory
Copy Libray for Ditributed Array Libraries and Compiler Run-Time
Systems,” in Proceedings of the 11 IPPS/SPDP’99 Workshops, UK,
1999.

[3] S. Atchley, D. Dillow et al., “The Common Communication Interface
(CCI),” HOTI, 2011.

[4] M. ten Bruggencate and D. Roweth, “DMAPP-An API for One-sided
Program Models on Baker Systems,” in CUG Conference, 2010.

[5] R. Brightwell, T. Hudson et al., “Portals 3.3 on the Sandia/Cray Red
Storm System.”

[6] B. Chapman, T. Curtis et al., “Introducing OpenSHMEM: SHMEM for
the PGAS community,” in Proceedings of the Fourth Conference on
Partitioned Global Address Space Programming Model, ser. PGAS ’10,
New York, NY, USA, 2010.

[7] DOE, “Titan: A Cray XK System at the ORNL,”
https://www.olcf.ornl.gov/titan/, 2014.

[8] ——, “Summit: IBM’s OpenPOWER-based Data Centric System at the
ORNL,” https://www.olcf.ornl.gov/summit/, 2015.

[9] P. Shamis, M. G. Venkata et al., “Universal Common Communication
Substrate (UCCS) Specification. Version 0.1,” Oak Ridge National
Laboratory (ORNL), Tech Report ORNL/TM-2012/339, 2012.

[10] N. Corp. NVIDIA GPUDirect RDMA. https://developer.nvidia.com.
[11] D. Rossetti, “GPUDIRECT: Integrating the GPU with a Network Inter-

face,” in GPU Technology Conference, 2015.
[12] Sreeram Potluri, “TOC-centric Communication: A Case Study with

NVSHMEM,” in OpenSHMEM User Group Meeting, 2014.
[13] E. Gabriel, G. E. Fagg et al., “Open MPI: Goals, Concept, and Design of

a Next Generation MPI Implementation,” in Proceedings, 11th European
PVM/MPI Users’ Group Meeting, Budapest, Hungary, September 2004,
pp. 97–104.

4343434343

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2021 at 14:44:23 UTC from IEEE Xplore. Restrictions apply.

