
Lecture 6: Measurement Tools
Abhinav Bhatele, Department of Computer Science

High Performance Computing Systems (CMSC714)



Abhinav Bhatele (CMSC714) LIVE RECORDING

Summary of last lecture

• Shared-memory programming and OpenMP

• Fork-join parallelism

• OpenMP vs MPI: ease of programming, performance

2



Abhinav Bhatele (CMSC714) LIVE RECORDING

Performance analysis

• Parallel performance of a program might not be what the developer expects

• How do we find performance bottlenecks?

• Two parts to performance analysis: measurement and analysis/visualization

• Simplest tool: timers in the code and printf

3



Abhinav Bhatele (CMSC714) LIVE RECORDING

Using timers

4

double start, end; 
double phase1, phase2, phase3;

start = MPI_Wtime();
 ... phase1 code ...
end = MPI_Wtime();
phase1 = end - start;

start = MPI_Wtime();
 ... phase2 ...
end = MPI_Wtime();
phase2 = end - start;

start = MPI_Wtime();
 ... phase3 ...
end = MPI_Wtime();
phase3 = end - start;



Abhinav Bhatele (CMSC714) LIVE RECORDING

Using timers

4

double start, end; 
double phase1, phase2, phase3;

start = MPI_Wtime();
 ... phase1 code ...
end = MPI_Wtime();
phase1 = end - start;

start = MPI_Wtime();
 ... phase2 ...
end = MPI_Wtime();
phase2 = end - start;

start = MPI_Wtime();
 ... phase3 ...
end = MPI_Wtime();
phase3 = end - start;

Phase 1 took 2.45 s

Phase 2 took 11.79 s

Phase 3 took 4.37 s



Abhinav Bhatele (CMSC714) LIVE RECORDING

Performance Tools
• Tracing tools

• Capture entire execution trace

• Vampir, Score-P

• Profiling tools

• Provide aggregated information

• Typically use statistical sampling

• Gprof, pyinstrument, cprofile

• Many tools can do both

• TAU, HPCToolkit, Projections

5



Abhinav Bhatele (CMSC714) LIVE RECORDING

Metrics recorded

• Counts of function invocations

• Time spent in code

• Number of bytes sent

• Hardware counters

• To fix performance problems — we need to connect metrics to source code

6



Abhinav Bhatele (CMSC714) LIVE RECORDING

Tracing tools

• Record all the events in the program with timestamps

• Events: function calls, MPI events, etc.

7

Vampir visualization: https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server

https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server
https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server


Abhinav Bhatele (CMSC714) LIVE RECORDING

Tracing tools

• Record all the events in the program with timestamps

• Events: function calls, MPI events, etc.

7

Vampir visualization: https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server

https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server
https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server


Abhinav Bhatele (CMSC714) LIVE RECORDING

Tracing tools

• Record all the events in the program with timestamps

• Events: function calls, MPI events, etc.

7

Vampir visualization: https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server

https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server
https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server


Abhinav Bhatele (CMSC714) LIVE RECORDING

Profiling tools
• Ignore the specific times at which events 

occurred

• Provide aggregate information about 
different parts of the code

• Examples:

• Gprof, perf

• mpiP

• HPCToolkit, caliper

• Python tools: cprofile, pyinstrument, scalene

8

Gprof data in hpctView



Abhinav Bhatele (CMSC714) LIVE RECORDING

Calling contexts, trees, and graphs

• Calling context or call path: Sequence of function invocations 
leading to the current sample

• Calling context tree (CCT): dynamic prefix tree of all call paths 
in an execution

• Call graph: merge nodes in a CCT with the same name into a 
single node but keep caller-callee relationships as arcs

9

SC ’19, November 17–22, 2019, Denver, CO, USA Bhatele et al.

the names of �elds as much as possible over di�erent sources to
enable comparison of data across measurement tools, but this is
not a requirement.

3.1.2 Nodes. Frames are associated with nodes in the Hatchet
graph, and node objects de�ne connectivity and structure of the
Hatchet model. Each node knows its children and its ancestors in
the graph, and each node has a unique key. The key is not meant to
be accessed by Hatchet users. Rather, like Frames, Hatchet nodes
expose their own comparison operations (==, >, <, etc.), which
opaquely operate on this key. This means that we can insert Node
objects directly into a pandas DataFrame column and make it an
index. By default, we use the Python id() function for the node
key. This is equivalent, roughly, to C’s & operator, in that it returns
an integer representing the address of the Python object in memory.
We require only that the node key be unique for each node. We
can optionally use keys that provide certain useful orderings (like
pre-order, post-order, etc.), if we want to pay the cost of a graph
traversal (or sort) to generate more structured keys. We default to
only guaranteeing uniqueness and not order in our keys.

3.2 GraphFrame
The central data structure in the Hatchet library is a GraphFrame,
which combines the structured indexGraphwith a pandasDataFrame.
Figure 3 shows the two objects in a GraphFrame – a graph object
(the index), and a DataFrame object storing the metrics associated
with each node.

main

physics solvers

mpi

psm2

hypre mpi

psm2

Figure 3: InHatchet, theGraphFrame consists of a graph and
a DataFrame object.

Because of the way we have architected the structured index
Graph, we can insert Node objects directly into the pandasDataFrame.
The nodes are sorted using their basic comparison operators, which
operate on their key attribute. Thus, the �rst column in theDataFrame
(the node) is the index column. As a convenience, we may also add
columns (like name) based on attributes from each node’s Frame.
For example, in the �gure, we have added the name and nid columns
from the Frame subclass for HPCToolkit. This allows us to use reg-
ular pandas operations (selection, �ltering) on these values directly.
As we will see later, the node column itself also allows various
graph-semantic functions to be used, as well. Finally, in addition to
the identifying information for each node, we also add columns for
each associated performance metric (inclusive and exclusive time
in the �gure).

Graphs vs. Trees: Hatchet stores the structure (typically a pre�x
tree generated from call paths) in the input data as a directed graph
(instead of a tree) for two reasons. First, subsequent operations on a
tree can create edges or merge nodes, turning the tree into a graph.
Additionally, output from tools such as callgrind is already in the
form of a DAG. Hatchet’s directed graph could be connected or
have multiple disconnected components. Each entity in the graph,
such as a callsite, procedure frame, or function, is stored as a node
and the caller-callee relationships are stored as directed edges. Each
node in the graph can have one or multiple parents and children.

Bene�ts of DataFrames: We use a pandas DataFrame to store
all the numerical and categorical data associated with each node.
Pro�le data can be inherently high-dimensional when metrics are
gathered per-MPI process and/or per-thread. In such cases, each
node in the call tree or graph has metrics per-MPI process and/or
thread and this data needs to be stored and indexed hierarchically.
To index the rows of the data frame in such cases, a MultiIndex
consisting of the structured index for the node and MPI rank or
thread ID is used. In the most general case, a row in the data frame
is indexed by a process and/or thread ID (and any other needed
identi�ers in even higher dimensional cases).

3.3 Immutable Graph Semantics
Astute readers may have noted that we are adding direct references
to graph nodes into the DataFrame. The risk this poses in our API
is that client code can extract a subset of a DataFrame and hand
it o� to other client code, which then modi�es the graph index
nodes directly and corrupts all DataFrames that use the same nodes.
One key aspect of Hatchet is that its graph nodes use immutable
semantics. The GraphFrame API is responsible for ensuring that
operations between any two GraphFrames use immutable graph
node references, and that any operations that would modify a graph
node in place instead create an entirely new graph index for the new
GraphFrame to work with. So, we implement immutable semantics
using copy-on-write to simplify the management of the graph and
DataFrame together.

One further consequence of our index model is that to use two
DataFrames together, we require that their graphs be uni�ed. That
is, that they share the same index. This should be obvious when con-
sidering that the nodes are compared by their key values, and two
nodes can only be considered identical within an index if they have
identical keys, which means that theymust be in the same graph for
comparison to make sense. We accomplish this by traversing the
graphs and computing their union according to their connectivity
and Frame values (described further in the API section). Incidentally,
this type of restriction is not unusual in pandas, where comparing
two data frames frequently requires reconciling their indexes, as
well. We abstract the details of these graph operations in Hatchet
through the GraphFrame API, which determines when and how
GraphFrames should be uni�ed.

3.4 Reading a CCT Dataset
With all of these components, the structured index Graph models
the edge relationships between nodes in the structured data, and
a DataFrame stores the numerical (performance metrics such as
time, performance counter data, etc.) and categorical data (e.g., load



Abhinav Bhatele (CMSC714) LIVE RECORDING

Calling context trees, call graphs, …

10

foo

bar qux waldo

baz grault quux

corge

bar grault garply

baz grault

fred garply

plugh xyzzy

thud

baz garply

Calling context tree (CCT)



Abhinav Bhatele (CMSC714) LIVE RECORDING

Calling context trees, call graphs, …

10

foo

bar qux waldo

baz grault quux

corge

bar grault garply

baz grault

fred garply

plugh xyzzy

thud

baz garply

Calling context tree (CCT)



Abhinav Bhatele (CMSC714) LIVE RECORDING

Calling context trees, call graphs, …

10

foo

bar qux waldo

baz grault quux

corge

bar grault garply

baz grault

fred garply

plugh xyzzy

thud

baz garply

File
Line number
Function name
Callpath
Load module
Process ID
Thread ID

Contextual information

Calling context tree (CCT)



Abhinav Bhatele (CMSC714) LIVE RECORDING

Calling context trees, call graphs, …

10

foo

bar qux waldo

baz grault quux

corge

bar grault garply

baz grault

fred garply

plugh xyzzy

thud

baz garply

File
Line number
Function name
Callpath
Load module
Process ID
Thread ID

Contextual information

Time
Flops
Cache misses

Performance Metrics

Calling context tree (CCT)



Abhinav Bhatele (CMSC714) LIVE RECORDING

Calling context trees, call graphs, …

10

foo

bar qux waldo

baz grault quux

corge

bar grault garply

baz grault

fred garply

plugh xyzzy

thud

baz garply

foo

bar

qux waldo

bazgrault

quux

corge

garply

fred

plugh xyzzy

thud

File
Line number
Function name
Callpath
Load module
Process ID
Thread ID

Contextual information

Time
Flops
Cache misses

Performance Metrics

Calling context tree (CCT) Call graph



Abhinav Bhatele 

5218 Brendan Iribe Center (IRB) / College Park, MD 20742 

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?


