High Performance Computing Systems (CMSC714)

Lecture 19: Topology Aware Mapping

Abhinav Bhatele, Department of Computer Science

Summary of last lecture

- Most HPC systems use a job/batch scheduler
- Scheduler decides what jobs to run next and what resources to allocate
 - Backfilling to use idle nodes and improve utilization
- Different quality of service metrics to evaluate schedulers

Abhinav Bhatele (CMSC714)

- Sharing refers to network flows of different programs using the same hardware resources: links, switches
- When multiple programs communicate on the network, they all suffer from congestion on shared links

Abhinav Bhatele (CMSC714)

- Sharing refers to network flows of different programs using the same hardware resources: links, switches
- When multiple programs communicate on the network, they all suffer from congestion on shared links

Abhinav Bhatele (CMSC714)

- Sharing refers to network flows of different programs using the same hardware resources: links, switches
- When multiple programs communicate on the network, they all suffer from congestion on shared links

Abhinav Bhatele (CMSC714)

- Sharing refers to network flows of different programs using the same hardware resources: links, switches
- When multiple programs communicate on the network, they all suffer from congestion on shared links

Abhinav Bhatele (CMSC714)

- resources: links, switches
- congestion on shared links

- resources: links, switches
- congestion on shared links

Communication is a bottleneck at scale

- GPU-based platforms have a large number of flop/s per node
 - Network bandwidths do not increase proportionally
- More energy is spent on sending data across the network

Floating point operati

Time to access DRA

Get data from another

P. Kogge et al., Exascale computing study: Technology challenges in achieving exascale systems, Technical Report, 2008.

	Time (ns)	Energy spent (pJ)
ion	< 0.25	30-45
M	50	128
node	> 1000	128-576

Abhinav Bhatele (CMSC714)

Different approaches to mitigate congestion

- At the system level
 - Network topology aware job scheduler attempts to assign compact allocation to jobs
 - Congestion-mitigating routing algorithms
- At the individual job level
 - Users can try to optimize the mapping of MPI processes to allocated nodes

Abhinav Bhatele (CMSC714)

- Also referred to as task placement or node mapping
- Given an allocation, decide which MPI processes are placed on which physical nodes/ cores
 - In case of task-based models, map finer-grained tasks to cores
- Goal:
 - Minimize communication volume on the network
 - Optimize "unavoidable" communication on the network

Abhinav Bhatele (CMSC714)

- Also referred to as task placement or node mapping
- Given an allocation, decide which MPI processes are placed on which physical nodes/ cores
 - In case of task-based models, map finer-grained tasks to cores
- Goal:
 - Minimize communication volume on the network
 - Optimize "unavoidable" communication on the network

- Also referred to as task placement or node mapping
- Given an allocation, decide which MPI processes are placed on which physical nodes/ cores
 - In case of task-based models, map finer-grained tasks to cores
- Goal:
 - Minimize communication volume on the network
 - Optimize "unavoidable" communication on the network

- Also referred to as task placement or node mapping
- cores
 - In case of task-based models, map finer-grained tasks to cores
- Goal:
 - Minimize communication volume on the network
 - Optimize "unavoidable" communication on the network

• Given an allocation, decide which MPI processes are placed on which physical nodes/

Graph embedding problem

- Inputs: Application communication graph, network topology graph (of one's job allocation)
- Output: Process-to-node/core mapping
- over time

Most mapping algorithms do not consider that communication patterns might evolve

Abhinav Bhatele (CMSC714)

Metrics to evaluate mapping

• Hop-count

Abhinav Bhatele (CMSC714)

Different techniques

Heuristics-based

- Recursive bi-partitioning
- Random pairwise swaps
- Physical optimization problems
 - Simulated annealing
 - Genetic algorithms

Abhinav Bhatele (CMSC714)

Rubik: Python tool for mapping

- Define various operations on prisms
 - Partitioning or blocking
 - Permuting operations

Rubik: Python tool for mapping

- Define various operations on prisms
 - Partitioning or blocking
 - Permuting operations

network with mapped application ranks

https://github.com/LLNL/rubik

Abhinav Bhatele (CMSC714)

Global link bottleneck in dragonfly systems

• Few global links when building a smaller than full-sized system

Abhinav Bhatele (CMSC714)

Global link bottleneck in dragonfly systems

Few global links when building a smaller than full-sized system

Abhinav Bhatele (CMSC714)

UNIVERSITY OF MARYLAND

Questions?

Abhinav Bhatele 5218 Brendan Iribe Center (IRB) / College Park, MD 20742 phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu