High Performance Computing Systems (CMSC714)

Lecture 20: Parallel I/O

Abhinav Bhatele, Department of Computer Science

Summary of last lecture

- allocation
- Can reduce inter-node communication volume and optimize it
- Heuristic-based approaches
- Metrics: hop-count, hop-bytes

• Task mapping can be used to optimize the placement of MPI processes within a job

When do parallel programs perform I/O?

- Reading input datasets
- Writing numerical output
- Writing checkpoints

Abhinav Bhatele (CMSC714)

Non-parallel I/O

- Designated process does I/O
- All processes send data to/receive data from that one process
- Not scalable

Abhinav Bhatele (CMSC714)

Parallel filesystem

Compute Cluster

MDS = Metadata Server MDT = Metadata Target OSS = Object Storage Server OST = Object Storage Target

Links between cluster and filesystem

		$\overline{}$	•	• • [
LeafS	Switch		0 °	• • [
Each SU 2 LNE	(1 management n F router nodes, 2	ode, I login no gateway nodes	ode, s)	
0	Compute node LNET router n			
0	Object storage			

Abhinav Bhatele (CMSC714)

Different parallel filesystems

- Lustre: open-source (lustre.org)
- GPFS: General Parallel File System from IBM, now called Spectrum Scale
- PVFS: Parallel Virtual File System

Abhinav Bhatele (CMSC714)

Tape drive (archive) and burst buffers

- Store copy of data on magnetic tapes for archival
- Burst buffers: fast, intermediate storage between compute nodes and the parallel filesystem
- Two designs:
 - Node-local burst buffer
 - Remote (shared) burst buffer

I/O libraries

- High-level libraries: HDF5, NetCDF
- Middleware: MPI-IO
- Low-level: POSIX IO

Abhinav Bhatele (CMSC714)

Different I/O patterns

- One process reading/writing all the data
- Multiple processes reading/writing data from/to shared file
- Multiple processes reading/writing data from/to different files
- Different performance depending upon number of readers/writers, file sizes, filesystem etc.

Abhinav Bhatele (CMSC714)

UNIVERSITY OF MARYLAND

Questions?

Abhinav Bhatele 5218 Brendan Iribe Center (IRB) / College Park, MD 20742 phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu