Lecture 22: The \(n \)-body Problem

Abhinav Bhatele, Department of Computer Science
Summary of last lecture

- Molecular dynamics: calculate trajectories of atoms
- Parallelization strategies
 - Atom decomposition
 - Force decomposition
 - Spatial decomposition
 - Hybrid spatial-force decomposition
- Simulation codes: NAMD, Gromacs, Amber, Blue Matter, Desmond
The n-body problem

- Simulate the motion of celestial objects interacting with one another due to gravitational forces
- Naive algorithm: $O(n^2)$
 - Every body calculates forces pair-wise with every other body (particle)

Data distribution in n-body problems

- Naive approach: Assign n/k particles to each process
- Other approaches?
Data distribution in n-body problems

- Naive approach: Assign n/k particles to each process
- Other approaches?

Space-filling curves

http://datagenetics.com/blog/march22013/
https://en.wikipedia.org/wiki/Z-order_curve
Data distribution in \(n \)-body problems

- Naive approach: Assign \(n/k \) particles to each process
- Other approaches?

Space-filling curves

http://datagenetics.com/blog/march22013/
https://en.wikipedia.org/wiki/Z-order_curve
Data distribution in \(n \)-body problems

- Naive approach: Assign \(n/k \) particles to each process
- Other approaches?

Space-filling curves

http://datagenetics.com/blog/march2013/
https://en.wikipedia.org/wiki/Z-order_curve

Data distribution in n-body problems

- Let us consider a two-dimensional space with bodies/particles in it
Data distribution in *n*-body problems

- Let us consider a two-dimensional space with bodies/particles in it
Data distribution in n-body problems

- Let us consider a two-dimensional space with bodies/particles in it
Different parallelization methods

- Tree codes: Barnes-Hut simulations
- Fast multiple methods (FMM): Greengard and Rokhlin
- Particle mesh methods
- Particle-particle particle-mesh (P³M) methods
Barnes-Hut simulation

- Represent the space containing the particles as an oct-tree
- Pairwise force calculations for nearby particles
- For tree nodes that are sufficiently far away, approximate the particles in the node by a single large particle at the center of mass

Fast multipole methods

- Use multipole expansion for distant particles
- Takes advantage of the fact that for nearby particles, multipole-expanded forces from distant particles are similar
- Reduces the time complexity further to $O(n)$
Particle-particle particle-mesh methods

- Explicit calculation of forces on nearby particles
- Fourier-based Ewald summation for calculating potentials on a grid
- Smoothed particle hydrodynamics
Questions?

Abhinav Bhatele
5218 Brendan Iribe Center (IRB) / College Park, MD 20742
phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu