
The Charm++ Programming Model
Abhishek Kumar



Contents
● Introduction
● Design Philosophy
● Challenges
● Technical Approach
● Capabilities
● Extensions
● Other Languages



Introduction
Charm++ is an object-oriented asynchronous message passing parallel programming 
paradigm.

Object-oriented: Program is broken down into a logical collection of objects that 
interact with each other.

Asynchronous message passing: Messages are sent in a manner that is asynchronous 
to the code execution

Parallel programming paradigm: Is not a programming language but a way of writing a 
program

https://charmplusplus.org/tutorial/CharmConcepts.html
https://www.researchgate.net/publication/327527690_Parallel_science_and_engineering_applications_The_charm_approach

https://charmplusplus.org/tutorial/CharmConcepts.html
https://www.researchgate.net/publication/327527690_Parallel_science_and_engineering_applications_The_charm_approach


Design Philosophy
● Optimal division of labor between the programmer and the system

○ Let the programmers do what they can do best
○ Automate aspects that are tedious for the programmer but relatively easy for a system

● Develop features only in an application-driven manner
○ abstractions or features were added when the application use cases suggested them



Challenges
● Automatic communication/computation overlap
● Load balancing
● Resilience



Technical Approach
● Computation is broken down by the programmer into a large number of 

objects, independent of the number of processors
● Separation of application logic and resource management
● ‘Chares’ are the units of decomposition in Charm++
● Programmer views the overall computation as many chares interacting.



Technical Approach
A chare: 

● Has data elements and private and 
public methods.

● Has public methods that can be 
remotely invoked and are called 
‘entry’ methods.

● Cannot directly access data 
elements from other chares
○ Processor virtualization 



Technical Approach
Programmers point of view: 

● Computation consists of collection of chare 
objects and entry method

● Computation begins with construction of a 
‘main chare’
○ Initialize read-only variables
○ RTS copies these on each processor
○ Constructor creates chares and collections of chares

● On each processor
○ scheduler selects one entry method invocations
○ unpacks the parameters
○ executes the entry method with the parameters



Technical Approach
● An abstraction:

○ Many chares can be organized together into a collection (chare arrays)
○ Individual chares can be accessed by an index
○ Chare arrays support reductions and broadcasts over all its elements

■ These are are both asynchronous non-blocking operations
○ RTS assigns the chares belonging to the chare array to processors



Capabilities
● Dynamic load balancing

○ Supports many load balancing strategies
○ Two-phase process

■ Programmer decomposes the work (and data) into chares
■ At runtime, the RTS assigns and reassigns chares to individual processors, to attain 

such goals as better load balancing, and/or minimization of communication volume
● Automatic checkpointing

○ Handles hardware failures without losing much computation
● Fault tolerance

○ Can run in spite of node crashes in the middle of execution
● Power management

○ Can monitor core temperatures and power draw , and automatically changing frequencies 
and voltages



Extensions
● Support ‘blocking’ calls

○ Structured Dagger methods
○ Threaded methods

● Processor-awareness
○ Some situations require processor information

■ Libraries or performance oriented optimizations
○ Chare-group: collection of chares

■ exactly one member mapped to each processor



Other Languages
● Adaptive MPI

○ Implementation of the MPI standard on top of Charm++
● MSA

○ Mini-language on top of Charm++
● Charisma
● Charj



The Charm++ Programming Model

Thank you!


