Scalability of Parallel Algorithms
for Matrix Multiplication

Presented by: Abhishek Kumar

Gupta, Anshul, and Vipin Kumar. "Scalability of parallel algorithms for matrix multiplication." 1993 International Conference on Parallel Processing-ICPP'93.
Vol. 3. IEEE, 1993.

Motivation

* Analyze the performance and scalability of a number of parallel
formulations of the matrix multiplication algorithm

* Predict the conditions under which each formulation is better than
the other

Introduction

* Matrix multiplication is used in a variety of application

* Matrix multiplication formulations:
e Cannon’s algorithm
* Berntsen’s algorithm
* DNS algorithm

* Near linear speedups for sufficiently large matrices
* |soefficiency metric to analyze the scalability

Cannon’s Algorithm

* Two n x n matrices A and B are divided into square submatrices of size

n n
X —amon rocessors.
NN sPP

* Data from block Al is sent to processor (i, (j+i)mod+/p). Similarly,
block B! sends data to processor ((i+j)mod./p, j).

* Sub-blocks of A are rolled one step left and B sub-blocks are rolled
one step up and multiplied.

* Multiplication of A and B is complete after /p steps.

Cannon’s Algorithm

2

3
Total parallel execution time: %+ 2t /p + ZtW%

Berntsen’s Algorithm

* Berntsen proposed a algorithm which exploits greater connectivity of
the hypercube.

* p = 239 processors with p<n3/2 restriction
* Matrix A is split by columns and matrix B by rows into 29 parts

* Hypercube is split into 2q sub-cubes, each performing a submatrix
multiplication between submatrices A (;q X ;q) and B (;q X ;q) using

Cannon’s algorithm

Berntsen’s Algorithm

2

3 1
Total parallel execution time: % + 2t p1/3+ gtslogp + 3tW#

* Terms associated with both t, and t, are smaller than Cannon’s
algorithm

DNS Algorithm

* |nitially, p = n3 = 239 processors

* Completed the task of O(n3) matrix multiplication in O(log n) time
using n3 processors

* A proposed variant could work with n?r processors (1 <r < n)

* Logical processor array of r3 superprocessors is used, each comprising

of (n/r)2 hypercube processors

* Multiplication of (n/r) x (n/r) blocks is performed on Zx— subarrays of

r r
processors using Cannon’s algorithm

GK Algorithm

* Another scheme to adapt the DNS algorithm to use fewer than n3
pProcessors

, 1
* p = 239 processors with g < 5 log n

. . . . n n
* Matrices are divided into sub-blocks of 20 X 32 elements

* In this variant of the DNS algorithm, all the single element operations
are replaced by sub-block operations

L 5 5
* Total parallel execution time: St P logp t5 nZ pl3 logp

Comparison of various algorithms

Algorithm Total Overhead function Asymptotic Isoefficiency Applicability range
2

Cannon’s) g O(pL5) 1<p<n?
/P + 2ty p p

Berntsen’s ngﬂikigbgpi—qugg O(p?) 1<p<ni?

DNS (t, +t,) (gp logp + 2n3) O(p log p) n2<p<n3

* Only asymptotic scalabilities

* None of the algorithms is strictly better than others for all possible problem sizes and number of
processors

* Compare pairwise the total overhead functions — GK vs Cannon’s:
e t.term for GK is always smaller than Cannon’s
* Evenif t.=0, the t,, for GK becomes smaller than Cannon’s for p > 130 million (irrespective of n)
* For reasonable values of t,, GK performs better than Cannon’s for very practical values of p and n
(5/3p logp —2 /%),
* n= 173
(2yp -5/3p~' logp)t,,

Comparison of various algorithms

250 F + T .‘6 T T T . 9250 T T .
‘ ’ GK vs Berntsen's —— GK vs Berntsen's ——
DNS vs GK — DNS vea GK —
200 GK vs Cannon's ===] 200 GK ve Cannon's =— -]
p= n3/2 O - p= nSIz O .
p=n2 L N p=n ..+..._|
150 SRV T 180 . = o-
100 { - P 100 -
50 [t 5 50 -
0 A L 0 1]
0 10 20 30 40 5 60 70 8 25 30 35
. n —> R4 . -*.!.:t,. - . i . 1n e 4
Comparison for t, = 3 and t. = 150 (hnCUBE?2) Comparison fort, =3 and t, = 10
20 F 1 @ 7 r P —
; o
200 ' -
150 f - : .
* Regions marked ‘x’ is where non of the
GK vs Berntsen's H
100 e e - algorithms apply and p>n3
GK vs Cannon’s —
50 p=ntl -0 | e Region ‘@’ (GK), ‘b’ (Brentsen’s), ‘c’ (Cannon’s),
=n? 4 - .
o h - ‘d’ (DNS algorithm)
0 1 1
40 50

Comparison fort, =3 anaE= 0.5 (SIMD machine)

Conclusion

 Scalability analysis provides insights into relative superiority under
different conditions

* Predict the condition under which each formulation outperforms the
other

* Can be used by smart preprocess/compiler based on different
parameters

* Small expression of communication overload # best algorithm

* Berntsen’s algorithm with the least communication overhead is the least
scalable with O(p?) isoefficiency

