
Scalability of Parallel Algorithms
for Matrix Multiplication

Presented by: Abhishek Kumar

Gupta, Anshul, and Vipin Kumar. "Scalability of parallel algorithms for matrix multiplication." 1993 International Conference on Parallel Processing-ICPP'93.
Vol. 3. IEEE, 1993.

Motivation

• Analyze the performance and scalability of a number of parallel
formulations of the matrix multiplication algorithm
• Predict the conditions under which each formulation is better than

the other

Introduction

• Matrix multiplication is used in a variety of application
• Matrix multiplication formulations:
• Cannon’s algorithm
• Berntsen’s algorithm
• DNS algorithm

• Near linear speedups for sufficiently large matrices
• Isoefficiency metric to analyze the scalability

Cannon’s Algorithm

• Two n x n matrices A and B are divided into square submatrices of size
!
"

x !
"

among p processors.

• Data from block Aij is sent to processor (i, (j+i)mod 𝑝). Similarly,
block Bij sends data to processor ((i+j)mod 𝑝, j).
• Sub-blocks of A are rolled one step left and B sub-blocks are rolled

one step up and multiplied.
• Multiplication of A and B is complete after 𝑝 steps.

Cannon’s Algorithm

Total parallel execution time: !!

"
+ 2ts 𝑝 + 2tw

!"

"

Berntsen’s Algorithm

• Berntsen proposed a algorithm which exploits greater connectivity of
the hypercube.
• p = 23q processors with p≤n3/2 restriction
• Matrix A is split by columns and matrix B by rows into 2q parts
• Hypercube is split into 2q sub-cubes, each performing a submatrix

multiplication between submatrices A (!
#"#

x !
#"#

) and B (!
#"#

x !
#"#

) using
Cannon’s algorithm

Berntsen’s Algorithm

Total parallel execution time: !
!

"
+ 2ts p1/3+ $

%
tslog 𝑝 + 3tw

!"

" ⁄# %

• Terms associated with both ts and tw are smaller than Cannon’s
algorithm

DNS Algorithm

• Initially, p = n3 = 23q processors
• Completed the task of O(n3) matrix multiplication in O(log n) time

using n3 processors
• A proposed variant could work with n2r processors (1 < r < n)
• Logical processor array of r3 superprocessors is used, each comprising

of (n/r)2 hypercube processors

• Multiplication of (n/r) x (n/r) blocks is performed on !
&

x !
&

subarrays of
processors using Cannon’s algorithm

GK Algorithm

• Another scheme to adapt the DNS algorithm to use fewer than n3

processors

• p = 23q processors with q < $
%

log n

• Matrices are divided into sub-blocks of !
#"#

x !
#"#

elements

• In this variant of the DNS algorithm, all the single element operations
are replaced by sub-block operations

• Total parallel execution time: '
%
𝑡𝑠 p log 𝑝 + '

%
tw n2 p1/3 log 𝑝

Comparison of various algorithms

Algorithm Total Overhead function Asymptotic Isoefficiency Applicability range

Cannon’s 2ts 𝑝 + 2tw
!!

"
O(p1.5) 1 ≤ p ≤ n2

Berntsen’s 2ts p1/3+ #
$
tslog 𝑝 + 3tw

!!

" ⁄% $ O(p2) 1 ≤ p ≤ n3/2

DNS (ts + tw) (&
$
p log 𝑝 + 2n3) O(p log p) n2 ≤ p ≤ n3

GK &
$
𝑡𝑠 p log 𝑝 + &

$
tw n2 p1/3 log 𝑝 O(p (log p)3) 1 ≤ p ≤ n3

• Only asymptotic scalabilities
• None of the algorithms is strictly better than others for all possible problem sizes and number of

processors
• Compare pairwise the total overhead functions – GK vs Cannon’s:

• ts term for GK is always smaller than Cannon’s
• Even if ts=0, the tw for GK becomes smaller than Cannon’s for p > 130 million (irrespective of n)
• For reasonable values of ts, GK performs better than Cannon’s for very practical values of p and n

• n = %/'()*+ (,- (⁄' - ."
- (,%/'(⁄/ ')*+ (.#

Comparison of various algorithms

Comparison for tw = 3 and ts = 150 (nCUBE2) Comparison for tw = 3 and ts = 10

Comparison for tw = 3 and ts = 0.5 (SIMD machine)

• Regions marked ‘x’ is where non of the
algorithms apply and p>n3

• Region ‘a’ (GK), ‘b’ (Brentsen’s), ‘c’ (Cannon’s),
‘d’ (DNS algorithm)

Conclusion

• Scalability analysis provides insights into relative superiority under
different conditions
• Predict the condition under which each formulation outperforms the

other
• Can be used by smart preprocess/compiler based on different

parameters
• Small expression of communication overload ≠ best algorithm
• Berntsen’s algorithm with the least communication overhead is the least

scalable with O(p2) isoefficiency

