Scalability of Parallel Algorithms for Matrix Multiplication

Presented by: Abhishek Kumar

Gupta, Anshul, and Vipin Kumar. "Scalability of parallel algorithms for matrix multiplication." *1993 International Conference on Parallel Processing-ICPP'93*. Vol. 3. IEEE, 1993.

Motivation

- Analyze the performance and scalability of a number of parallel formulations of the matrix multiplication algorithm
- Predict the conditions under which each formulation is better than the other

Introduction

- Matrix multiplication is used in a variety of application
- Matrix multiplication formulations:
 - Cannon's algorithm
 - Berntsen's algorithm
 - DNS algorithm
- Near linear speedups for sufficiently large matrices
- Isoefficiency metric to analyze the scalability

Cannon's Algorithm

- Two n x n matrices A and B are divided into square submatrices of size $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ among p processors.
- Data from block A^{ij} is sent to processor (i, (j+i)mod \sqrt{p}). Similarly, block B^{ij} sends data to processor ((i+j)mod \sqrt{p} , j).
- Sub-blocks of A are rolled one step left and B sub-blocks are rolled one step up and multiplied.
- Multiplication of A and B is complete after \sqrt{p} steps.

Cannon's Algorithm

Total parallel execution time:

$$\frac{n^3}{p} + 2t_s\sqrt{p} + 2t_w \frac{n^2}{\sqrt{p}}$$

Berntsen's Algorithm

- Berntsen proposed a algorithm which exploits greater connectivity of the hypercube.
- $p = 2^{3q}$ processors with $p \le n^{3/2}$ restriction
- Matrix A is split by columns and matrix B by rows into 2^q parts
- Hypercube is split into 2q sub-cubes, each performing a submatrix multiplication between submatrices A $(\frac{n}{2^{2q}} \times \frac{n}{2^{2q}})$ and B $(\frac{n}{2^{2q}} \times \frac{n}{2^{2q}})$ using Cannon's algorithm

Berntsen's Algorithm

Total parallel execution time:

$$\frac{n^3}{p} + 2t_s p^{1/3} + \frac{1}{3}t_s \log p + 3t_w \frac{n^2}{p^{2/3}}$$

- Terms associated with both $t_{\rm s}$ and $t_{\rm w}$ are smaller than Cannon's algorithm

DNS Algorithm

- Initially, $p = n^3 = 2^{3q}$ processors
- Completed the task of O(n³) matrix multiplication in O(log n) time using n³ processors
- A proposed variant could work with n²r processors (1 < r < n)
- Logical processor array of r³ superprocessors is used, each comprising of (n/r)² hypercube processors
- Multiplication of (n/r) x (n/r) blocks is performed on $\frac{n}{r} \ge \frac{n}{r}$ subarrays of processors using Cannon's algorithm

GK Algorithm

- Another scheme to adapt the DNS algorithm to use fewer than n³ processors
- p = 2^{3q} processors with q < $\frac{1}{3}$ log n
- Matrices are divided into sub-blocks of $\frac{n}{2^{2q}} \times \frac{n}{2^{2q}}$ elements
- In this variant of the DNS algorithm, all the single element operations are replaced by sub-block operations
- Total parallel execution time: $\frac{5}{3}t_s p \log p + \frac{5}{3}t_w n^2 p^{1/3} \log p$

Comparison of various algorithms

Algorithm	Total Overhead function	Asymptotic Isoefficiency	Applicability range
Cannon's	$2t_s\sqrt{p} + 2t_w rac{n^2}{\sqrt{p}}$	O(p ^{1.5})	$1 \le p \le n^2$
Berntsen's	$2t_{s} p^{1/3} + \frac{1}{3}t_{s}\log p + 3t_{w} \frac{n^{2}}{p^{2/3}}$	O(p ²)	$1 \le p \le n^{3/2}$
DNS	$(t_s + t_w) (\frac{5}{3}p \log p + 2n^3)$	O(p log p)	$n^2 \le p \le n^3$
GK	$\frac{5}{3}t_s p \log p + \frac{5}{3}t_w n^2 p^{1/3} \log p$	O(p (log p) ³)	1 ≤ p ≤ n ³

- Only asymptotic scalabilities
- None of the algorithms is strictly better than others for all possible problem sizes and number of processors
- Compare pairwise the total overhead functions GK vs Cannon's:
 - t_s term for GK is always smaller than Cannon's
 - Even if $t_s=0$, the t_w for GK becomes smaller than Cannon's for p > 130 million (irrespective of n)
 - For reasonable values of t_s, GK performs better than Cannon's for very practical values of p and n

•
$$n = \sqrt{\frac{(5/3p \log p - 2p^{3/2})t_s}{(2\sqrt{p} - 5/3p^{1/3} \log p)t_w}}$$

Comparison of various algorithms

- Regions marked 'x' is where non of the algorithms apply and p>n³
- Region 'a' (GK), 'b' (Brentsen's), 'c' (Cannon's), 'd' (DNS algorithm)

Conclusion

- Scalability analysis provides insights into relative superiority under different conditions
- Predict the condition under which each formulation outperforms the other
- Can be used by smart preprocess/compiler based on different parameters
- Small expression of communication overload ≠ best algorithm
 - Berntsen's algorithm with the least communication overhead is the least scalable with O(p²) isoefficiency