
gprof
Presented by Benjamin Black

What do we want out of a profiler?

Profiling

● Compile your code
● Run it on some input, collect data
● Summarize the data so that the

user understands how to improve
their code

Profile

EditCompile

Profiling procedure count

● Is a procedure executed too many times?
○ Is the algorithm choice appropriate?
○ Is the algorithm implemented correctly?

■ n*log(n) vs n^2 quicksort
○ Are there unneeded duplicative calls?

■ 2n vs n calls
● Debugging

○ Is a procedure executed at all?
■ Do you expect that code to be inactive?
■ Do you expect that code to be active?

Profiling timing (two types)

● Time spent inside the procedure itself (not including child calls)
○ "self" time
○ Useful to find vital inner loops in your code

● Duration of the procedure
○ "cumulative" time
○ Useful to see which procedures take up the most total time and should be the focus of your

optimization

Call graph

● Your procedure is expensive. Which child
procedure that it calls is the most
expensive?

● Also useful for implementing profiling
techniques efficiently (more on this later)

Implementing gprof

Two types of profiling techniques

● Instrumentation
○ User code logs information as it runs

■ In gprof, logs caller/callee counts are logged this way
● Sampling

○ Monitoring code checks program state at certain intervals
■ In gprof, self time is measured this way

Implementing instrumentation

1. Gprof tells compiler inserts calls to
monitoring procedure in function
prologue

2. Monitoring procedure investigates
return address to find caller function,
getting that edge on the graph

void foo(){
 monitor(); // inserted by gprof
 …
 // user code
 …
}
void bar(){
 foo();
}

Implementing sampling

● Uses an alarm signal to interrupt code
at time intervals

● When signal is activated, it increments
time counter for the function the
program counter is currently in

0000000000001e30 <foo>:
 1f27: mov %rax,0x28(%rsp)
 1f2c: xor %eax,%eax
 1f2e: mov 0x80(%rsp),%rax

0000000000002100 <bar>:
 2136: mov 0x78(%rsp),%rcx
 213b: test %rax,%rax
 213e: mov %rcx,0x18(%rsp)
 2143: mov %rax,0x10(%rsp)

Separate processing from collecting

● Gprof stores collected data from a run in a file
○ Caller-callee count histogram
○ Time samples function histogram

● Gprof's analysis tool can process files from multiple runs to compare or
combine them

Computing cumulative time from self-time

● Assumes all function calls are the same
duration

● Assuming no recursion in program can
use formula:

● With recursion in program, can look
analyze time spent in strongly connected
components as a single node when doing
the calculation

● Problem with assumption: What if foo
makes many quick calls and bar makes
a few slow calls to a function?

Data presentation

Flat profile

● Gets information for each function

Call graph profile

● Which calls are taken within each function?
● Allows you to easily navigate the expensive path through deep call stacks

Stated Limitations

● Accuracy in programs where main computation happens in large recursive
cycles is poor (due to assumption stated earlier)

Actual limitations/Obsolescence

● Gprof is not widely used anymore (published in 1982)
○ Significant overhead in monitoring (leads to inaccurate results)
○ Recompilation necessary

● poor man's profiler
○ GDB's interrupt https://poormansprofiler.org/

