A Comparison of Sorting

Algorithms for the Connection
Machine CM-2

presented by Benjamin Black

Optimizing sorting on CM-2

e CM-2: hypercube network connect

e Algorithms to optimize
o Bitonic sort
o Sample sort
o Radix sort

Primitives

Arithmetic (Map)

Send across network

Scan (Cumulative sum)

Cube swap (send along each dimension of hypercube)

Table 1. The time required for operations on a 32K Connection Machine CM-2.*

Operation Symbolic time Actual time
Arithmetic A-(n/p) 1-(n/1024)
Cube Swap Q- (n/p) 40 - (n/1024)
Send (routing) R-(n/p) 130 - (n/1024)
Scan (parallel prefix) 34-(n/p)+ S 3.(n/1024) + 50

*The value p is the number of processors (Sprint nodes), and 7 is the total number
of elements being operated on. All operations are on 64-bit words, except for scans
which are on 32-bit words. All times are in microseconds.

Bitonic-sort

e Similar to merge-sort except
every other sub-sequence is
sorted in reverse order

e Key operation-bitonic merge

o Naturally organized like a
hypercube

o Most efficient for small numbers of
keys

12

10

16

12

10

11

11

12

14

10

12

10

11

16

14

14

16

Blelloch et. al. 1991

10

11

12

13

15

15

15

15

16

Bitonic sort optimizations

e Optimization pipelined-bitonic sort
o Multiple keys per processor
o exchange all keys before they are needed

Radix sort

e |terated bucket sort

e In place sort

e Need to know not only which bucket each key is in, but which rank the key is
within each bucket

e Counting rank for each bucket be done with a Scan operation

Optimizing radix sort Timplerank = 27+ (34-(n/p) + 5) + 2(24)(n/p)
= A-((2+3)2"(n/p))+ 5-2",

e More efficient to calculate all ranks

mternglly for each processor, Toank = A+ (22" +10(n/p))+ S - 2",
combine across processors

e Choosing parameterr

9000
8000
7000 |
6000 |
5000 -
4000 -
3000 |
2000
1000

Time Per Key Per Proc (usec)

0 LS S| S | S —— P R T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Bits Per Pass (r)

Sample Sort

e Divide and conquer algorithm--Similar to quicksort

e Quicksort:
o find 1 pivot value using a random strategy
o Divide input below and above pivot point
o Sort each half independently.

e Sample sort
o Sample p-1 pivot values using a random strategy (p is the number of processors)
o Sort pivot values
o Send all pivot values to all processors
o Divide input on each processors into the p buckets in parallel
m binary search
o Sort each bucket on each processor

Sample sort optimizations

e Oversampling:

o To make evenly sized buckets, s(p-1)
samples are selected, where p is the
number of processors and s is the
oversampling ratio.

o Pivots are the samples in the s, 2s, 3s,
... (p-1)s ranks in the sample

o Chose value 64 for s empirically for
16384 keys per processor

Bucket Expansion Bound

o = N W A OO O N © ©

L\ .999999
\
16 32 64 128 256
Oversampling (s)

Blelloch et. al. 1991
g 450 -
3 400
(%]
E 350 |
+ 300 E :
g Candidate Sort
S, 250
< 200l Local Sort
& 150F
.E 100 | Send
[

=l] Binary Search
0 1

32

64

128 256
Oversampling (s)

Final results

Time Per Key Per Proc (usec)

Sample Sort

Simple Radix Sort

M P —

0 1 1 1 1 1 1 1]
32 64 128 256 512 1024 2048 4096 8192 16384

Keys Per Processor (n/p)

