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Optimizing sorting on CM-2

e CM-2: hypercube network connect

e Algorithms to optimize
o Bitonic sort
o Sample sort
o Radix sort



Primitives

Arithmetic (Map)

Send across network

Scan (Cumulative sum)

Cube swap (send along each dimension of hypercube)

Table 1. The time required for operations on a 32K Connection Machine CM-2.*

Operation Symbolic time Actual time
Arithmetic A-(n/p) 1-(n/1024)
Cube Swap Q- (n/p) 40 - (n/1024)
Send (routing) R-(n/p) 130 - (n/1024)
Scan (parallel prefix) 34-(n/p)+ S 3.(n/1024) + 50

*The value p is the number of processors (Sprint nodes), and 7 is the total number
of elements being operated on. All operations are on 64-bit words, except for scans
which are on 32-bit words. All times are in microseconds.



Bitonic-sort

e Similar to merge-sort except
every other sub-sequence is
sorted in reverse order

e Key operation-bitonic merge

o Naturally organized like a
hypercube

o  Most efficient for small numbers of
keys
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Bitonic sort optimizations

e Optimization pipelined-bitonic sort
o  Multiple keys per processor
o exchange all keys before they are needed



Radix sort

e |terated bucket sort

e In place sort

e Need to know not only which bucket each key is in, but which rank the key is
within each bucket

e Counting rank for each bucket be done with a Scan operation



Optimizing radix sort Timplerank = 27+ (34-(n/p) + 5) + 2(24)(n/p)
= A-((2+3)2"(n/p))+ 5-2",

e More efficient to calculate all ranks

mternglly for each processor, Toank = A+ (22" +10(n/p))+ S - 2",
combine across processors

e Choosing parameterr
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Sample Sort

e Divide and conquer algorithm--Similar to quicksort

e Quicksort:
o find 1 pivot value using a random strategy
o Divide input below and above pivot point
o  Sort each half independently.

e Sample sort
o Sample p-1 pivot values using a random strategy (p is the number of processors)
o Sort pivot values
o Send all pivot values to all processors
o Divide input on each processors into the p buckets in parallel
m binary search
o Sort each bucket on each processor



Sample sort optimizations

e Oversampling:

o To make evenly sized buckets, s(p-1)
samples are selected, where p is the
number of processors and s is the
oversampling ratio.

o Pivots are the samples in the s, 2s, 3s,
... (p-1)s ranks in the sample

o Chose value 64 for s empirically for
16384 keys per processor
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Final results

Time Per Key Per Proc (usec)
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