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Background: Job scheduling

* In an HPC platform, jobs are requested from time to time
* The platform needs to distribute Its resources (cores, networks, etc.)
wisely for a better overall performance

* “Parallel job scheduling consists of at least two interdependent
steps. the allocation of tasks to the processors (space-sharing)
and the scheduling of the tasks over time (time-sharing)”

* Space-sharing policy: static, adaptive, dynamic

* Time-sharing policy: iIndependent local scheduling (ILS), dynamic-
based co-scheduling (DCS)



Background: Space-sharing Policy

* Trivial policy/Baseline: Each node is exclusively assigned to a job
* A ‘static’ policy
* Cons:

* poor utilization: nodes can be left empty despite a waiting queues of job
* High wait and response time

* Approaches to improve performance:

* Backfilling: assign unutilized nodes to jobs that are behind in the priority
gueue of walting jobs, rather than keep them idle

* Gang scheduling/coscheduling: add a time-sharing dimension to space
sharing by slicing time axis into multiple space-shared virtual machine

* Both requires an estimate of job execution time



Main 1dea of this paper

* Question: Can we combine gang scheduling and backfilling in
some sophisticated way for a better scheduling performance?

* The answer: Yes! A combined strategy Is always better than the
iIndividual gang scheduling or backfilling policy.

* This paper uses simulation and synthetic workload to evaluate the
performance



Modeling parallel job workloads

* Use stochastic-model-based simulation to evaluate policies

* Need a characterization technique and a procedure to synthetically
generate the expected workloads

* Methodology:
* fit a typical workload with mathematical models
* generate synthetic workloads based on the derived mathematical models

* simulate the behavior of the different scheduling policies for those
workloads

* determine the parameters of interest for the different scheduling policies



Workload model

* Hyper Erlang Distributions of Common Order

* Using a parameter ) to indicate the uncertainty of the estimation
on Job execution time

* Baseline workload: 10000 jobs, size from 1 to 256 nodes
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Figure 1. Distribution of job sizes in workload. Figure 2. Distribution of cpu time in workload.



Metrics for Performance Evaluation

* Response time = finish time — arrival time
 Wait time = start time — arrival time

max(response time,10)

e Slowdown = — ; :
max(response time in a dedicated settings,10)

* User’s perspective:
* Quality of service: average job slowdown & average job walit time
* Fairness: average/std. dev. of slowdown/wait time for small/large/all jobs

* System’s perspective:
 Utilization: fraction of total system resources in use
* Capacity loss: #idle nodes when some other jobs are waiting



Queuelng policies with backfill

* Queueing policy: a set of rules that
glve priority to some jobs

* Four baseline gueueing policy
* FCFS, Shortest job first, Best fit, Worst fit
* Each can be combined with backfilling

* \When estimation of execution time IS
accurate, FCFS is the best when
workload is high
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Impact of overestimation on backfilling

e |iterature shows that there iIs little correlation between estimated
(provided by users) and actual execution time

* Jobs are killed when the estimated time Is reached, users have an
Incentive to overestimate the execution time

30

G—o Q=0.0
ED25.
27 e—a =05
[+ 0=1.0

G— Q=20

]
o

—
wn

P—x Q=30

<+ 0=10.0

Average job slow down
=

Average job wait time (x1000 secon

wn
T

85 055 05 065 07 075 08 085 08 085 1 85 055 06 065 07 075 08 085 09 065 1
utilization utilization

(a) average slowdown (b) average wait time

Figure 5. The impact of good estimation from
a user perspective.



Backfilling gang scheduling

* Schedules for space/time-sharing can be dme-stice0 | 7 | I} | 2| A |

represented by an Ousterhout matrix R e T -
* Rows represent time slices and the columns | |

represent processor

* Gang scheduling: optimization on time g
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* Orthogonal to backfilling: can be combined
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Backfilling gang scheduling
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* BF: Baseline backfilling

* GS-2, GS-3, GS-5: different variations
of gang scheduling
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Backfilling gang
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Figure 7. Comparing job wait time for BGS
with BF and GS.
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Figure 8. Comparing the behavior of large and
small jobs for BGS with BF.
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Figure 9. Comparing capacity loss for BGS
with BF and GS.
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Figure 10. Comparing performance parame-
ters for BGS with BF and GS.



Conclusion and future work

* Valuable insights:

* FCFS policy + backfilling does as well as other policies such as SJF, BF, WF
since It avolds starvation.

* Overestimation of execution time has minimal impact on resulting system
behavior, but better estimation can enable users to shorten wait time

* Effective combination of gang scheduling and backfilling can perform
better than any individual policy

* Future works:
* Consider the impact of context switching costs

* Examine issues related to migration in BGS, with respect to different
performance criteria

* Compare the pros and cons of different time-, space-sharing strategy



