
Improving Parallel Job Scheduling by Combining
Gang Scheduling and Backfilling Techniques

Presenter: Benjie Miao

Overview

• IPDPS 2000

• Author: Y. Zhang, H. Franke, J. E. Moreira, A. Sivasubramaniam

• Institution: Pennsylvania State University, IBM T.J. Watson
Research Center

Background: Job scheduling

• In an HPC platform, jobs are requested from time to time
• The platform needs to distribute its resources (cores, networks, etc.)

wisely for a better overall performance

• “Parallel job scheduling consists of at least two interdependent
steps: the allocation of tasks to the processors (space-sharing)
and the scheduling of the tasks over time (time-sharing)”

• Space-sharing policy: static, adaptive, dynamic

• Time-sharing policy: independent local scheduling (ILS), dynamic-
based co-scheduling (DCS)

Abawajy J H , Dandamudi S P . Time/space sharing distributed job scheduling policy in a workstation cluster environment[C]// International Conference on Parallel Computing in Electrical Engineering. IEEE, 2000:116-120.

Background: Space-sharing Policy

• Trivial policy/Baseline: Each node is exclusively assigned to a job
• A ‘static’ policy
• Cons:

• poor utilization: nodes can be left empty despite a waiting queues of job
• High wait and response time

• Approaches to improve performance:
• Backfilling: assign unutilized nodes to jobs that are behind in the priority

queue of waiting jobs, rather than keep them idle
• Gang scheduling/coscheduling: add a time-sharing dimension to space

sharing by slicing time axis into multiple space-shared virtual machine

• Both requires an estimate of job execution time

Main idea of this paper

• Question: Can we combine gang scheduling and backfilling in
some sophisticated way for a better scheduling performance?

• The answer: Yes! A combined strategy is always better than the
individual gang scheduling or backfilling policy.

• This paper uses simulation and synthetic workload to evaluate the
performance

Modeling parallel job workloads

• Use stochastic-model-based simulation to evaluate policies
• Need a characterization technique and a procedure to synthetically

generate the expected workloads

• Methodology:
• fit a typical workload with mathematical models
• generate synthetic workloads based on the derived mathematical models
• simulate the behavior of the different scheduling policies for those

workloads
• determine the parameters of interest for the different scheduling policies

Workload model

• Hyper Erlang Distributions of Common Order

• Using a parameter Ω to indicate the uncertainty of the estimation
on job execution time

• Baseline workload: 10000 jobs, size from 1 to 256 nodes

Metrics for Performance Evaluation

• 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 = 𝑓𝑖𝑛𝑖𝑠ℎ 𝑡𝑖𝑚𝑒 − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒

• 𝑊𝑎𝑖𝑡 𝑡𝑖𝑚𝑒 = 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒

• 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛 =
max(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒,10)

max(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑎 𝑑𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑑 𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠,10)

• User’s perspective:
• Quality of service: average job slowdown & average job wait time
• Fairness: average/std. dev. of slowdown/wait time for small/large/all jobs

• System’s perspective:
• Utilization: fraction of total system resources in use
• Capacity loss: #idle nodes when some other jobs are waiting

Queueing policies with backfilling

• Queueing policy: a set of rules that
give priority to some jobs

• Four baseline queueing policy
• FCFS, Shortest job first, Best fit, Worst fit

• Each can be combined with backfilling

• When estimation of execution time is
accurate, FCFS is the best when
workload is high

Impact of overestimation on backfilling

• Literature shows that there is little correlation between estimated
(provided by users) and actual execution time

• Jobs are killed when the estimated time is reached, users have an
incentive to overestimate the execution time

Backfilling gang scheduling

• Schedules for space/time-sharing can be
represented by an Ousterhout matrix
• Rows represent time slices and the columns

represent processor

• Gang scheduling: optimization on time
axis
• Orthogonal to backfilling: can be combined

• Proposed some policies that combines
backfilling and gang scheduling

Backfilling gang scheduling

• BF: Baseline backfilling

• GS-2, GS-3, GS-5: different variations
of gang scheduling

• BGS-2, BGS-3, BGS-5: variations of
backfill gang scheduling

• Result shows that BGS is always better
than pure BF or pure GS

Backfilling gang scheduling (BGS)

Conclusion and future work

• Valuable insights:
• FCFS policy + backfilling does as well as other policies such as SJF, BF, WF

since it avoids starvation.
• Overestimation of execution time has minimal impact on resulting system

behavior, but better estimation can enable users to shorten wait time
• Effective combination of gang scheduling and backfilling can perform

better than any individual policy

• Future works:
• Consider the impact of context switching costs
• Examine issues related to migration in BGS, with respect to different

performance criteria
• Compare the pros and cons of different time-, space-sharing strategy

