Improving Parallel Job Scheduling by Combining
Gang Scheduling and Backfilling Techniques

Presenter: Benjie Miao

Overview

* |IPDPS 2000
* Author: Y. Zhang, H. Franke, J. E. Moreira, A. Sivasubramaniam

* |Institution: Pennsylvania State University, IBM T.J. Watson
Research Center

Background: Job scheduling

* In an HPC platform, jobs are requested from time to time
* The platform needs to distribute Its resources (cores, networks, etc.)
wisely for a better overall performance

* “Parallel job scheduling consists of at least two interdependent
steps. the allocation of tasks to the processors (space-sharing)
and the scheduling of the tasks over time (time-sharing)”

* Space-sharing policy: static, adaptive, dynamic

* Time-sharing policy: iIndependent local scheduling (ILS), dynamic-
based co-scheduling (DCS)

Background: Space-sharing Policy

* Trivial policy/Baseline: Each node is exclusively assigned to a job
* A ‘static’ policy
* Cons:

* poor utilization: nodes can be left empty despite a waiting queues of job
* High wait and response time

* Approaches to improve performance:

* Backfilling: assign unutilized nodes to jobs that are behind in the priority
gueue of walting jobs, rather than keep them idle

* Gang scheduling/coscheduling: add a time-sharing dimension to space
sharing by slicing time axis into multiple space-shared virtual machine

* Both requires an estimate of job execution time

Main 1dea of this paper

* Question: Can we combine gang scheduling and backfilling in
some sophisticated way for a better scheduling performance?

* The answer: Yes! A combined strategy Is always better than the
iIndividual gang scheduling or backfilling policy.

* This paper uses simulation and synthetic workload to evaluate the
performance

Modeling parallel job workloads

* Use stochastic-model-based simulation to evaluate policies

* Need a characterization technique and a procedure to synthetically
generate the expected workloads

* Methodology:
* fit a typical workload with mathematical models
* generate synthetic workloads based on the derived mathematical models

* simulate the behavior of the different scheduling policies for those
workloads

* determine the parameters of interest for the different scheduling policies

Workload model

* Hyper Erlang Distributions of Common Order

* Using a parameter) to indicate the uncertainty of the estimation
on Job execution time

* Baseline workload: 10000 jobs, size from 1 to 256 nodes

Cumulative distribution of job sizes 10° Cumulative distribution of CPU time

X
10000 10

9000

[=]
T

80001

7000F

6000}

5000

Total CPU time (s)
- %] [93] P o [=2] =~ [=2]

Number of jobs

4000

3000F

2000H

1000

00 32 64 96 128 160 192 224 256
Job size (number of nodes)

(=]

0 32 64 96 128 160 192 224 256
Job size (number of nodes)

Figure 1. Distribution of job sizes in workload. Figure 2. Distribution of cpu time in workload.

Metrics for Performance Evaluation

* Response time = finish time — arrival time
 Wait time = start time — arrival time

max(response time,10)

e Slowdown = — ; :
max(response time in a dedicated settings,10)

* User’s perspective:
* Quality of service: average job slowdown & average job walit time
* Fairness: average/std. dev. of slowdown/wait time for small/large/all jobs

* System’s perspective:
 Utilization: fraction of total system resources in use
* Capacity loss: #idle nodes when some other jobs are waiting

Queuelng policies with backfill

* Queueing policy: a set of rules that
glve priority to some jobs

* Four baseline gueueing policy
* FCFS, Shortest job first, Best fit, Worst fit
* Each can be combined with backfilling

* \When estimation of execution time IS
accurate, FCFS is the best when
workload is high

Average job wait time (x1000 seconds)

wn
T

e——.

G0

8.5 055 06 065 07 075 08 085 09 095 1
utilization

(a) average wait time

0.2

0.18
0.16

0 0.14}

8

2012

Q

@

& 0.1p

Q

S

g0.08f

2

<0.06}

0.04

0.02f

8.5 055 06 065 07 075 08 085 09 095 1
utilization

(b) average capacity loss

Impact of overestimation on backfilling

e |iterature shows that there iIs little correlation between estimated
(provided by users) and actual execution time

* Jobs are killed when the estimated time Is reached, users have an
Incentive to overestimate the execution time

30

G—o Q=0.0
ED25.
27 e—a =05
[+ 0=1.0

G— Q=20

]
o

—
wn

P—x Q=30

<+ 0=10.0

Average job slow down
=

Average job wait time (x1000 secon

wn
T

85 055 05 065 07 075 08 085 08 085 1 85 055 06 065 07 075 08 085 09 065 1
utilization utilization

(a) average slowdown (b) average wait time

Figure 5. The impact of good estimation from
a user perspective.

Backfilling gang scheduling

* Schedules for space/time-sharing can be dme-stice0 | 7 | I} | 2| A |

represented by an Ousterhout matrix R e T -
* Rows represent time slices and the columns | |

represent processor

* Gang scheduling: optimization on time g

axis N et

* Orthogonal to backfilling: can be combined

* Proposed some policies that combines
backfilling and gang scheduling B B I I I B O B N

time-slice 3 | J§ | J¢ |

0 ')
(3% [\%]
e |
_"_JI::_J
o o
[%) []
s |'s|s
L
[T |
L1
I < 1
I B
< |
R |

0

B
|

S|
[5]

[*]

5 |I
-4l
[=Y

-

—

[

-

Backfilling gang scheduling

(=]
[=]

* BF: Baseline backfilling

* GS-2, GS-3, GS-5: different variations
of gang scheduling

* BGS_Z, BGS_g, BGS_S Varlatlons Of 85 0._0.:!5_018 085 09 095 1

tilizat

baCkflll gang SChedUI|ng (a) average slowdown

500

Average job slow down
~ o
[=] [=]

]
[=]

430}

c
2400
o
g 350}

* Result shows that BGS Is always better
than pure BF or pure GS

;52 v . . . ‘
8.5 055 06 065 07 075 08 085 09 095 1
utilization

(b) standard deviation of slowdown

Backfilling gang

30

]
L

=)
[=]

Average job wait time (x 1000 seconds)
= n

a T
05 075 08 085 09 095
utilization
(a) average wait time
30

]
L

=)
[=]

7l

=]

n

Standard deviation of job wait time (x1000 seconds)

0?7 0.11’5 0.8 0.;35 0.8 CI.IEBS
utilization
(b) standard deviation of wait tume
Figure 7. Comparing job wait time for BGS
with BF and GS.

==
wn

o
n
a

o

o

=]

]

h

120 T T T T T T T T T

3—€ BF, Large
80 +—+ BF, Small
G—8 BGS-5, Large

BO[»— BGS-5, Small

40

Average job slow down

20

0 e
05 055 06 065 07 075 08 085 095 0355
utilization

(a) slowdown of large and small jobs

30 T T r T T T T

[
n

'e—e) BF, Large

|+—+ BF, Small

ra
[=]

&—8 BGS-5, Large

K3— BGS-5, Small

-
wn

Awverage job wait time (x1000 second)
=

n

07" 075 08 085 09 085
utilization

(b) wait time of large and small jobs

Figure 8. Comparing the behavior of large and
small jobs for BGS with BF.

%.5 055 06 086

scheduling (BGS

o
[N}

Average capacity loss
o o o o o o
o o © 4 o 4o o4
[=2] =) - N e [=2] =]
I
[oelsales]
® 0w
Lee
[4,] N

el
o
B

g
o
[N

. sm—_

utilization

Figure 9. Comparing capacity loss for BGS
with BF and GS.

L3 L I L L L L
8.5 055 06 065 07 075 08 08 09 09 1

120 - - - - ’
G—© BF, 0=0.0

@0 BF, 0=2.0

100b*—* BGS-2, 0=0.0

x % BGS-2, 0=20

E—8 BGS-3, 0=0.0

O -0 BGS-3, 0=2.0

+—+ BGS-5, 0=0.0

+ -+ BGS-5 0=20

80

Average job slow down

0 E W
05 055 06 065 07 075 08 083 09 095
utilization

(a) slow down

G—6 BF, 0=0.0

O O BF, =20

| —x BG5-2, 0=0.0
% % BG5-2, 0=20
E—8 BGS5-3, 0=0.0
0 0 BG5-3, 0=2.0
[+—t BGS-5, 0=00
+ 4 BGS-5 0=20

(]
wn

[
=]

[=]
T

Average job wait time (x1000 seconds)
o [

— .

%.5 0.55 0.6 065 07 075 08 085 09 085

utilization
(b) wait time

Figure 10. Comparing performance parame-
ters for BGS with BF and GS.

Conclusion and future work

* Valuable insights:

* FCFS policy + backfilling does as well as other policies such as SJF, BF, WF
since It avolds starvation.

* Overestimation of execution time has minimal impact on resulting system
behavior, but better estimation can enable users to shorten wait time

* Effective combination of gang scheduling and backfilling can perform
better than any individual policy

* Future works:
* Consider the impact of context switching costs

* Examine issues related to migration in BGS, with respect to different
performance criteria

* Compare the pros and cons of different time-, space-sharing strategy

