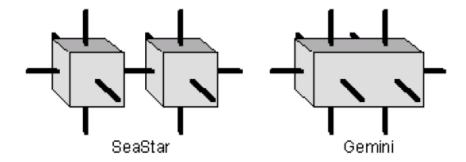

The Gemini System Interconnect


Robert Alverson, Duncan Roweth, Larry Kaplan Cray Inc 2010 18th IEEE Symposium on High Performance Interconnects

Introduction:

- Improvement to Seastar network for Cray HPCs
- System-on Chip (SoC) constructs 3D torus network > 100,000 nodes
- Built for fast MPI
- 2-node Opteron allowing for 10 connections per block
- Adaptive routing and ECC memory add layer of fault tolerance to prevent job termination in the event of limited hardware failure

Gemini Block Layout:

- Each node has HyperTransport3 (5.2 MT/s) and dedicated NIC
- Each block contains a router and supervisor processor (L0) connected to Hardware Supervisory System (HSS)
- Router has 8 links to x/z and 4 links to y neighbors
- Direct data transfer between nodes without OS intervention (specify address, id, and size)
- Implemented in TSMC 90 process on a 232.8 mm² die size

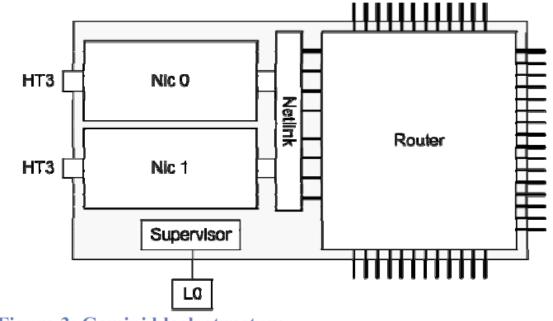
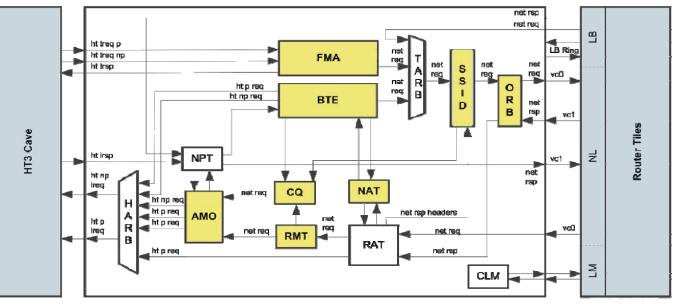
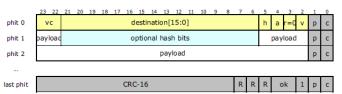
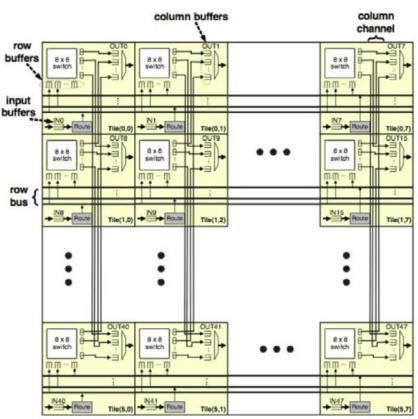


Figure 3: Gemini block structure

Gemini NIC Layout:

- Fast Memory Access (FMA)
 - Puts, Gets stored directly on NIC (64 bytes)
 - Translated from processor stores into full 58 bit network addresses
 - Features it's own sync/barrier methods
- Block Transfer Engine (BTE)
 - Asynchronous transfers between local and remote memory
 - No guarantee of order, but can use fence operations
 - Up to 4 GB w/out CPU involvement
- Completion Queue (CQ)
 - Notification mechanism for FMA and BTE
- Atomic Memory Operation (AMO)
 - Multiple processes accessing the same variables
 - Prevents program locking
 - Dedicated AMO cache reduces load on host NIC
- Synchronization Sequence Identification
 - Packet tracking system
 - Set of packets all have same SSID, can be delivered in any order
 - CQ isn't notified until all finish


Figure 4: Gemini NIC

General Network Packet Format

Network Request Packet Format

	23 22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
phit 0	vc	destination[15:0] h a r=0v=0															р	с					
phit 1		address[23:6]																F	са	rmt	b	р	с
phit 2		ptag[7:0] address[37:24]															р	с					
phit 3		source[15:0]													Dst	DstID SrcID			vm	ra	р	с	
phit 4		MDH[11:0]										dt	pt			eserved dr[45:40]			addr [39:38]		р	с	
phit 5		mask[15:0] cmd[5:0]															р	с					
phit 6	BTEvc	c SSID[7:0] packetID[11:0]														р	с						

Gemini Router Layout:

- Following a Packet:
 - Packet arrives at input link
 - Input buffer makes routing decision to output column
 - Sent to row bus that contains intersection with column
 - Routing decision is refined to which output port
 - Column channel sends packet to output buffer
- Packets are divided into 24-bit "phits"
- Fault tolerance embedded in CRC protects 64 bytes and headers
- ECC memory protects larger data
- Data is automatically re-sent if CRC readback error
- If Gemini routes go offline system can re-route the network

Figure 5: Gemini router

Performance:

- Clock Speeds
 - NIC 650 MHz
 - Router 800 MHz
 - SERDES 3.1 to 6.25 GHz
 - HyperTransport 1600 2600 MHz
- Latency
 - End-point 700 ns
 - 1.5 micro or less for small MPI (HyperTransport reads)
- Bandwith
 - NIC transfers 64 bytes every 5 cycles in each direction
 - 8.3 Gbytes/s
 - Improved bandwith as PPN increases
- AMO Performance
 - Atomic adds
 - Single AMO all performed on AMO cache
 - Achieved 45 100 million updates per second

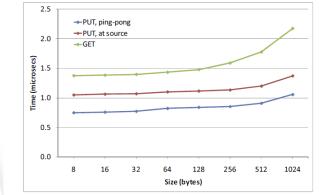
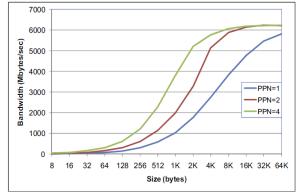
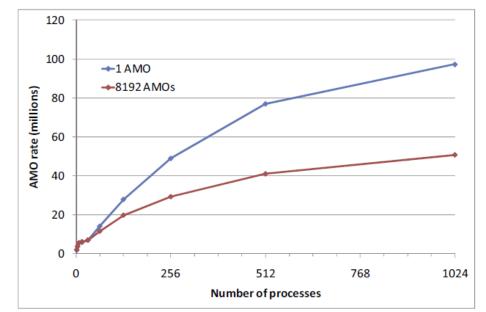




Figure 7; Gemini put and get latencies as a function of transfer size

Figure 9; Gemini AMO performance