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Motivation

Scale complex applications to large number of processors

« How to understand and optimize performance of complex applications
running on thousands of cores

 The authors’ approach:
* Use visual and analytical feedbacks

* Created a visualization component called Projections for Charm++



Charm++ Runtime
Two tracing modes

 |Log mode

 Each event is recorded in full detall, including timestamp

 An “event” Is entry method call, or message packing, unpacking, etc.
e Summary mode

e A few lines of information per processor

e Sum, max, avg execution time, number of times called, etc. for each entry
method



Projections

Visualization
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NAMD

Nanoscale Molecular Dynamics

* Simulates large biomolecular systems
* Each time step:
 Compute forces on each atom
* Integrate forces to update atom positions (cutoff radius)

 Atoms are partitioned into cubes (dimension slightly larger than cutoff radius) called home
patches

* Create a force computation object for each pair of neighboring cubes

 Each processor receives a number of neighboring cubes/patches, compute objects are
distributed to a processor owning at least one home patch



NAMD

Optimization 1 - Grainsize Analysis

« Benchmark: 92,000 atoms, 57 seconds on one processor
e Cannot scale beyond 1,000 processors
e Analysis using projection revealed:

 Most computation time was spent in force-computation objects, not uniform,
range from 1 - 41 microseconds

e |deal should be 28 microseconds on 2,000 processors
o Culprit: electrostatic force computations between cubes that have a common face

e Solution: split these objects into multiple pieces
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NAMD

Optimization 2 - Load Balancing

* Distribution of atoms over space is relatively non-uniform

 Was using Charm++’s measurement-based load balancing framework that
supports runtime load and communication tracing

 Can admit different strategies as plugins during a single run

* (Greedy strategy
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NAMD

Optimization 2 - Load Balancing

* Result on 1024 processors were not satisfying, the load on processors was
different that what the load balancer had predicted

* The greedy strategy ignored existing placement of objects entirely to achieve
close to optimal mapping, background load and cache performance were
very different after massive object migration

» Solution: add another load balancing phase immediately after the greedy
reallocation, which used a simpler “refinement” strategy: only move

processors significantly above avg load (5%) so not to disturb the
performance context
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NAMD

Optimization 2 - Load Balancing

* Due to quirks in the background load, processor 500 - 600 underloaded
 Does not impact performance much, but overloaded processors do

* The refinement strategy did not change this, but improved overall utilization



NAMD

Optimization 3 - Stretched Entry Method

* |dentified the “stretched” entry method problem using timeline view

e Occur on PSC Lemieux while running on large number of processors
* Process 900, 933 methods took 20 - 30 ms (usually 2-3ms or less)
 Entry method blocked on send operation, caused by mistuned library

 OS daemon interference problem
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CPAIMD

Car-Parrinello ab initio molecurar dynamics

e Used to study key chemical and biological processes

* Restricted by the number of states, 3-D FFT is communication intensive, cannot
scale to thousands of processors

e ODbjects are electron orbitals/states, each represent Fourier coefficients in 3D Q-
space

e Each virtual processor being a plane of g-space, which is not very dense, only a
fraction of the cube is non-zero

 |nitial mapping mapped planes uniformly across processors

e Solution: explicitly consider the load caused by each plane, result in better mapping
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Next Gen Supercomputers
2002

* |BM BlueGene/L: 64,000 dual-processor nodes, 360 teraflops peak
performance

* |BM BlueGene/C (Cyclop), 1M floating point units fed by 8M instruction
streams, 1 petaflops peak performance

 Challenges
* Write parallel programs that exploits this power

* Analyze their performance



Next Gen Supercomputers

BigSim

* Jo evaluate parallel applications and performance analysis tools on
supercomputers, authors crated a parallel simulator: BigSim

 Employ the projections framework on BigSim

 Cannot generate 64,000 log files, I/0O overheads and memory cost

 Use summary mode, more compact trace data

* Global reduction that collects and combines all trace data into one file

 (Generate detailed log, only for a specified range of processors



Next Gen Supercomputers
NAMD on Blue Gene/L

* NAMD shown to scale to 3,000 processors but not beyond

. ER-GRE benchmark, 36,573 atoms, simulates space of 92x92x92 A3
(Angstrém)

* Using NAMD's one-way decomposition strategy: 8x8x8 number of cells given
the cutoff distance of 12A3 /168 cell to cell interactions to calculate

* Not enough work to distribute across 64,000 processors, some would be idle



Next Gen Supercomputers
NAMD on Blue Gene/L

 Three-away decomposition: three cells span the cutoff distance
* Every cell compute interactions with every cell that is three-away
e Produces 13,824 cells, more than 2 million cell-to-cell interactions

» Easily distributed across 64,000 nodes



LeanMD: models the cutoff
computation

Run on PSC Lemieux
simulated BlueGene/L using
node size 1K - 64K

On 32K processors utilization
stabilizes at about 50%

Speedup saturate starting
from 16K processors

Load imbalance: most

processors have |load of 2ms,

some as high as 11ms

PROJECTIONS

(a) Average utilization per interval
for LeanMD on 32,000 processors on load in ms

Fig. 8. LeanMD Projections Views

(b) Distribution of processors based



Processors 2000 | 4000 | 8000 | 16000 | 32000 | 64000

Predicted Speedup | 1845 | 3384 | 6015 | 8658 | 14178 | 18180
Expected Speedup | 1865 | 3412 | 6242 | 8635 | 13916 | 19936

Table 1
Predicted vs. expected speedup, normalized based on 1000

» Calculate expected performance * This type of analysis is possible
based on load imbalance alone thanks to the rich trace data

produced by the simulator
* \ery close to the authors’s

predicted performance, indicating
that load imbalance Is the major
performance issue



