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The Problem

ASCI Q running SAGE is not performing as well as it should

« ASCI Q
- 8192 processors
- Installed at Los Alamos National Laboratory (LANL)
- 2nd fastest supercomputer (2003)
 SAGE
- Eulerian hydrodynamics application

- 150,000 lines of Fortran and MPI code



How the authors

l.  determined that ASCI Q was not performing well
Il. identified the source of the performance loss

lll. improved performance

V. remeasure the performance
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Figure 1: Expected and measured SAGE performance
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Figure 2: Difference between modeled and measured
SAGE performance when using 1, 2, 3, or 4 processors
per node
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Figure 3: Effective SAGE processing rate when using
1, 2, 3, or 4 processors per node
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Figure 4: SAGE cycle-time measurements on 3,584
processors

« SAGE performs a constant amount of work per cycle and could be expected to take a
constant amount of time to finish

* Cycle time ranges from 0.7 to 3 seconds, greater than a factor of 4 in variability
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Figure 5: Profile of SAGE’s cycle time
Using 4 processors per node



e <=3 processors / hode, latency <

300 us

* A problem arises when using all

4 processors within a node,
latency > 3ms
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Figure 6: allreduce latency as a function of the number

of nodes and processes per node
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Improved performance of allreduce 7x better

SAGE spends 51% of time in allreduce, should lead to 78% performance gain
in SAGE

Actual: only marginal improvement
Eliminates MPI implementation and network as source of performance loss

Hypothesis: periodic system activities were interfering with application
execution, causing performance variability (“noise”)



* A simple benchmark of running
synthetic computation for 1000
seconds in the absence of noise

* Slowed down experienced by
each process is low, < 2.5%

 Contradicts the “noise”
hypothesis
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Figure 8: Performance-variability microbenchmark
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Figure 9: Results of the performance-variability mi-
crobenchmark
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A new benchmark of running 1 V
million iterations of synthetic
computation, each iteration
precisely 1ms in the absence of
noise, total 1000 seconds
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Figure 10: Performance-variability of the new mi-
crobenchmark
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Figure 11: Results of the performance-variability mi-
crobenchmark analyzed on a per-node basis
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Figure 13: Identification of the events that cause the different types of noise
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Figure 14: Illustration of the impact of noise on synchronized computation

* A delay in a single process slows down the whole application
 Not possible or cost effective to remove daemons or kernel threads

» Solution: coschedule the activities, pay penalty only once



Developed a simulator, taking account
into all events

Each event: <F L, E, P>

Frequency F, average duration L, the
distribution E, the placement (set of
nodes) P

Remove noise on either node 0, 1 or 31,
only 15% improvement

Remove all three nodes, 35%

Remove kernel noise: significant
Improvement

More performance is lost to short but
frequent noise on all nodes than to long
but less frequent noise on just a few
nodes
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Figure 15: Simulated vs. experimental data with pro-
gressive exclusion of various sources of noise in the
system



e The authors undertook some e Moved several TruCluster daemons
optimizations on ASCI Q from node 1 and 2 to node 0 on

each cluster
e Removed about ten daemons from

all nodes  EXpected speed improvement is a

factor of 2.2
* Decreased the frequency of RMS

monitoring by a factor of 2 on each
node (30 -> 60 seconds)
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Figure 17: SAGE performance: expected and mea-
sured after noise removal
TABLE 3: SAGE effective performance after noise removal

Configuration Usable Cycle Processing rate Improvement
processors time  (10° cell updates/sec.) factor
Unoptimized system 8,192 1.60 69.1 —N/A—
3 processes/node 6,144 0.64 129.3 1.87
Without node 0 7,936 0.87 123.1 1.78
Without nodes 0 and 31 7,680 0.86 120.6 1.75
Without nodes 0 and 31 (best observed) 7,680 0.68 152.5 2.21

Model 8,192 0.63 178.4 2.58




» (Categorize the
relative impact of
each of the three
primary sources of
noise

 The computational
granularity of the
application “enter in
resonance” with
noise of a similar
harmonic frequency
and duration
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Figure 18: Cumulative noise distribution for barrier
synchronizations with different computational granu-
larities

e X axis: duration of an individual
occurrence of system noise

e Y axis: cumulative amount of barrier
performance lost to noise

 0-3ms: kernel activity, 5 - 18ms: RMS
daemons, >18ms TruCluster daemons



