
Minghui Liu 2021/04/01

The Case of the Missing
Supercomputer Performance
Achieving Optimal Performance on the 8,192 Processors of ASCI Q
Fabrizio Petrini, Darren J. Kerbyson, Scott Pakin
Los Alamos National Laboratory

The Problem
ASCI Q running SAGE is not performing as well as it should

• ASCI Q

- 8192 processors

- Installed at Los Alamos National Laboratory (LANL)

- 2nd fastest supercomputer (2003)

• SAGE

- Eulerian hydrodynamics application

- 150,000 lines of Fortran and MPI code

How the authors

I. determined that ASCI Q was not performing well

II. identified the source of the performance loss

III. improved performance

IV. remeasure the performance

• A performance model of SAGE
(verified on many systems to
predict performance within 10%
error)

• Measured ASCI Q one half (4096
processors) at a time, the two
halves are consistent

• SAGE performs significantly
worse than was predicted by the
model

• Performance of using 4
processors/node is different

• > 256 nodes, using 4
processors/node is worse than
using 3 processors/node

• > 512 nodes , using 4
processors/node is worse than
using 2 processors/node

• SAGE performs a constant amount of work per cycle and could be expected to take a
constant amount of time to finish

• Cycle time ranges from 0.7 to 3 seconds, greater than a factor of 4 in variability

• Collective-communication
operations: allreduce, reduction,
account for the increase in cycle
time

Using 4 processors per node

• <=3 processors / node, latency <
300 us

• A problem arises when using all
4 processors within a node,
latency > 3ms

• Synthetic parallel benchmark,
alternatively computes for 0, 1,
or 5ms then performs either an
allreduce or a barrier

• Ideal: grow logarithmically with
increasing number of nodes,
insensitive to computational
granularity

• Actual: grow linearly with number
of nodes, and increase with
computational granularity

• Improved performance of allreduce 7x better

• SAGE spends 51% of time in allreduce, should lead to 78% performance gain
in SAGE

• Actual: only marginal improvement

• Eliminates MPI implementation and network as source of performance loss

• Hypothesis: periodic system activities were interfering with application
execution, causing performance variability (“noise”)

• A simple benchmark of running
synthetic computation for 1000
seconds in the absence of noise

• Slowed down experienced by
each process is low, < 2.5%

• Contradicts the “noise”
hypothesis

• A new benchmark of running 1
million iterations of synthetic
computation, each iteration
precisely 1ms in the absence of
noise, total 1000 seconds

• Result is the same as previous
benchmark

• Aggregate the four processor
measurements taken on each
node

• Found regular pattern of noise:
every 32 nodes contain some
nodes that are noisier

• All nodes suffer a moderate
amount of noise

• Node 0 (cluster manager), node
1 (the quorum node), node 31
(the RMS cluster monitor) suffer
more

• A delay in a single process slows down the whole application

• Not possible or cost effective to remove daemons or kernel threads

• Solution: coschedule the activities, pay penalty only once

• Developed a simulator, taking account
into all events

• Each event: <F, L, E, P>

• Frequency F, average duration L, the
distribution E, the placement (set of
nodes) P

• Remove noise on either node 0, 1 or 31,
only 15% improvement

• Remove all three nodes, 35%

• Remove kernel noise: significant
improvement

• More performance is lost to short but
frequent noise on all nodes than to long
but less frequent noise on just a few
nodes

• The authors undertook some
optimizations on ASCI Q

• Removed about ten daemons from
all nodes

• Decreased the frequency of RMS
monitoring by a factor of 2 on each
node (30 -> 60 seconds)

• Moved several TruCluster daemons
from node 1 and 2 to node 0 on
each cluster

• Expected speed improvement is a
factor of 2.2

• 3 different computational
granularity - 0, 1, 5ms (length of
computation between two
barriers)

• Only shows performance
improvement of micro
benchmark

• Will this improve performance of
SAGE?

• Jan-27-03 and May-01-03 are
measured after noise removal

• May-01-03 (min) is min cycle
time of over 50 cycles

• There is room for further
improvement: remove one
processor from node 0 and node
31, run system tasks

• X axis: duration of an individual
occurrence of system noise

• Y axis: cumulative amount of barrier
performance lost to noise

• 0 - 3ms: kernel activity, 5 - 18ms: RMS
daemons, >18ms TruCluster daemons

• Categorize the
relative impact of
each of the three
primary sources of
noise

• The computational
granularity of the
application “enter in
resonance” with
noise of a similar
harmonic frequency
and duration

