The Case of the Missing
Supercomputer Performance

Achieving Optimal Performance on the 8,192 Processors of ASCI Q

Fabrizio Petrini, Darren J. Kerbyson, Scott Pakin

Los Alamos National Laboratory

Minghui Liu 2021/04/01

The Problem

ASCI Q running SAGE is not performing as well as it should

« ASCI Q
- 8192 processors
- Installed at Los Alamos National Laboratory (LANL)
- 2nd fastest supercomputer (2003)
 SAGE
- Eulerian hydrodynamics application

- 150,000 lines of Fortran and MPI code

How the authors

l. determined that ASCI Q was not performing well
Il. identified the source of the performance loss

lll. improved performance

V. remeasure the performance

—
N

* A performance model of SAGE
(verified on many systems to
predict performance within 10%

—h
N

—

error) %0.8
Z O o 00— 0o 09—
* Measured ASCI Q one half (4096 87
processors) at a time, the two 0.4
halves are consistent e Sep-21-02
0.2 —a— Nov-25-02
. . —e— Model
 SAGE performs significantly 5 - -
worse than was predicted by the 0 512 1024 1536 2048 2560 3072 3584 4096

Number of Processors

model
Figure 1: Expected and measured SAGE performance

O
o

—e— 1 process per node

. —=— 2 process per node
—a— 3 process per node
4 process per node

o
&

o
~

o
©

O
\

 Performance of using 4
processors/node is different

o
—

Difference in measurement & model (s)

e S e R e
10

1 100 1000 10000
Number of Processors

Figure 2: Difference between modeled and measured
SAGE performance when using 1, 2, 3, or 4 processors
per node

200000

180000 —e— 1 process per node
—=— 2 process per node

160000 —— 3 process per node

140000 4 process per node
e > 256 nodes, using 4 120000
processors/node is worse than 100000

using 3 processors/node

80000

60000

e >512 nodes, using 4
processors/node is worse than 20000
using 2 processors/node 0

40000

Processing Rate (cell-updates / node / s)

1 10 100 1000
Number of Nodes

Figure 3: Effective SAGE processing rate when using
1, 2, 3, or 4 processors per node

w

o
—r
N
o

o Measured
—— Model

N
&

N
o
|

Cycle time (s)
on

—_
o

o
&)

o
o

100 200 300 400 500 600 700 800 900 1000
Cycle Number

o0} o O — A ™ < n o N~ Q0 O +

™~
o

Histogram Bins (s)

(a) Variability (b) Histogram

Figure 4: SAGE cycle-time measurements on 3,584
processors

« SAGE performs a constant amount of work per cycle and could be expected to take a
constant amount of time to finish

* Cycle time ranges from 0.7 to 3 seconds, greater than a factor of 4 in variability

1.4

—e—cycle_time
10 | —a—get d
put
—e— allreduce
—x— reduction

—=— broadcast

e Collective-communication 72:
operations: allreduce, reduction, E 06 ‘
account for the increase in cycle

_ 0.4 e
time | e ~

1 10 100 1000 10000
Number of Processors

Figure 5: Profile of SAGE’s cycle time
Using 4 processors per node

e <=3 processors / hode, latency <

300 us

* A problem arises when using all

4 processors within a node,
latency > 3ms

I | I |
——— 1 process per node

2.5 r --=-- 3 processes per node
- - -- 4 processes per node
~ 2
7]
E
>
S 1.5 o
Q
3 o
1 lg,
05 r A

*-—
L 4

=

- —B -
e e e e i s 1

—*——

0 128 256 384 512 640 768 896 1024

Nodes

Figure 6: allreduce latency as a function of the number

of nodes and processes per node

* Synthetic parallel benchmark, Ll s m——————

alternatively computes for O, 1, Sl OO o Bl bt

or 5ms then performs either an ol barrier, no computation

allreduce or a barrier R barrier, S ms granularity """

= 107 o

* |deal: grow logarithmically with g 8 s -

increasing number of nodes, -6y et

insensitive to computational T T

granularity 2 e o

0 128 256 384 512 640 768 896 1024

* Actual: grow linearly with number Nodes

of nodes, and increase with Figure 7: allreduce and barrier latency with varying

computational granu Iarity amounts of intervening computation

Improved performance of allreduce 7x better

SAGE spends 51% of time in allreduce, should lead to 78% performance gain
in SAGE

Actual: only marginal improvement
Eliminates MPI implementation and network as source of performance loss

Hypothesis: periodic system activities were interfering with application
execution, causing performance variability (“noise”)

* A simple benchmark of running
synthetic computation for 1000
seconds in the absence of noise

* Slowed down experienced by
each process is low, < 2.5%

 Contradicts the “noise”
hypothesis

START END

9 9

oo

TIME

Figure 8: Performance-variability microbenchmark

2.5

2 -

1.5

1._

Slowdown (percentage)

il
|

0.5 W

0
0 512 1024 1536 2048 2560 3072 3584 4096

Processes

Figure 9: Results of the performance-variability mi-
crobenchmark

START END

A new benchmark of running 1 V
million iterations of synthetic
computation, each iteration
precisely 1ms in the absence of
noise, total 1000 seconds

O 0 9 o

TIME

Figure 10: Performance-variability of the new mi-
crobenchmark

Result is the same as previous >
benchmark 2 |

1.8
1.6
1.4
1.2 |

1+
0.8

Found regular pattern of noise: o
every 32 nodes contain some N
nodes that are noisier 0 128 256 384 512 640 768 896 1024

Nodes

Aggregate the four processor
measurements taken on each
node

Slowdown (percentage)

Figure 11: Results of the performance-variability mi-
crobenchmark analyzed on a per-node basis

1.4 [| I [I l [
1 3 - Node O _

©
?:30 1.2 Node31 — g
e All nodes suffer a moderate 5 L1l . Nodel
amount of noise g 10
§ 8: Compute Nodes
* Node 0 (cluster manager), node s .
= 0.7
1 (the quorum node), node 31 =06
' 0.5
(the RMS cluster monitor) suffer) s 0 15 20 a5 0
more Nodes

Figure 12: Slowdown per node within each 32-node
cluster

3.35e+07 | , | | |

1.04e+06 | _:

- 177 msec _

a 32708 elv(Z:rl;l 8365 S every 125 s :
Q

1024 | 100 msec 200 msec *
every 125 s every 70s
32 \ /]

1 L | D am

0 50 100 150 200 250
Latency (ms)

(a) Latency distribution on node 0

Latency Distribution on a Cluster Node

3.35¢+07 r | l |
1.04e+06 | :
L 32768 | RMS ;
= :
o I
- 1024 | \]
32 | .
TABLE 2: Summary of noise on each 32-node cluster 1 : | | ‘ |L
: Duration Location (nodes) 10 15 20 25
Source of noise
(ms) 0 1 230 31 Latency (ms)
Kernel 0-3 (74 (74 4 (74
RMS damons 5-18 v v v v (c) Latency distribution on nodes 2-30
TruCluster deemons >18 (74 (74

3.35e+07 T l l 1 ' r l
1.04e+06 | -

32768 | -

Items

1024 ‘ 335 ms every 60 s ‘

32 \
Bk | | Ll

0 50 100 150 200 250 300 350
Latency (ms)

(b) Latency distribution on node 1

3.35e+07 | r | l I I l |
1.04e+06 _ RMS cluster _
[data collection |
32768 R y
2 [local |

: | v

= 1024 | :
32 F \ |
1 i 1 | | | nm 1 ||]

0O 2 4 6 8 10 12 14 16 18 20
Latency (ms)

(d) Latency distribution on node 31

Figure 13: Identification of the events that cause the different types of noise

C— 1k : C— computation
I noise

[] idle time

I barrier

(a) Uncoordinated noise (b) Coscheduled noise

Figure 14: Illustration of the impact of noise on synchronized computation

* A delay in a single process slows down the whole application
 Not possible or cost effective to remove daemons or kernel threads

» Solution: coschedule the activities, pay penalty only once

Developed a simulator, taking account
into all events

Each event: <F L, E, P>

Frequency F, average duration L, the
distribution E, the placement (set of
nodes) P

Remove noise on either node 0, 1 or 31,
only 15% improvement

Remove all three nodes, 35%

Remove kernel noise: significant
Improvement

More performance is lost to short but
frequent noise on all nodes than to long
but less frequent noise on just a few
nodes

I [
—<>— measured 5
—+— model

| —%&— without 31
6 - —x— without 0, 1 and 31 >
—<>— without kernel noise

N
N
N
>
>

Latency (ms)

%

384 512 640 768 896 1024
Nodes

Figure 15: Simulated vs. experimental data with pro-
gressive exclusion of various sources of noise in the
system

e The authors undertook some e Moved several TruCluster daemons
optimizations on ASCI Q from node 1 and 2 to node 0 on

each cluster
e Removed about ten daemons from

all nodes EXpected speed improvement is a

factor of 2.2
* Decreased the frequency of RMS

monitoring by a factor of 2 on each
node (30 -> 60 seconds)

16 | | | | | |

—<— 0Oms
. . 14 + —+— 1 ms &
e 3 different computational
' - —&— 1 ms, optimize —
granularity - 0, 1, 5ms (length of gl QR R it s ms
computation between two g 00 i
barriers) z 8)
g 6 ‘ﬂ,-ﬁ"ﬂ -
- <" 1 ms
e Only shows performance 4t ‘ﬂﬂ/ 25x| -
. . i) ,,‘;‘-:-A ~
improvement of micro 2 e e OmSm(I
benchmark Y - — — e 1 1

0 128 25 384 512 640 768 896 1024

e Will this improve performance of
SAGE?

Figure 16: Performance improvements obtained on
the barrier-synchronization microbenchmark for differ-
ent computational granularities

—
N

/
1.2
e Jan-27-03 and May-01-03 are
measured after noise removal]
T;’ 0.8 s
 May-01-03 (min) is min cycle o . W
time of over 50 cycles 3 ~=— Sep-21-02
04 —a— Nov-25-02 i
—x—Jan-27-03
* There is room for further 02 e i
Improvement: remove one ~+— Model
0 | |] l l l
processor from node 0 and node 0 1024 2048 3072 4096 5120 6144 7168 8192
31, run System taSkS Number of Processors

Figure 17: SAGE performance: expected and mea-
sured after noise removal
TABLE 3: SAGE effective performance after noise removal

Configuration Usable Cycle Processing rate Improvement
processors time (10° cell updates/sec.) factor
Unoptimized system 8,192 1.60 69.1 —N/A—
3 processes/node 6,144 0.64 129.3 1.87
Without node 0 7,936 0.87 123.1 1.78
Without nodes 0 and 31 7,680 0.86 120.6 1.75
Without nodes 0 and 31 (best observed) 7,680 0.68 152.5 2.21

Model 8,192 0.63 178.4 2.58

» (Categorize the
relative impact of
each of the three
primary sources of
noise

 The computational
granularity of the
application “enter in
resonance” with
noise of a similar
harmonic frequency
and duration

Cumulative Noise (ms)

Cumulative Noise (ms)

| | | | | I 100

0.18 |7 TruCluster daemons: 17%
0.16
0.14 RMS daemons: 17% 80 2
S
Z.
0.12 60 g
0.1 =
ks
0.08 40 %
0.06 §
0.04 20 é‘?
0.02
0 0
0.015 0.062 0.25 1 4 16 64 256
Noise Latency (ms)
(a) No intervening computation
I ' I ' | ' T ' I ' T ' — 100
2 -
TruCluster daemons: 27%
180 o
15 F Z
60 Tg‘
RMS daemons: 40% E
1 o
40 S
S8
3
Kernel activity: 33%
0 — ' 0
0.015 0.062 0.25 1 4 16 64 256

Noise Latency (ms)

(b) 1ms of intervening computation

7 [| T | | T T — 100

6T 80
/g 5L TruCluster daemons: 52% -%
RS2 Z.
(0] —
Rz 160 S8
24y :
2 G
2= 3+)
= 40 %0
= 5 L RMS daemons: 34% &

Kernel activity: 14%
0 : ' 0
0.015 0.062 0.25 1 4 16 64 256

Noise Latency (ms)
(c) 5ms of intervening computation

Figure 18: Cumulative noise distribution for barrier
synchronizations with different computational granu-
larities

e X axis: duration of an individual
occurrence of system noise

e Y axis: cumulative amount of barrier
performance lost to noise

 0-3ms: kernel activity, 5 - 18ms: RMS
daemons, >18ms TruCluster daemons

