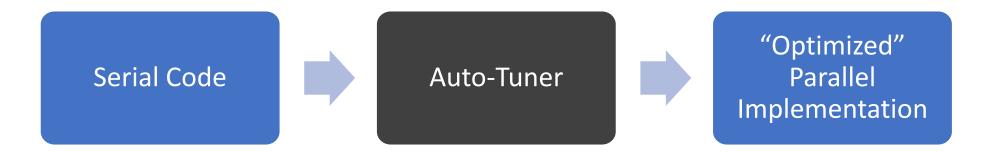
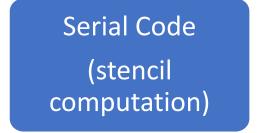
Overview: "An Auto-Tuning Framework for Parallel Multicore Stencil Computations"


Shoaib Kamil et al., 2010

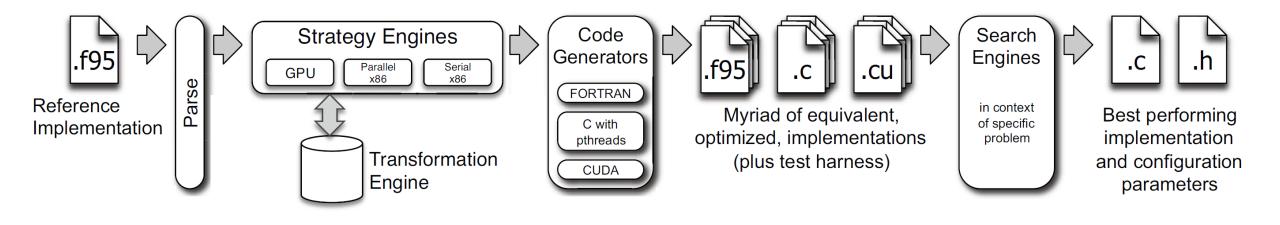
Presented by Matt Ziemann for UMD CMSC 714 03/23/2021

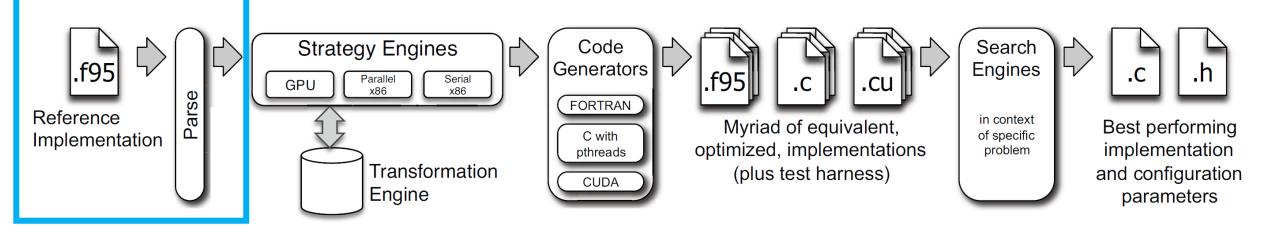

The Bottom Line

- Generalized stencil auto-tuning framework
 - Portable across varied architectures
- ~1.5-4x speedup vs conventional parallelization
 - Up to 22x speedup vs serial implementation

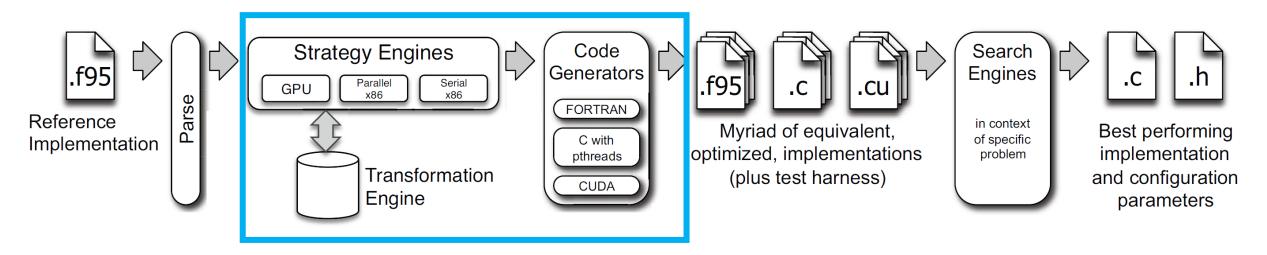
Auto-Tuning

Generalized Auto-Tuning

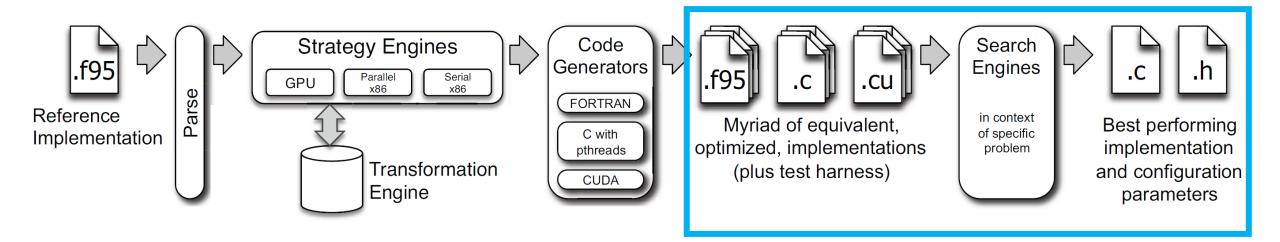



Generalized Auto-Tuner "Optimized" Parallel Implementation

C | Fortran | CUDA


Stencil Computations

- Scientific computing applications
- Regular grid, nearest-neighbor computations
 - e.g. gradient, divergence, and Laplacian calculations
- High memory traffic for relatively low computation
- Previously, auto-tuning was successful only for single stencil instantiations, not multiple types of stencil computations
 - Required "immense effort" to hand-write

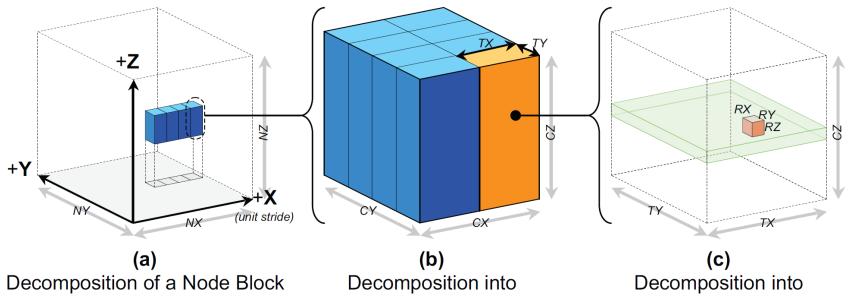


- Parses serial code and generates an Abstract Syntax Tree for later transformations
- Modular different front-end implementations are possible (vs F95)

- Strategy engine intelligently searches parameter space of possible auto-tuned optimizations based on desired platform
- Transformation engine generates these variations
 - Uses domain specific-knowledge to implement safe optimizations that a conventional compiler cannot

• Search engine evaluates best-performing variation and passes that information to the user

Optimization Space


	Optimization		Parameter Tuning Range by Architecture			
Category	Parameter	Name	Barcelona/Nehalem Victoria Falls GTX280			
Data Allocation	NUMA Aware		\checkmark	\checkmark	N/A	
		CX	NX	{8NX}	$\{16^{\dagger}NX\}$	
	Core Block Size	CY	$\{8NY\}$	$\{8NY\}$	$\{16^{\dagger}NY\}$	
		CZ	{128NZ}	{128NZ}	$\{16^{\dagger}NZ\}$	
Domain		TX	CX	CX	$\{1\frac{CX}{16}\}^{\ddagger}$	
Decomposition	Thread Block Size	TY	CY	CY	$\left\{\frac{\mathrm{CY}}{16}\mathrm{CY}\right\}^{\ddagger}$	
		ΤZ	CZ	CZ	$\{\frac{\dot{C}\dot{Z}}{16}CZ\}^{\ddagger}$	
	Chunk Size		$\left \left\{ 1 \dots \frac{NX \times NY}{CX \times CY \times CZ} \right. \right. \right.$	$\left\{ \frac{N \times NZ}{N \times N Threads} \right\}$	N/A	
	Array Indexing		\checkmark	\checkmark	\checkmark	
Low		RX	{18}	{18}	1	
Level	Register Block Size	RY	{12}	{12}	1*	
		RZ	{12}	{12}	1*	

Optimization Space

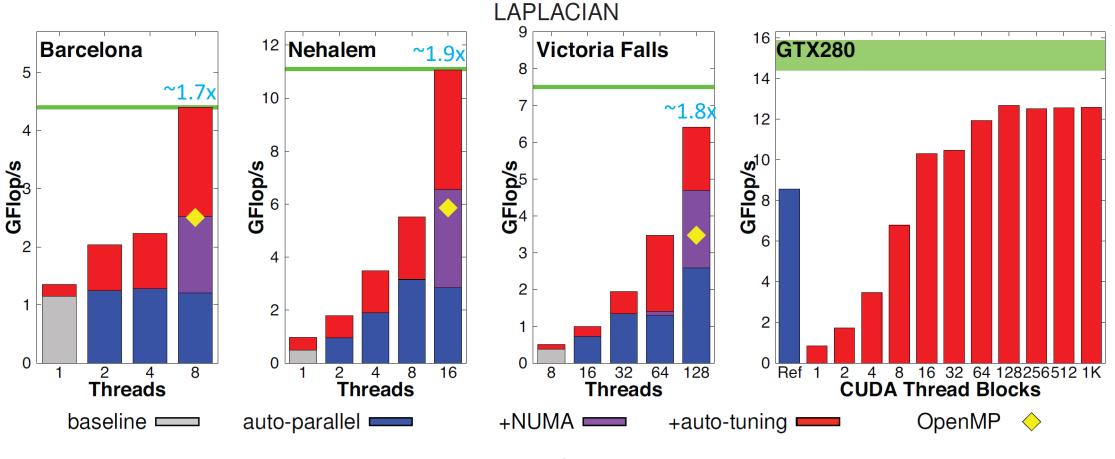
	Optimization		Parameter Tuning Range by Architecture			
Category	Parameter	Name	Barcelona/Nehalem Victoria Falls GTX280			
Data Allocation	NUMA Aware		\checkmark	\checkmark	N/A	
		CX	NX	{8NX}	$\{16^{\dagger}NX\}$	
	Core Block Size	CY	$\{8NY\}$	$\{8NY\}$	$\{16^{\dagger}NY\}$	
		CZ	{128NZ}	{128NZ}	$\{16^{\dagger}NZ\}$	
Domain		TX	CX	CX	$\{1\frac{CX}{16}\}^{\ddagger}$	
Decomposition	Thread Block Size	TY	CY	CY	$\left\{\frac{\mathrm{CY}}{16}\mathrm{CY}\right\}^{\ddagger}$	
		ΤZ	CZ	CZ	$\{\frac{\dot{C}\dot{Z}}{16}CZ\}^{\ddagger}$	
	Chunk Size		$\left\{1\frac{NX\times NY}{CX\times CY\times CZ}\right\}$	$\left\{ \frac{X \times NZ}{\times NThreads} \right\}$	N/A	
	Array Indexing		\checkmark	\checkmark	\checkmark	
Low		RX	{18}	{18}	1	
Level	Register Block Size	RY	{12}	{12}	1*	
		RZ	{12}	{12}	1*	

Domain Decomposition

NX, NY, NZ = 256

into a Chunk of Core Blocks

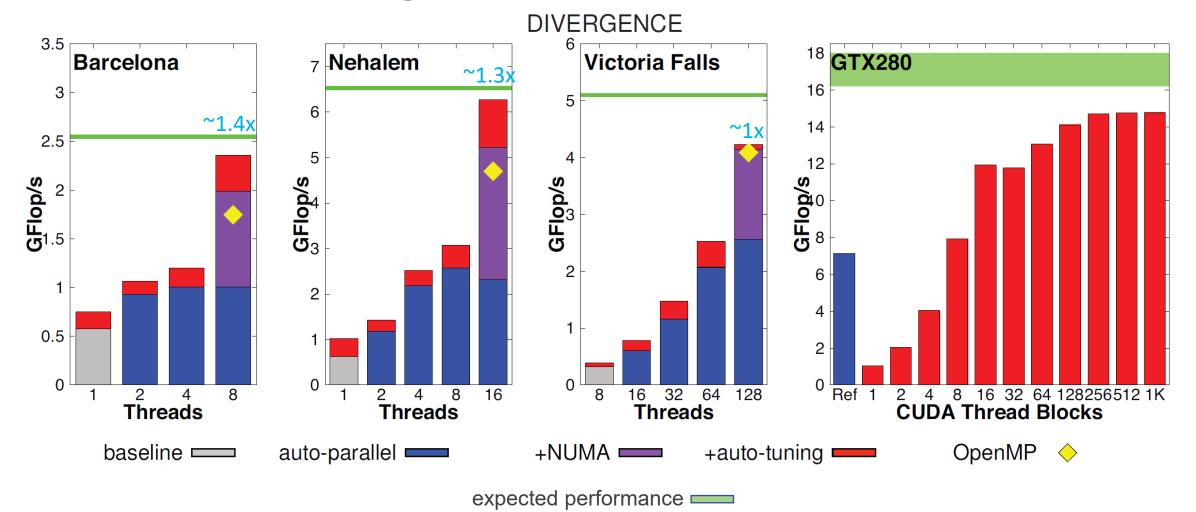
Thread Blocks


Register Blocks

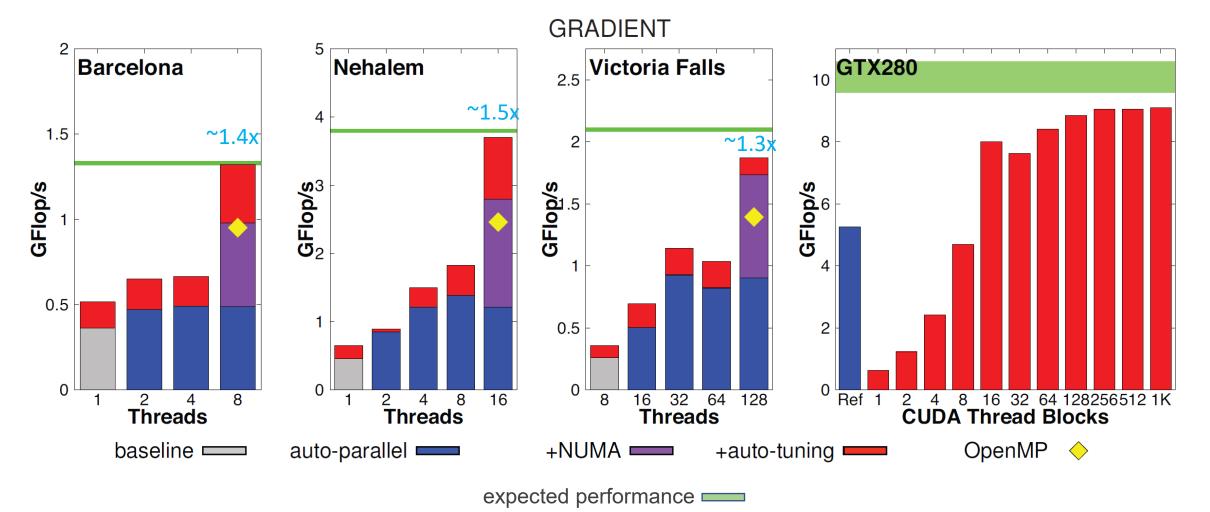
		Optimization		Parameter Tuning Range by Architecture		
	Category	Parameter	Name	Barcelona/Nehalem	Victoria Falls	GTX280
			CX	NX	{8NX}	$\{16^{\dagger}NX\}$
		Core Block Size	CY	$\{8NY\}$	$\{8NY\}$	$\{16^{\dagger}NY\}$
			CZ	{128NZ}	{128NZ}	$\{16^{\dagger}NZ\}$
	Domain		TX	CX	СХ	$\{1\frac{CX}{16}\}^{\ddagger}$
	Decomposition	Thread Block Size	TY	CY	CY	$\{\frac{CY}{16}CY\}^{\ddagger}$
			ΤZ	CZ	CZ	$\{\frac{\dot{C}\dot{Z}}{16}CZ\}^{\ddagger}$
		Chunk Size		$\left\{1\frac{NX \times NY \times NZ}{CX \times CY \times CZ \times NThreads}\right\}$		N/A

Performance Evaluation

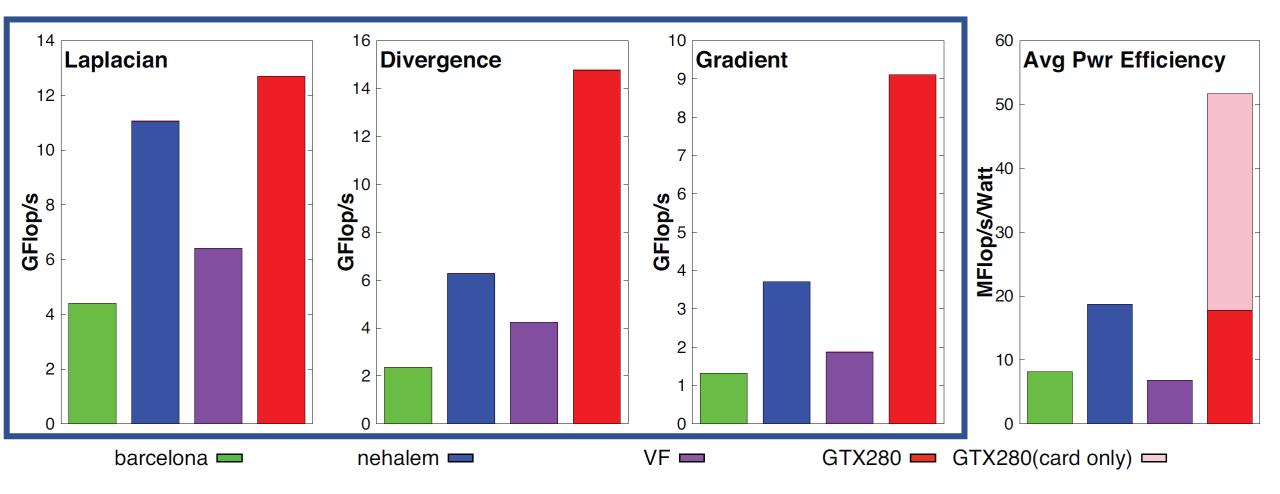
- Three stencil computations: Laplacian, Divergence, and Gradient
 - Implemented using central-difference on 256³ grid
- Four test platforms: AMD Barcelona, Intel Nehalem, Sun Victoria Falls, and NVIDIA GTX 280
 - All have Flop:DRAM byte ratios >> arithmetic intensity of stencil computations, so assumed to all be memory bound
- Benchmarked against serial & OpenMP variations


Results – Laplacian

expected performance


Approximate improvement vs OpenMP

Results – Divergence


Approximate improvement vs OpenMP

Results – Gradient

Approximate improvement vs OpenMP

Results – Peak Performance & Power Efficiency

Probably out of time?

Discuss!