
Overview: “An Auto-Tuning Framework for
Parallel Multicore Stencil Computations”

Shoaib Kamil et al., 2010

Presented by Matt Ziemann for UMD CMSC 714
03/23/2021

The Bottom Line

• Generalized stencil auto-tuning framework
• Portable across varied architectures

• ~1.5-4x speedup vs conventional parallelization
• Up to 22x speedup vs serial implementation

Auto-Tuning

Serial Code Auto-Tuner
“Optimized”

Parallel
Implementation

Generalized Auto-Tuning

Serial Code
(stencil

computation)

Generalized Auto-
Tuner

“Optimized”
Parallel

Implementation

C | Fortran|CUDA

Stencil Computations

• Scientific computing applications
• Regular grid, nearest-neighbor computations

• e.g. gradient, divergence, and Laplacian calculations

• High memory traffic for relatively low computation

• Previously, auto-tuning was successful only for single stencil
instantiations, not multiple types of stencil computations

• Required “immense effort” to hand-write

Stencil Auto-Tuning Framework

Stencil Auto-Tuning Framework

• Parses serial code and generates an Abstract Syntax Tree for later
transformations

• Modular – different front-end implementations are possible (vs F95)

Stencil Auto-Tuning Framework

• Strategy engine intelligently searches parameter space of possible
auto-tuned optimizations based on desired platform

• Transformation engine generates these variations
• Uses domain specific-knowledge to implement safe optimizations that a

conventional compiler cannot

Stencil Auto-Tuning Framework

• Search engine evaluates best-performing variation and passes that
information to the user

Optimization Space NX, NY, NZ = 256

Optimization Space NX, NY, NZ = 256

Domain Decomposition NX, NY, NZ = 256

Performance Evaluation

• Three stencil computations: Laplacian, Divergence, and Gradient
• Implemented using central-difference on 2563 grid

• Four test platforms: AMD Barcelona, Intel Nehalem, Sun Victoria Falls,
and NVIDIA GTX 280

• All have Flop:DRAM byte ratios >> arithmetic intensity of stencil
computations, so assumed to all be memory bound

• Benchmarked against serial & OpenMP variations

Results – Laplacian

expected performance

~1.7x

~1.9x

~1.8x

Approximate improvement vs OpenMP

Results – Divergence

expected performance

~1.4x

~1.3x

~1x

Approximate improvement vs OpenMP

Results – Gradient

expected performance

~1.4x
~1.5x

~1.3x

Approximate improvement vs OpenMP

Results – Peak Performance & Power Efficiency

Probably out of time?

Discuss!

	Overview: “An Auto-Tuning Framework for Parallel Multicore Stencil Computations”
	The Bottom Line
	Auto-Tuning
	Generalized Auto-Tuning
	Stencil Computations
	Stencil Auto-Tuning Framework
	Stencil Auto-Tuning Framework
	Stencil Auto-Tuning Framework
	Stencil Auto-Tuning Framework
	Optimization Space
	Optimization Space
	Domain Decomposition
	Performance Evaluation
	Results – Laplacian
	Results – Divergence
	Results – Gradient
	Results – Peak Performance & Power Efficiency
	Probably out of time?

