HPCTOOLKIT: tools for performance analysis of optimized parallel programs

Onur Cankur

HPCTOOLKIT: tools for performance analysis of optimized parallel programs

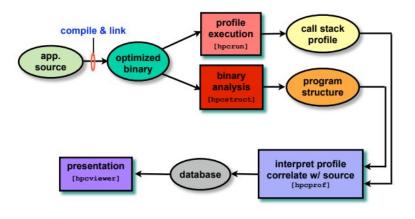
- Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel Marin, John Mellor-Crummey, and Nathan R. Tallent
- Department of Computer Science, Rice University
- Oak Ridge National Laboratory
- Concurrency and Computation: Practice and Experience
- 2010

- Developed for their own use at Rice University.
- More papers on HPCToolkit: <u>http://hpctoolkit.org/publications.html</u>

Introduction

- HPCToolkit
 - Collecting performance measurements of fully optimized executables.
 - Analyzing application binaries to understand the structure of optimized code.
 - Correlating measurements with program structure.
 - Presenting the resulting performance data.
- Pinpoint performance and scalability bottlenecks in complex applications.

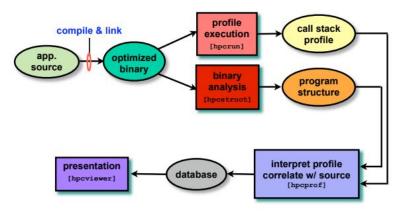
Motivation


- HPC systems and applications are very complex.
- Achieving top performance is important.
- Problems with tools at that time:
 - Relying on instrumentation and compromise measurement accuracy.
 - High overhead.
 - Not fully capable of correlating measurements with the source code.
 - Using call graph structure or not fully capable of understanding full calling context of optimized code.
 - Problem focused analysis

Measurement Methodology

- Scalable measurement and analysis
- Supports C, C++, and Fortran
 - Directly works with application binaries
- Avoid code instrumentation
 - Uses statistical sampling
- Avoid blind spots
 - Source code might not be available (e.g. math and communication libraries)
 - Performs binary analysis
- Calling context tree
- Multiple metrics
- Present in a hierarchical fashion

Performance Measurement - hpcrun

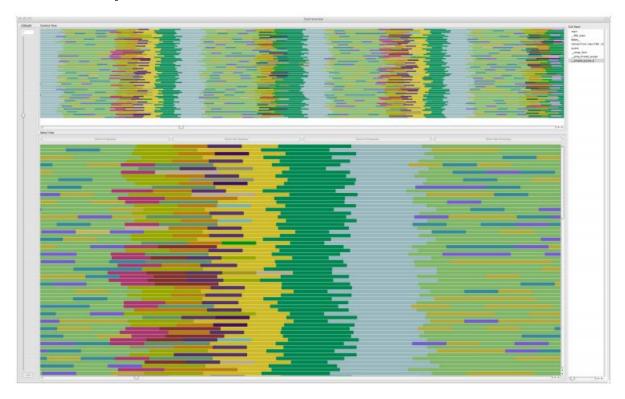

- Call path profiling and tracing
- Statistical sampling
- Coping with fully optimized binaries
 - Unwind the call stack at any point in a program's execution
- Event triggers
 - Measure different aspects of the program performance.
 - Cache misses, I/O, memory allocations, etc.
- Control over parallel applications
 - Intercepts certain process control routines using library preloading.
- Handling dynamic loading
- Generate a measurement directory

HPCToolkit workflow http://hpctoolkit.org/pubs/cpe-2010-hpctoolkit.pdf

Analysis - hpcstruct & hpcprof

- hpcstruct
 - Recover the program structure using binary analysis
 - Mapping between object code and its associated source code structure
 - Generate a .hpcstruct file
- hpcprof
 - Attribute measurements to the application's source code using the program structure file.
 - Generate a performance database directory

HPCToolkit workflow http://hpctoolkit.org/pubs/cpe-2010-hpctoolkit.pdf


Presentation - hpcviewer

	hpcviewer: GTC scalability analysis	
main.F90 🖾 🗮 poisson.f90		
125! push electron, sub-cycling 126 do i=1,ncycle*irk 127! 1st RK step 128 CALL PUSHE(i,1) 129 coll time(t0,dt,t0wc,dtwc) 130 time(7)-time(7)+dt 131 timewc(7)-timewc(7)+dtwc 132 timewc(7)-timewc(7)+dtwc		
133 CALL SHIFTE 134 coll timer(t0,dt,t0wc,dtwc) 135 time(8)-time(8)-dt 136 timewc(8)-timewc(8)+dtwc 137 137		
138! 2nd RK step 139 CALL PUSHE(i,2) 140 call timer(t0,dt,t0wc,dtwc)		
Calling Context View 📐 Callers View 🎠 Flat View		
1 🕀 🕹 🔞 Reo 🕅		
	MPI 0/32 (us) (I) * MPI 0/32 (us) (E) MPI 0/64 (us) (I) MPI 0/64 (us) (E) MPI 1/64 (us) (I) MPI 1/64	(us) (E)
	9.49e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 %	(us) (E)
	9.49e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 5.16e+08 100 %	(us) (E)
	9.49e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 %	(us) (E) 8 100 %
	9.49e+08 100 \$ 5.20e+08 100 \$ 5.16e+08 100 \$ 5.00e+03 0.08 5.16e+08 100 \$ 5.00e+03 0.08 5.16e+08 100 \$ 5.00e+03 10.08 \$ 5.00e+03 10.08 \$ 5.00e+03 10.08 \$ 5.00e+03 10.08 \$ 10.08	(us) (E) 8 100 %
	9.49e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.00e+08 92.5 %	(us) (E) 8 100 % 13 0.0%
	9.49e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.00e+03 0.0% 5.16e+08 100 % 5.00e+08 9.5% 9.42e+08 99.2% 5.08e+08 97.7% 5.00e+03 0.0% 5.08e+08 96.5% 5.00e+03	(us) (E) 8 100 % 13 0.0% 13 0.0%
	9.49e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.00e+03 0.0% 5.16e+08 100 % 5.00e+0 9.49e+08 100 % 5.08e+08 97.7% 5.08e+08 30.0% 5.08e+08 98.5% 5.00e+0 9.42e+08 99.2% 5.08e+08 97.7% 5.00e+03 0.0% 5.08e+08 98.5% 5.00e+0 7.98e+08 84.1% 4.29e+08 82.4% 5.00e+03 0.0% 4.29e+08 83.0% 5.00e+0	(us) (E) 8 100 % 13 0.0% 13 0.0% 13 0.0%
A → Aggregate Metrics Scope Experiment Aggregate Metrics main m →f90_main w →f90_main w →f90_at main.F90: 66-198 w loop at main.F90: 67-185 w loop at main.F90: 120-167 w loop at main.F90: 128-148	9.49e+08 100 9.49e+08 100 5.20e+08 100 5.16e+08 100 5.06e+08	(us) (E) 8 100 % 3 0.0% 3 0.0% 3 0.0% 3 0.0%
	9.49e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.06e+08 0.0% 5.16e+08 100 % 5.06e+08 9.42e+08 99.24 5.08e+08 97.78 5.00e+03 0.0% 5.08e+08 98.5% 5.00e+0 9.42e+08 99.24 5.08e+08 97.78 5.00e+03 0.0% 5.08e+08 9.50e+0 7.78 5.00e+03 0.0% 5.08e+08 5.00e+0 9.42e+08 8.04e+08 8.04e+08 5.00e+03 0.0% 5.00e+03 5.00e+03 0.0% 5.00e+03 5.00e+03 0.0% 5.00e+03 </td <td>(us) (E) 8 100 % 3 0.0% 3 0.0% 3 0.0% 3 0.0% 8 24.5%</td>	(us) (E) 8 100 % 3 0.0% 3 0.0% 3 0.0% 3 0.0% 8 24.5%
Scope Experiment Aggregate Metrics ▼ main ▼ ⊮ _f90_main ▼ ⊮ MAIN_ ▼ loop at main.F90: 66-198 ▼ loop at main.F90: 67-185 ▼ loop at main.F90: 128-148 ► ⊯ pushe ► ⊯ pushe	9.49e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.42e+08 100 % 5.20e+08 100 % 5.00e+03 0.0% 5.16e+08 100 % 5.00e+03 9.42e+08 99.2% 5.08e+08 97.7% 5.00e+03 0.0% 5.08e+08 98.5% 5.00e+03 7.59e+08 84.1% 4.29e+08 82.4% 5.00e+03 0.0% 4.29e+08 83.0% 5.00e+03 7.69e+08 81.0% 4.04e+08 77.7% 5.00e+03 0.0% 4.29e+08 83.4% 5.00e+03 3.37e+08 31.0% 2.31e+08 25.8% 1.72e+08 33.2% 1.25e+08 24.1% 1.73e+08 33.4% 1.25e+01 3.23e+08 34.0% 2.31e+08 24.3% 1.66e+08 31.9% 1.20e+08 23.1% 1.66e+08 32.1% 1.19e+0	(us) (E) 8 100 % 3 0.0% 3 0.0% 3 0.0% 3 0.0% 8 24.5% 9 23.1%
Scope Experiment Aggregate Metrics * main * mb _f90_main * mb _f90_main * mb MAIN_ * loop at main.F90: 66-198 * loop at main.F90: 67-185 * loop at main.F90: 120-167 * loop at main.F90: 128-148 b Bb pushe b Bb pushe b Bb pushe b Bb pushe b Bb pushe b Bb pushe	9.49e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.00e+03 0.0% 5.16e+08 100 % 5.00e+0 9.42e+08 99.2% 5.08e+08 97.7% 5.00e+03 0.0% 5.08e+08 95.5% 5.00e+0 7.98e+08 84.1% 4.29e+08 82.4% 5.00e+03 0.0% 4.29e+08 83.0% 5.00e+0 7.69e+08 81.0% 2.45e+08 25.8% 1.72e+08 33.2% 1.25e+08 24.1% 1.73e+08 33.4% 1.25e+08 3.37e+08 34.0% 2.31e+08 24.3% 1.66e+08 31.9% 1.25e+08 33.2% 1.26e+08 33.2	(us) (£) 8 100 % 13 0.0% 13 0.0% 13 0.0% 13 0.0% 13 0.0% 13 0.0% 13 0.0% 14 24.5% 18 23.1% 17 4.0%
Scope Experiment Aggregate Metrics ▼ main ▼ ▶ _f90_main ▼ ▶ MAIN_ ▼ loop at main.F90: 66-198 ▼ loop at main.F90: 120-167 ▼ loop at main.F90: 128-148 ▶ ₽ pushe ▶ ₽ pushe	9.49e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.49e+08 100 % 5.20e+08 100 % 5.20e+08 100 % 5.16e+08 100 % 5.16e+08 100 % 9.42e+08 100 % 5.20e+08 100 % 5.00e+03 0.0% 5.16e+08 100 % 5.00e+03 9.42e+08 99.2% 5.08e+08 97.7% 5.00e+03 0.0% 5.08e+08 98.5% 5.00e+03 7.59e+08 84.1% 4.29e+08 82.4% 5.00e+03 0.0% 4.29e+08 83.0% 5.00e+03 7.69e+08 81.0% 4.04e+08 77.7% 5.00e+03 0.0% 4.29e+08 83.4% 5.00e+03 3.37e+08 31.0% 2.31e+08 25.8% 1.72e+08 33.2% 1.25e+08 24.1% 1.73e+08 33.4% 1.25e+01 3.23e+08 34.0% 2.31e+08 24.3% 1.66e+08 31.9% 1.20e+08 23.1% 1.66e+08 32.1% 1.19e+0	(us) (E) 8 100 % 13 0.0% 13 0.0% 13 0.0% 13 0.0% 13 0.0% 13 0.0% 13 0.0% 14 0.0% 18 24.5% 18 23.1% 17 4.0%

Presentation - hpcviewer

		hpcviewer: G	TC scalability ana	alysis			
main.F90 🗮 poisson.f90 🕄							-
<pre>isubroutine poisson(iflag) use global_parameters use field_array use particle_decomp implicit none integer iflag,i,it,ij,j,k,n,iterat: integer,dimension(:,:),allocatable integer,dimension(:,:),allocatable real(wp) gama,tmp,prms,perr(mgrid) real(wp) ptilde(mgrid),phitmp(mgrid) real(wp) tilde(mgrid),phitmp(mgrid) real(wp),dimension(:),allocatable real(wp),dimension(:),allocatable real(wp),dimension(:),allocatable integer :: ipartd,nzeta,izeta1,ize real(wp),dimension(:),allocatable integer :: allocatable</pre>	<pre>:: nindex le :: indexp ble :: ring) d),dentmp(mgrid) ta2</pre>	st,ierr					
	200						-
1 + (6 AN 171		N				1	
企	MPI 0/32 (us) (i)	MPI 0/32 (us) (E)	MPI 0/64 (us) (l)	MPI 0/64 (us) (E)	MPI 1/64 (us) (l)	MPI 1/64 (us) (E)	Percent Excess Work()
1 4 6 for M	MPI 0/32 (us) (i) 9.49e+08 100 1	9.49e+08 100	\$ 5.20e+08 100 1	\$ 5.20e+08 100 1	5.16e+08 100 %	5.16e+08 100 %	Percent Excess Work(# 9.13e+00
Scope Experiment Aggregate Metrics viutil_spinandwaitcq	MPI 0/32 (us) (i) 9.49e+08 100 4 3.24e+07 3.44	9.49e+08 100 2.89e+07 3.0	5.20e+08 100 1 2.87e+07 5.51	8 5.20e+08 100 9 8 2.65e+07 5.19	5.16e+08 100 9 2.95e+07 5.79	5.16e+08 100 % 2.73e+07 5.3%	Percent Excess Work() 9.13e+00 2.62e+00
☆ 문 6 R R R R Experiment Aggregate Metrics viutil_spinandwaltcq v 핵 해 MPID_DeviceCheck	MPI 0/32 (us) (l) 9.49e+08 100 4 3.24e+07 3.44 3.24e+07 3.44	9.49e+08 100 2.89e+07 3.0 2.89e+07 3.0	8 5.20e+08 100 0 8 2.87e+07 5.50 8 2.87e+07 5.50	\$ 5.20e+08 100 0 \$ 2.65e+07 5.10 \$ 2.65e+07 5.10	5.16e+08 100 4 2.95e+07 5.79 2.95e+07 5.79	5.16e+08 100 % 2.73e+07 5.3% 2.73e+07 5.3%	Percent Excess Work(0 9.13a+00 2.62e+00 2.62e+00
	MPI 0/32 (us) (l) 9.49e+08 100 4 3.24e+07 3.44 3.24e+07 3.44 2.40e+07 2.54	9.49e+08 100 2.89e+07 3.0 2.89e+07 3.0 2.14e+07 2.3	<pre>8 5.20e+08 100 0 8 2.87e+07 5.50 8 2.87e+07 5.50 8 1.91e+07 3.70</pre>	<pre>% 5.20e+08 100 3 % 2.65e+07 5.19 % 2.65e+07 5.19 % 1.76e+07 3.49</pre>	5.16e+08 100 8 2.95e+07 5.78 2.95e+07 5.78 2.00e+07 3.98	<pre>8 5.16e+08 100 % 8 2.73e+07 5.3% 8 2.73e+07 5.3% 8 1.85e+07 3.6%</pre>	Percent Excess Work(# 9.13e+00 2.62e+00 2.62e+00 1.56e+00
	MPI 0/32 (us) (l) 9.49e+08 100 1 3.24e+07 3.44 3.24e+07 3.44 2.40e+07 2.59 2.40e+07 2.59	9.49e+08 100 2.89e+07 3.0 2.89e+07 3.0 2.14e+07 2.3 2.14e+07 2.3	5.20e+08 100 1 2.87e+07 5.51 2.87e+07 5.51 1.91e+07 3.71 1.91e+07 3.71	5.20e+08 100 9 2.65e+07 5.10 2.65e+07 5.11 1.76e+07 3.40 1.76e+07 3.40	5.16e+08 100 9 2.95e+07 5.79 2.95e+07 5.79 2.00e+07 3.99 2.00e+07 3.99	<pre>4 5.16e+08 100 % 5.16e+08 100 % 2.73e+07 5.3% 5.73e+07 5.3% 1.85e+07 3.6% 1.85e+07 3.6%</pre>	Percent Excess Work(# 9.13e+00 2.62e+00 2.62e+00 1.56e+00 1.56e+00
金	MPI 0/32 (us) (I) 9.49e+08 100 1 3.24e+07 3.44 3.24e+07 3.44 2.40e+07 2.55 2.40e+07 2.55 2.40e+07 2.55	9.49e+08 100 2.89e+07 3.0 2.89e+07 3.0 2.14e+07 2.3 2.14e+07 2.3 2.14e+07 2.3	 5.20e+08 100 1 2.87e+07 5.51 2.87e+07 5.51 1.91e+07 3.71 1.91e+07 3.71 1.91e+07 3.71 	 \$.20e+08 100 9 2.65e+07 5.11 2.65e+07 5.11 1.76e+07 3.41 1.76e+07 3.41 1.76e+07 3.41 	5.16e+08 100 9 2.95e+07 5.79 2.95e+07 5.79 2.00e+07 3.99 2.00e+07 3.99 2.00e+07 3.99	5.16e+08 100 % 2.73e+07 5.3% 2.73e+07 5.3% 1.85e+07 3.6% 1.85e+07 3.6% 1.85e+07 3.6%	Percent Excess Work(# 9.13e+00 2.62e+00 2.62e+00 1.56e+00 1.56e+00 1.56e+00
	MPI0/32(us)(1) 9.49e+08100 3.24e+073.44 2.40e+072.54 2.40e+072.54 2.40e+072.54 2.40e+072.54	9.49e+08 100 2.89e+07 3.0 2.89e+07 3.0 2.14e+07 2.3 2.14e+07 2.3 2.14e+07 2.3 2.14e+07 2.3	5.20e+08 100 1 2.87e+07 5.55 2.87e+07 5.55 1.91e+07 3.76 1.91e+07 3.76 1.91e+07 3.76 1.91e+07 3.76	\$ 5.20e+08 100 1 \$ 2.65e+07 5.11 \$ 2.65e+07 5.11 \$ 1.76e+07 3.44 \$ 1.76e+07 3.44 \$ 1.76e+07 3.44 \$ 1.76e+07 3.44	5.160+08 100 9 2.950+07 5.79 2.950+07 5.79 2.000+07 3.99 2.000+07 3.99 2.000+07 3.99 2.000+07 3.99	\$ 5.16e+08 100 % 2.73e+07 5.3% 2.73e+07 5.3% 1.85e+07 3.6% 1.85e+07 3.6% 1.85e+07 3.6% 1.85e+07 3.6%	Percent Excess Work(0) 9.13e+00 2.62e+00 1.56e+00 1.56e+00 1.56e+00 1.56e+00
	MPI 0/32 (us) (1) 9.49e+08 100 4 3.24e+07 3.44 2.40e+07 2.59 2.40e+07 2.59 2.40e+07 2.59 2.40e+07 2.59 2.40e+07 2.59 8.36e+06 0.94	9.494+08 100 2.896+07 3.0 2.896+07 3.0 2.146+07 2.3 2.146+07 2.3 2.146+07 2.3 2.146+07 2.3 2.146+07 2.3 7.506+06 0.8	5.20e+08 100 1 2.87e+07 5.51 2.87e+07 5.51 1.91e+07 3.71 1.91e+07 3.71 1.91e+07 3.71 1.91e+07 3.71 8 1.91e+07 3.71 9.65e+06 1.91	 \$.20e+08 100 1 2.65e+07 5.11 2.65e+07 5.11 1.76e+07 3.44 1.76e+07 3.44 1.76e+07 3.44 1.76e+07 3.44 8.82e+06 1.74 	5.160+08 100 1 2.950+07 5.74 2.950+07 5.74 2.000+07 3.94 2.000+07 3.94 2.000+07 3.94 2.000+07 3.94 2.000+07 3.94 9.480+06 1.84	 5.16e+08 100 % 2.73e+07 5.3% 2.73e+07 5.3% 1.85e+07 3.6% 1.85e+07 3.6% 1.85e+07 3.6% 1.85e+07 3.6% 8.80e+06 1.7% 	Percent Excess Work(0) 9.134+00 2.624+00 1.56e+00 1.56e+00 1.56e+00 1.56e+00 1.56e+00 1.07e+00
	MPI 0/32 (us) (0) 9.49e+08 100 4 3.24e+07 3.44 3.24e+07 3.44 2.40e+07 2.54 2.40e+07 2.54 2.40e+07 2.54 2.40e+07 2.54 8.36e+06 0.94 1.66e+07 1.74	9.49++08 100 2.89++07 3.0 2.89++07 3.0 2.14e+07 2.3 2.14e+07 2.3 2.14e+07 2.3 2.14e+07 2.3 2.14e+07 2.3 1.14e+07 2.3 1.14e+07 1.7	 5.20e+08 100 1 2.87e+07 5.50 2.87e+07 5.51 2.87e+07 5.51 1.91e+07 3.71 1.91e+07 3.71 1.91e+07 3.71 1.91e+07 3.71 9.65e+06 1.91 1.70e+07 3.31 	\$ 5.20+08 100 \$ 2.65+07 5.10 \$ 2.65+07 5.10 \$ 2.65+07 5.10 \$ 1.76+07 3.40 \$ 1.76+07 3.40 \$ 1.76+07 3.40 \$ 1.76+07 3.40 \$ 1.76+07 3.40 \$ 1.76+07 3.40 \$ 1.76+07 3.40 \$ 1.76+07 3.40 \$ 1.76+07 3.40 \$ 1.76+07 3.40 \$ 1.76+07 3.40 \$ 1.76+07 3.40 \$ 1.76+07 3.40 \$ 1.76+07 3.40 \$ 1.76+07 3.40 \$ 1.76+07 3.40	5.160+08 100 1 2.950+07 5.76 2.950+07 5.77 2.000+07 3.99 2.000+07 3.99 2.000+07 3.99 2.000+07 3.99 3.2000+07 3.99 4.2.000+07 3.99 4.2.000+07 3.99 3.2.000+07 3.99 4.2.000+07 3.99 5.2.000+07 5.9000+07 5.9000+07 5.2.000+07 5.9000+07 5.2.000+07 5.9000+07 5.2.0000+07 5	 5.166+08 100 % 2.73e+07 5.3% 2.73e+07 5.3% 2.73e+07 5.3% 1.85e+07 3.6% 1.85e+07 3.6% 8.85e+07 3.6% 8.80e+06 1.7% 1.69e+07 3.3% 	Percent Excess Work(# 9.134+00 2.62e+00 2.62e+00 1.56e+00 1.56e+00 1.56e+00 1.66e+00 1.07e+00 1.07e+00 1.83e+00
	MPI 0/32 (us) (f) 9.49=+08 100 8 3.24e+07 3.48 3.24e+07 3.48 2.40e+07 2.58 2.40e+07 2.58 2.40e+07 2.58 2.40e+07 2.58 8.36e+06 0.98 1.66e+07 1.73 6.60e+08 69.58	9.49++08 100 2.89++07 3.0 2.89++07 3.0 2.14++07 2.3 2.14++07 2.3 2.14++07 2.3 2.14++07 2.3 2.14++07 2.3 1.50++06 0.8 1.64++07 1.7 4.76++08 50.1	5.20+08 100 6.2.870+07 5.51 6.2.870+07 5.51 7.870+07 5.19 1.910+07 3.71 1.910+07 3.71 1.910+07 3.71 1.910+07 3.71 1.910+07 3.71 1.910+07 3.71 1.910+07 3.71 1.910+07 3.71 1.910+07 3.71 1.900+07 3.31 3.380+08 5.01	\$ 5.20e+08 100 \$ 2.65e+07 5.11 \$ 2.65e+07 5.11 \$ 2.65e+07 5.14 \$ 1.76e+07 3.44 \$ 1.88e+06 3.21 \$ 1.68e+07 3.24 \$ 2.45e+08 47.21	5.164+08 100 1 2.95e+07 5.77 2.95e+07 5.77 2.05e+07 3.99 2.00e+07 3.99 2.00e+07 3.99 2.00e+07 3.99 9.48e+06 1.88 1.71e+07 3.33 3.38e+08 65.55	 5.16e+08 100 % 2.73e+07 5.3% 2.73e+07 5.3% 2.73e+07 5.3% 1.85e+07 3.6% 1.85e+07 3.6% 1.85e+07 3.6% 8.80e+06 1.7% 1.69e+07 3.3% 2.46e+08 47.6% 	Percent Excess Work(# 9.13e+00 2.62e+00 2.62e+00 1.56e+00 1.56e+00 1.56e+00 1.56e+00 1.67e+00 1.63e+00 1.58e+00
	MPI 0/32 (us) (1) 9.49e+08 100 8 3.24e+07 3.48 3.24e+07 3.48 2.40e+07 2.58 2.40e+07 2.58 2.40e+07 2.58 2.40e+07 2.58 8.36e+06 0.98 1.66e+07 1.78 6.60a+08 69.55 3.00e+04 0.08	9.49++08 100 2.89++07 3.0 2.89++07 3.0 2.14++07 2.3 2.14++07 2.3 2.14++07 2.3 1.54++07 2.3 1.54++07 1.7 4.76++08 50.1 3.00++04 0.0	 5.204+08 100 1 2.870+07 5.51 2.870+07 5.51 1.910+07 3.71 1.910+07 3.71 1.910+07 3.71 3.5050+06 1.91 1.700+07 3.31 3.380+08 65.01 4.780+06 0.91 	\$ 5.20++08 100 \$ 2.65++07 5.11 \$ 2.65++07 5.11 \$ 1.76++07 5.41 \$ 1.76++07 3.44 \$ 1.76++07 3.44 \$ 1.76++07 3.44 \$ 1.76++07 3.44 \$ 1.76++07 3.44 \$ 1.85++07 3.44 \$ 2.65++08 1.74 \$ 2.45++08 4.724 \$ 2.45++08 4.724 \$ 4.78++08 0.944	5.164+08 100 4 2.95e+07 5.74 2.95e+07 5.74 2.00e+07 3.94 2.00e+07 3.94 2.00e+07 3.94 2.00e+07 3.94 3.20e+07 3.94 4.2.00e+07 3.94 3.48e+06 1.84 1.71e+07 3.34 3.38e+08 65.55 1.47e+06 0.34	 S.16e+08 100 % Z.73e+07 5.3% Z.73e+07 5.3% L.85e+07 3.6% L.85e+07 3.6% L.85e+07 3.6% L.85e+07 3.6% L.69e+07 3.3% L.69e+08 47.6% L.47e+06 0.3% 	Percent Excess Work(b) 9.13e+00 2.62e+00 1.56e+00 1.56e+00 1.56e+00 1.67e+00 1.07e+00 1.58e+00 1.58e+00 6.58e-01
Experiment Aggregate Metrics viuti_spinandwaitcq w @ MPID_DeviceCheck @ @ MPID_SendComplete @ @ MPIP_Waitall # @ PMP_Sendrecv # @ pmpi_sendrecv_	MPI 0/32 (us) (1) 9.49e+08 100 8 3.24e+07 3.44 3.24e+07 3.44 2.40e+07 2.59 2.40e+07 2.59 2.40e+07 2.59 8.35e+06 0.99 1.66e+07 1.73 6.60e+08 69.59 3.00e+04 0.08	9.49++08 100 2.89++07 3.0 2.89++07 3.0 2.14++07 2.3 2.14++07 2.3 2.14++07 2.3 2.14++07 2.3 1.54++07 1.7 4.750++08 50.1 3.00++04 0.0 5.44++06 0.6	 5.204+08 100 1 2.870+07 5.51 2.870+07 5.51 1.910+07 3.71 1.910+07 3.71 1.910+07 3.74 1.910+07 3.74 1.910+07 3.74 3.580+06 1.91 3.380+08 63.01 4.780+07 63.51 4.780+06 0.91 7.960+06 1.51 	\$ 5.20+08 100 \$ 2.65e+07 5.11 \$ 2.65e+07 5.11 \$ 1.76e+07 5.11 \$ 1.76e+07 3.41 \$ 1.76e+07 3.44 \$ 1.76e+07 3.44 \$ 1.76e+07 3.44 \$ 1.68e+07 3.44 \$ 1.68e+07 3.44 \$ 2.65e+08 1.77 \$ 1.68e+07 3.24 \$ 2.45e+08 1.72 \$ 3.68e+07 3.24 \$ 3.68e+07 3.24 \$ 3.42e+08 0.91 \$ 4.78e+06 0.91 \$ 5.42e+06 1.00	 5.164+08 100 1 2.95e+07 5.74 2.95e+07 5.74 2.05e+07 5.74 2.00e+07 3.94 2.00e+07 3.94 2.00e+07 3.94 2.00e+07 3.94 3.48e+06 1.88 1.71e+07 3.34 3.38e+08 65.55 1.47e+06 0.334 	 5.16e+08 100 % 2.73e+07 5.3% 2.73e+07 5.3% 2.73e+07 5.3% 1.85e+07 3.6% 1.85e+07 3.6% 1.85e+07 3.6% 8.80e+06 1.7% 1.69e+07 3.3% 2.46e+08 47.6% 	Percent Excess Work(M) 9.13e+00 2.62e+00 1.56e+00 1.56e+00 1.56e+00 1.65e+00 1.65e+00 1.63e+00 1.63e+00 1.58e+00 6.56e-01 5.36e-01

Presentation - hpctraceview

Thank you for listening. Q&A

User's manual: http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf