HPCTOOLKIT: tools for performance analysis of optimized parallel programs

Onur Cankur
HPCTOOLKIT: tools for performance analysis of optimized parallel programs

- Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel Marin, John Mellor-Crummey, and Nathan R. Tallent
- Department of Computer Science, Rice University
- Oak Ridge National Laboratory
- Concurrency and Computation: Practice and Experience
- 2010

- Developed for their own use at Rice University.
- More papers on HPCToolkit: http://hpctoolkit.org/publications.html
Introduction

- **HPC Toolkit**
 - Collecting performance measurements of fully optimized executables.
 - Analyzing application binaries to understand the structure of optimized code.
 - Correlating measurements with program structure.
 - Presenting the resulting performance data.

- Pinpoint performance and scalability bottlenecks in complex applications.
Motivation

● HPC systems and applications are very complex.
● Achieving top performance is important.

● Problems with tools at that time:
 ○ Relying on instrumentation and compromise measurement accuracy.
 ○ High overhead.
 ○ Not fully capable of correlating measurements with the source code.
 ○ Using call graph structure or not fully capable of understanding full calling context of optimized code.
 ○ Problem focused analysis
Measurement Methodology

- Scalable measurement and analysis
- Supports C, C++, and Fortran
 - Directly works with application binaries
- Avoid code instrumentation
 - Uses statistical sampling
- Avoid blind spots
 - Source code might not be available (e.g. math and communication libraries)
 - Performs binary analysis
- Calling context tree
- Multiple metrics
- Present in a hierarchical fashion
Performance Measurement - hpcrun

- Call path profiling and tracing
- Statistical sampling
- Coping with fully optimized binaries
 - Unwind the call stack at any point in a program’s execution
- Event triggers
 - Measure different aspects of the program performance.
 - Cache misses, I/O, memory allocations, etc.
- Control over parallel applications
 - Intercepts certain process control routines using library preloading.
- Handling dynamic loading
- Generate a measurement directory

HPCToolkit workflow
Analysis - hpcstruct & hpcprof

- **hpcstruct**
 - Recover the program structure using binary analysis
 - Mapping between object code and its associated source code structure
 - Generate a `.hpcstruct` file

- **hpcprof**
 - Attribute measurements to the application’s source code using the program structure file.
 - Generate a performance database directory

HPCToolkit workflow

Presentation - hpctraceview

Thank you for listening.

Q&A