
HPCTOOLKIT: tools for performance 
analysis of optimized parallel programs

Onur Cankur



HPCTOOLKIT: tools for performance analysis of optimized 
parallel programs

● Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel 
Marin, John Mellor-Crummey, and Nathan R. Tallent

● Department of Computer Science, Rice University
● Oak Ridge National Laboratory
● Concurrency and Computation: Practice and Experience
● 2010

● Developed for their own use at Rice University.
● More papers on HPCToolkit: http://hpctoolkit.org/publications.html

http://hpctoolkit.org/publications.html


Introduction

● HPCToolkit
○ Collecting performance measurements of fully optimized executables. 
○ Analyzing application binaries to understand the structure of optimized code.
○ Correlating measurements with program structure.
○ Presenting the resulting performance data.

● Pinpoint performance and scalability bottlenecks in complex applications.



Motivation

● HPC systems and applications are very complex.
● Achieving top performance is important.

● Problems with tools at that time:
○ Relying on instrumentation and compromise measurement accuracy.
○ High overhead.
○ Not fully capable of correlating measurements with the source code.
○ Using call graph structure or not fully capable of understanding full calling 

context of optimized code.
○ Problem focused analysis



Measurement Methodology

● Scalable measurement and analysis
● Supports C, C++, and Fortran

○ Directly works with application binaries
● Avoid code instrumentation

○ Uses statistical sampling
● Avoid blind spots

○ Source code might not be available (e.g. math and communication libraries)
○ Performs binary analysis

● Calling context tree
● Multiple metrics
● Present in a hierarchical fashion



Performance Measurement - hpcrun
● Call path profiling and tracing
● Statistical sampling
● Coping with fully optimized binaries

○ Unwind the call stack at any point in a program’s 
execution

● Event triggers
○ Measure different aspects of the program 

performance.
■ Cache misses, I/O, memory allocations, etc.

● Control over parallel applications
○ Intercepts certain process control routines using 

library preloading.
● Handling dynamic loading
● Generate a measurement directory

HPCToolkit workflow
http://hpctoolkit.org/pubs/cpe-2010-hpctoolkit.pdf

http://hpctoolkit.org/pubs/cpe-2010-hpctoolkit.pdf


Analysis - hpcstruct & hpcprof

● hpcstruct 
○ Recover the program structure using binary 

analysis
■ Mapping between object code and its 

associated source code structure
○ Generate a .hpcstruct file

● hpcprof 
○ Attribute measurements to the application’s 

source code using the program structure file.
○ Generate a performance database directory

HPCToolkit workflow
http://hpctoolkit.org/pubs/cpe-2010-hpctoolkit.pdf

http://hpctoolkit.org/pubs/cpe-2010-hpctoolkit.pdf


Presentation - hpcviewer 

http://hpctoolkit.org/pubs/cpe-2010-hpctoolkit.pdf

http://hpctoolkit.org/pubs/cpe-2010-hpctoolkit.pdf


Presentation - hpcviewer 

http://hpctoolkit.org/pubs/cpe-2010-hpctoolkit.pdf

http://hpctoolkit.org/pubs/cpe-2010-hpctoolkit.pdf


Presentation - hpctraceview

http://hpctoolkit.org/pubs/cpe-2010-hpctoolkit.pdf

http://hpctoolkit.org/pubs/cpe-2010-hpctoolkit.pdf


Thank you for listening.
Q&A

User’s manual: http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf

http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf

