Designing Efficient Sorting Algorithms for
Manycore GPUs

Onur Cankur

Designing Efficient Sorting Algorithms for
Manycore GPUs

e Nadathur Satish. Dept. of Electrical Engineering and Computer Sciences, University of

California, Berkeley
Mark Harris, Michael Garland. NVIDIA Corporation
IEEE International Symposium on Parallel & Distributed Processing

e 2009

Overview

e Designed efficient sorting algorithms using CUDA

e Focused on radix sort and merge sort

e Developed fastest radix sort algorithm compared to other GPU and multicore
CPU implementations.

Parallel Computing on the GPU

Fully programmable manycore chips built around an array of parallel processors.
GeForce GTX 280 GPU with 240 scalar processor cores (SPs), organized in 30 multiprocessors (SMs).
16KB on-chip memory that has very low access latency and high bandwidth, similar to an L1 cache.

SIMT (Single Instruction, Multiple Thread) architecture.

Threads are executed in groups of 32 called warps.
On CUDA, host program executes on the CPU and the parallel kernels execute on the GPU.
A kernel is a SPMD-style (Single Program, Multiple Data) computation.

[]
[
[
e The SM employs a
[]
[]
[]

.

r

Emmm

U
I 1
\
)
| s Y

'Off-chip Memory — @—
|

DRAM

e A Ay

O Y T S s S e R O O T T e B e s P e Y P e e Y (e P s ¥ S ¥ e U7 e N o I o e e O o et

SM
[se][se][se][ee]
[se]lee][ee][]

Shared Memory
(16 KB)

Algorithm Design

Divide the work to p thread blocks of t threads each.
In this paper, thread block size t = 256.

Input array size = n.

Number of thread blocks p o n/t.

Radix Sort

Keys are d-digit numbers.

Sorts on one digit of the keys at a time, from least to most significant.
Efficient for sorting small keys.

Complexity of sorting n input records = O(n)

For a given digit of each key, compute the number of keys whose digits are
smaller plus the number of keys with the same digit occurring earlier in the
sequence.

Radix Sort

Divide the sequence into p thread blocks. X
Buckets
256 threads in each block.

2 0 ewereaee

Assign 4 elements to each thread which means 1024 0 T 1L 1- ;
elements per block. 1 N Ed f' |
Number of blocks p = n/1024. Blocks 2 £ |
Each digit consists of b bits. Buckets = 2/b. Global offset
Algorithm e ‘if’x al

o Each block loads and sorts its tile in on-chip -1 IV TLFS ,[AT TTTTT TV ”ﬁ

memory using b iterations of 1-bit split.
o Each block writes its 2Ab-entry digit hiStOgram Per-block histograms to be stored in column-major order for prefix sum.

and the sorted data tile to global memory.

o Perform a prefix sum over the px2”"b histogram
table, stored in column-major order, to
compute global digit offsets.

o Using prefix sum results, each block copies its
elements to their correct output position.

Merge Sort

® Divide-and-conquer merge sort
The merge sort procedure:
o 1) Divide the input into p equal-sized tiles.
o 2) Sort all p tiles in parallel with p thread blocks.
o 3) Merge all p sorted tiles.
e Merging can be done in on-memory if sequences are small.
e Divide larger arrays up into tiles of size at most t.

Performance Analysis

Tests are based on sorting sequences of key-value pairs.

Keys and values are 32-bit words.

Uniform random number generator to produce random keys.

Report GPU times as execution time not including the data transfer time from
CPU to GPU.

e Range of NVIDIA GeForce GPUs:
o GTX 280 (30 SMs)

9800 GTX+ (16 SMs)

8800 Ultra(16 SMs)

8800 GT (14 SMs)

8600 GTS (4 SMs).

o O O O

Performance on Different GPUs

e The progressively more parallel devices achieve progressively faster running times.

=

[=3
@
S

~-GTX 280 -w-9800 GTX+ -#-8800Ultra -+8800GT -+-8600GTS

[+-GTX280 -=-9800 GTX+ —+8800Ultra —8800GT —-8600GTS]

Millions
=
o

Millions
o
[s=]

-
[}
=3

40 |

30 -+
) //\/\——\\\

-
=}
S

=3
I=}

(=2}
I3

Merge Sorting Rate (pairs/sec)

Radix Sorting Rate (pairs/sec)

20

1,000 10,000 100,000 1,000,000 10,000,000 1,000 10,000 100,000 1,000,000 10.000.000
Sequence Size (key-value pairs) Sequence Size (key-value pairs)

(a) Radix sort (b) Merge sort

Comparison with GPU-based Methods

w 80
C -
2 —+Qur radix sort
=

70 - -=-Qur merge sort

-+-GPUSort

__ 60 | ==GPU Gems radix sort
)
- ~+~CUDPP radix sort
—~—
2 5
©
L
[
* 4
a4
o
S
£ 3
]
w

20 -+

10 +

1,000 10,000 100,000 1,000,000 10,000,000

Sequence Size (key-value pairs)

Millions

Sorting Rate (pairs/sec)

Comparison with CPU-based Methods

160 -

140 -

120 +

100 -

80

40

20

~+Qur radix sort (GTX 280)

-=-Qur merge sort (GTX 280)
-+-tbb::parallel_sort (8 cores)
—Scalar radix sort (8 cores)

-+ SSE radix sort (8 cores)

1,000 10,000

—
,<a—‘»\”‘_/‘

250
z ——Radix sort (GTX 280)
= -=-Chhugani et al. (4 cores)
200 :
~+Chhugani et al. (2 cores)
’g ~<Chhugani et al. (1 core)
K
2
> 150
=
©
o
©
2
o
£ 100
=
[}
P

50

L PRV

100,000 1,000,000 10,000,000 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Sequence Size (key-value pairs) Sequence Size (32-bit floating point keys only)

(a) 8-core Clovertown (key-value pairs) (b) 4-core Yorkfield (float keys only)

