
Designing Efficient Sorting Algorithms for
Manycore GPUs

Onur Cankur

Designing Efficient Sorting Algorithms for
Manycore GPUs

● Nadathur Satish. Dept. of Electrical Engineering and Computer Sciences, University of
California, Berkeley

● Mark Harris, Michael Garland. NVIDIA Corporation
● IEEE International Symposium on Parallel & Distributed Processing
● 2009

Overview

● Designed efficient sorting algorithms using CUDA
● Focused on radix sort and merge sort
● Developed fastest radix sort algorithm compared to other GPU and multicore

CPU implementations.

Parallel Computing on the GPU
● Fully programmable manycore chips built around an array of parallel processors.
● GeForce GTX 280 GPU with 240 scalar processor cores (SPs), organized in 30 multiprocessors (SMs).
● 16KB on-chip memory that has very low access latency and high bandwidth, similar to an L1 cache.
● The SM employs a SIMT (Single Instruction, Multiple Thread) architecture.
● Threads are executed in groups of 32 called warps.
● On CUDA, host program executes on the CPU and the parallel kernels execute on the GPU.
● A kernel is a SPMD-style (Single Program, Multiple Data) computation.

Algorithm Design

● Divide the work to p thread blocks of t threads each.
● In this paper, thread block size t = 256.
● Input array size = n.
● Number of thread blocks p ∝ n/t.

Radix Sort

● Keys are d-digit numbers.
● Sorts on one digit of the keys at a time, from least to most significant.
● Efficient for sorting small keys.
● Complexity of sorting n input records = O(n)
● For a given digit of each key, compute the number of keys whose digits are

smaller plus the number of keys with the same digit occurring earlier in the
sequence.

Radix Sort
● Divide the sequence into p thread blocks.
● 256 threads in each block.
● Assign 4 elements to each thread which means 1024

elements per block.
● Number of blocks p = n/1024.
● Each digit consists of b bits. Buckets = 2^b.
● Algorithm

○ Each block loads and sorts its tile in on-chip
memory using b iterations of 1-bit split.

○ Each block writes its 2^b-entry digit histogram
and the sorted data tile to global memory.

○ Perform a prefix sum over the p×2^b histogram
table, stored in column-major order, to
compute global digit offsets.

○ Using prefix sum results, each block copies its
elements to their correct output position.

Per-block histograms to be stored in column-major order for prefix sum.

Merge Sort

● Divide-and-conquer merge sort
● The merge sort procedure:

○ 1) Divide the input into p equal-sized tiles.
○ 2) Sort all p tiles in parallel with p thread blocks.
○ 3) Merge all p sorted tiles.

● Merging can be done in on-memory if sequences are small.
● Divide larger arrays up into tiles of size at most t.

● Tests are based on sorting sequences of key-value pairs.
● Keys and values are 32-bit words.
● Uniform random number generator to produce random keys.
● Report GPU times as execution time not including the data transfer time from

CPU to GPU.
● Range of NVIDIA GeForce GPUs:

○ GTX 280 (30 SMs)
○ 9800 GTX+ (16 SMs)
○ 8800 Ultra(16 SMs)
○ 8800 GT (14 SMs)
○ 8600 GTS (4 SMs).

Performance Analysis

Performance on Different GPUs

● The progressively more parallel devices achieve progressively faster running times.

Comparison with GPU-based Methods

Comparison with CPU-based Methods

