
PVFS: A Parallel File
System for Linux Clusters

Authors:
Philip H. Carns Walter B. Ligon III Robert B. Ross Rajeev Thakur

Presented by: Pooja Nilangekar
poojan@umd.edu

Motivation

● Cluster computing is a mainstream method for parallel computing.
● Linux is the most common OS for cluster computing.
● Lack of production-quality performant parallel file system for Linux clusters.
● Linux clusters cannot be used for large I/O-intensive parallel applications.

Solution: Parallel Virtual File System (PVFS) for linux clusters.

Used at: Argonne National Laboratory, NASA Goddard Space Flight Center, and
Oak Ridge National Laboratory.

Objectives for PVFS

1. Basic software platform for pursuing further research in parallel I/O and parallel file
systems in the context of Linux clusters.

a. Requires a stable, full-featured parallel file system to begin with.
2. Meet the need for a parallel file system for Linux clusters.

● High bandwidth for concurrent read/write operations.
● Multiple API support: a native PVFS API, the UNIX/POSIX I/O API, other APIS

MPI-IO.
● Common UNIX shell commands, such as ls, cp, and rm.
● Compatible with applications developed with the UNIX I/O API.
● Robust and scalable.
● Easy to install and use.
● Distribute the software as open source.

Related Work

● Commercial parallel file systems
○ PFS (Intel Paragon), PIOFS & GPFS (IBM SP), HFS (HP Exemplar), XFS (SGI Origin2000).
○ High performance and functionality desired for I/O-intensive applications.
○ Available only on the specific platforms.

● Distributed file systems
○ NFS, AFS/Coda, InterMezzo, xFS, and GFS.
○ Distributed access to files from multiple client machines.
○ Varying consistency semantics and caching behavior.
○ Not designed for high-bandwidth concurrent writes required for parallel scientific applications.

● Research projects
○ PIOUS: views I/O as transactions.
○ PPFS: adaptive caching and prefetching.
○ Galley: disk-access optimization and alternative file organizations.
○ Freely available but are mostly research prototypes.

PVFS Design

● High-speed access to file data for parallel applications.
● Clusterwide consistent name space.
● Enables user-controlled striping of data across disks on different I/O nodes.
● Client-Server architecture.
● Multiple servers - I/O daemons (nodes that have disks attached to them).
● Applications interact with PVFS via a client library.
● Manager daemon - handles only metadata operations such as permission

checking for file creation, open, close, and remove operations.
● Higher performance if client, I/O daemons and managers are run on different

nodes.
● Primarily a user-level implementation

PVFS Manager and Metadata

● Single manager daemon is responsible for the storage of and access to all the
metadata.

● PVFS stores both file data and metadata in files on existing local file systems.
● Files are striped across I/O nodes to facilitate parallel access.
● Metadata parameters: base I/O node number, number of I/O nodes, and

stripe size.
● Application processes communicate directly with the PVFS manager (via

TCP) for metadata operations.
● Applications communicate directly with I/O nodes when file data is accessed.
● A mapping routine to determine whether a PVFS directory is being accessed;

redirected to the PVFS manager.

I/O Daemons and Data Storage

● Nodes to be operated as I/O nodes are specified by the user at installation.
● Ordered set of PVFS I/O daemons runs on the I/O nodes.
● Use local disk on the I/O node for storing file data.
● Client nodes interact with I/O daemons directly.

Application Programming Interfaces

● Multiple (APIs): a native API, the UNIX/POSIX API, and MPI-IO.
● Communication with I/O daemons and the manager is handled transparently.
● Partitioned API for noncontiguous file regions to be accessed with a single

function call.
● Partition specified by: offset, gsize, and stride.
● MPI-IO interface on top of PVFS by using the ROMIO implementation.
● Noncontiguous MPI-IO using data sieving - makes large contiguous I/O

requests and extracts the necessary data.
●

Trapping UNIX I/O Calls

● Using traps to identify PVFS I/O
●

Linux Kernel VFS Module

Shortcomings of syscalls:

● A call to exec() will destroy the state that we save in user space, and the new
process will therefore not be able to use file descriptors used for PVFS files

● Porting this feature to new architectures and operating systems is nontrivial.

The Linux kernel provides the necessary hooks for adding new file-system support
via loadable modules without recompiling the kernel.

Performance Results

● Setup
○ Experiments conducted on Chiba City cluster at Argonne National Laboratory.
○ 256 nodes, each with two 500- MHz Pentium III processors, 512 Mbytes of RAM, a 9 Gbyte

Quantum Atlas IV SCSI disk, a 100 Mbits/sec Intel EtherExpress Pro fast-ethernet network
card operating in full-duplex mode, and a 64-bit Myrinet card.

○ 60 nodes were used for experiments.
● Experiments

○ concurrent reads and writes with native PVFS calls.
○ concurrent reads and writes with MPI-IO.
○ the BTIO benchmark.

● Varying number of I/O nodes, compute nodes, and I/O size. Using fast fast
ethernet and Myrinet.

Concurrent Read/Write Performance

● MPI program that concurrently writes/reads data to disjoint regions of the file.
● Scalability limits of fast ethernet:

○ Peak read performance 222 Mbytes/sec for 24 I/O nodes.
○ Peak write performance 226 Mbytes/sec for 24 I/O nodes.

● Slower rate of increase in bandwidth indicates that the benchmark hit the
maximum number of sockets across which it is efficient to service requests on
the client side.

● Significant performance improvement with Myrinet instead of fast ethernet.
○ Read performance with 32 I/O nodes, peak bandwidth 687 Mbytes/sec.
○ Write performance with 32 I/O nodes, peak bandwidth 670 Mbytes/sec.

● Myrinet maintained performance consistency as the number of compute
nodes was increased beyond the number of I/O nodes.

MPI-IO Performance

● Same MPI program as native PVFS benchmark.
● MPI-IO added a small overhead of at most 7–8% on top of native PVFS.

BTIO Benchmark

● I/O required by a time-stepping flow solver that periodically writes its solution
matrix.

● “full MPI-IO” version of this benchmark uses MPI derived datatypes to
describe noncontiguity in memory and file and uses a single collective I/O
function to perform the entire I/O.

● Modified benchmark to perform reads and writes.
● 16 I/O nodes and varying compute nodes (16, 25, and 36).
● With more compute nodes, the smaller granularity of each I/O access resulted

in lower performance.
● For Myrinet, the maximum performance at 36 compute nodes.

Conclusion and Future work

● PVFS: high-performance parallel file systems to Linux clusters.
● Compatible with applications using MPI-IO API.
● Future work

○ With fast gigabit networks, performance is limited by TCP.
○ Performance can be improved by tuning some parameters in PVFS and TCP, either a priori or

dynamically at run time.
○ General file-partitioning interface to handle the noncontiguous accesses supported in MPI-IO.
○ Improve the client-server interface to better fit the expectations of kernel interfaces.
○ Flexible I/O-description format that is more flexible than the existing partitioning scheme.
○ Adding redundancy support.
○ Scheduling algorithms for use in the I/O daemons.

http://www.parl.clemson.edu/pvfs/

