
Isoefficiency : Measuring the 
Scalability of Parallel Algorithms 

and Architectures
Ananth Y. Grama, Anshul Gupta, and Vipin Kumar 

University of Minnesota

presented by Rui Xu
03/10/2021



Overview
• Scalable parallel systems
• The isoefficiency function

ØTerminology, definitions, and assumptions 
ØCost-optimal 
ØDegree of concurrency

• Isoefficiency analysis
ØComparing two parallel algorithms
ØEffects of machine specific parameter
ØImpact of concurrency on scalability
ØImpact of contention for shared data structures

• Summary



Scalable parallel 
systems

• Increasing the number of processors reduces 
efficiency
• Increasing the problem size increases efficiency
• Scalable parallel systems: keep efficiency 

constant by increasing both



Terminology

• Terminology and definition
ØSequential execution time (T1): the execution time to run 

an algorithm on a single processor
ØParallel execution time (Tp): the execution time of the 

corresponding parallel algorithm on p identical processors
ØTotal overhead (T0): the sum total of time spent by all 

processors doing work which is not done by the 
sequential algorithm

ØThe speedup (S): ratio of sequential execution time to the 
parallel execution time 

ØThe efficiency (E): ratio of the speedup to the number of 
processors used



Definitions

• Assuming the sequential execution time 𝑇" = 𝑊 × 𝑡', where W is the 
problem size and 𝒕𝒄 is the cost of executing each operation

𝐸 =
1

1 + 𝑇-
𝑊𝑡'

ØIf W = constant and p increases, E decreases because the total overhead 
𝑻𝟎 will increase

ØIf p = constant and W increases, E increases for scalable parallel systems 
because 𝑻𝟎 grows slower than 𝜣(𝑾)



The isoefficiency function

• Highly scalable system: W needs to grow only linearly 
with respect to p to maintain E at a desired value (𝑾 = 
K 𝑻𝟎, where K is a function of E and 𝒕𝒄)

• W = f(p) is the isoefficiency function, assuming that the 
efficiency of the parallel systems can be kept constant

• A small isoefficiency function means highly scalable, i.e. 
W = 𝜣 𝒑𝟑 which means the problem size should grow 
𝜣 𝒑𝟑 to maintain the same efficiency

𝐾 =
1
𝑡'
(
𝐸

1 − 𝐸)



Cost-optimal 

• A parallel system is cost-optimal if and only if the product of the 
number of processors and the parallel execution time is proportional 
to the execution time of the best serial algorithm on a single 
processor:

𝑝𝑇9 ∝ 𝑊
or

𝑊 ∝ 𝑇-

• The lower bound of W = 𝜣 𝒑 , which is ideally scalable parallel 
system



Degree of concurrency

• If C(W) is an algorithm's degree of concurrency, then given a problem 
of size W, at most C(W) processors can be employed effectively.

• For example, given a problem of size W, at most 𝜣 𝑾𝟐/𝟑 pocessors 
can be used, so given p processors, the size of the problem should be 
at least 𝜣 𝒑𝟑/𝟐 in order to use all the processors. 

• Thus, isoefficiency function due to concurrency is 𝜣 𝒑𝟑/𝟐

• System's overall isoefficiency function is the maximum of the 
isoefficiency functions due to concurrency, communication, and other 
overhead



Isoefficiency analysis: stripe based matrix-
vector product on a hypercube
• The problem of multiplying an 𝑛 × 𝑛 matrix with an 𝑛 × 1 vector
• Problem size, W = n2 

• Parallel execution time

• Total overhead

• 𝑊 = 𝐾𝑡?𝑝log(𝑝) and 𝑊 = 𝐾C𝑡DC𝑝C

• So isoefficiency function is 𝜣 𝒑𝟐



Isoefficiency analysis: checkerboard based 
matrix-vector product on a hypercube

• Parallel execution time

• Total overhead

• 𝑊 = 𝐾𝑡?𝑝log(𝑝) and 𝑊 = 𝐾C E
F
GHI

GJI
𝑝logC𝑝

• Overall isoefficiency is 𝜣 𝒑𝐥𝐨𝐠𝟐𝒑

• The checkerboard algorithm has a higher scalability



Effects of machine specific parameter

• The effects of processor and communication speeds
• Cooley-Tukey algorithm for computing n-point, single dimensional 

unordered radix-2 FFT
• Isoefficiency function: W = 𝑡?𝑝log(𝑝) and 𝑊 = 𝐶𝑝Plog(𝑝), where 

𝐶 =
𝐸

1 − 𝐸
𝑡D
𝑡'

• If C < 1: 𝜣 𝒑𝐥𝐨𝐠(𝒑) else: 𝜣 𝒑𝒄𝐥𝐨𝐠(𝒑)
• And C is hardware dependent parameter, which depends on CPU 

speed and communication bandwidth



Impact of concurrency on scalability

• Dijkstra’s All Pair’s Shortest Path Algorithm
• The best-known serial algorithm takes O(n3) time
• A simple parallel version by executing a single-source shortest-path 

problem independently on each processor with O(n2) time
• This simple algorithm can use at most n processors
• And since the problem size is O(n3), problem size must grow at least 
𝜣 𝒑𝟑 to use more processors and maintain constant efficiency
• So in this algorithm, isoefficiency is dominated by concurrency and 

absence of communication here is no longer an advantage



Impact of contention for shared data structures

• Dynamic load balancing
• Isoefficiency due to communication overhead is 𝜣 𝒑𝐥𝐨𝐠𝟐𝒑
• Only one processor can access the global variable at a time; we must also 

analyze the system’s isoefficiency due to contention
• At some point, the shared variable access becomes a bottleneck, and the 

overall execution time cannot be reduced further
• We can eliminate this bottleneck by increasing W at a rate such that the 

ratio between W/p and O(p log W) remains the same
• Thus, isoefficiency due to contention is 𝜣 𝒑𝟐𝐥𝐨𝐠 𝒑
• Overall isoefficiency is 𝜣 𝒑𝟐𝐥𝐨𝐠 𝒑



Summary

• If the problem size grows at the rate specified by the isoefficiency
function, then the system’s speedup is linear

• For a class of parallel systems, the isoefficiency function specifies the 
relationship between the problem size’s growth rate and the number 
of processors on which the problem executes in minimum time


