
Autotuning in High-Performance 
Computing Applications

PRASANNA BALAPRAKASH, JACK DONGARRA , TODD GAMBLIN, MARY 
HALL, JEFFREY K. HOLLINGSWORTH, BOYANA NORRIS, AND RICHARD 

VUDUC

PROCEEDINGS OF THE IEEE | Vol. 106, No. 11, November 2018



What is Autotuning

- Automatic generation of a search space of possible implementations of a 
computation that are evaluated through models and/or empirical 
measurement to identify the most desirable implementation

- For HPC applications, based on the architecture, automatically generate 
executables that give good performance.



Why Autotuning

- Profound differences in architecture and programming models.
- A desirable feature of high-performance applications is performance 

portability, whereby the same application code can achieve high 
performance across a diversity of architectures.

- Manually rewriting code for a new supercomputer architecture or 
architecture generation is prohibitively expensive and limits the porting of 
applications to new platforms.



Types of Autotuning

Libraries

Compilers & Code Generators

Application-Level Autotuning

Frameworks and Domain-Specific Systems



Libraries

- Optimize the performance-critical subroutines.
- Examples: ATLAS

- Generates efficient code by running a series of timing experiments to determine optimal 
code structures.

- Pros
- Applications naturally rely on libraries
- Common APIs are widely used, so it is as simple as linking to a different implementation.
- Eliminate the need for programmer involvement in autotuning

- Cons
- Libraries are limited in the scope of their applicability
- Hard for optimizations beyond individual library calls without contextual information



Compilers & Code Generators

- Special compilers that do auto-tuning based on source code
- Examples: CHiLL, Orio, POET.
- The compiler needs a search space. But it can be fixed for common 

algorithms and can be guided by experts
- Study shows compiler-directed autotuning can produce code that achieves 

performance comparable to and sometimes exceeding that of manual 
tuning



Application-Level Autotuning

- High-level tuning that may change the algorithms or program structures.
- Pros:

- Significant algorithmic changes can be expressed.
- It allows the use of auto-tuning options that can change the output of the program
- Programmers can express code variants along with meta information that aids the system 

in variant section at runtime

- Cons
- each application developer must specify the autotuning



Frameworks and Domain-Specific Systems

- High-level frameworks that provide template abstractions that users can 
use to guide their code.

- Examples: Apollo, RAJA, Kokkos.
- Advantages:

- Clearly separates tuning concerns from application semantics: application developers write 
the code, and performance experts can put high-level framework code.

- Allows code variant selection to be implemented as an external library, so that decision 
models can be updated over time



Search Method

- All last three autotuning requires to search in a space to find the optimal.
- To improve the scalability of large search space, machine learning 

algorithms are used.
- Global algorithms such as simulated annealing, genetic algorithms.
- Local algorithms such as Nelder-Mead simplex, orthogonal search.
- Model-based selection algorithms to avoid actually running code.



Case Studies

- Using autotuning compiler CHiLL on LOBPCG, it only needs 7 lines of input 
code whereas manually tuning needs to change 2000 lines of code. It also 
outperforms manually tuned code by 3%.

- Autotuned FFT library shows better strong scaling performance.
- RAJA framework achieves 2.5x speedup on Sedov problems and 15% 

speedup on ARES (hotspot problem)





Thanks!


