
CMSC 330: Organization of Programming
Languages

Closures and Iterators
In Rust

Copyright © 2018 Michael Hicks, the University of Maryland. Some material based on
https://doc.rust-lang.org/book/second-edition/index.html

CMSC 330 - Spring 2021

Closures

• Syntax
– |x1[:t1]?, …, xn[:tn]?| [-> u]? e

• Type annotations are optional – will be inferred if absent

• Evaluation
– A closure is a value

• Type checking
– has type (t1, … ,tn) -> u
 when e : u under assumptions x1 : t1, …, xn : tn

• Not curried

CMSC 330 - Spring 2021

Using Closures/Functions Locally

• Rust has local functions, and closures

• OCaml local functions/closures

fn moveit(l:bool,x:i32) -> i32 {
 let left = |x| x - 1;
 fn right(x:i32) -> i32 { x+1 };
 if l { left(x) }
 else { right(x) }
}

let moveit l x =
 let left = fun x -> x - 1 in
 let right = fun x -> x + 1 in
 if l then left x
 else right x

Closure (may
have an
environment)

Local function
(no
environment)

CMSC 330 - Spring 2021

Limits of Type Inference

• Rust infers non-polymorphic types

• OCaml infers polymorphic types

• More details on closures at the end, including polymorphism
– Now for something (not so completely) different

let id = |x| x;
let x = id(1); //infers x:i32
let y = id("hi"); //fails: &str ≠ i32

let f = fun x -> x in (* ‘a -> ‘a *)
let x = id 1 in
let y = id "hi" in (* OK *) …

CMSC 330 - Spring 2021

Iteration using the Iterator Trait

• Recall an earlier example:

• The iter() method returns an iterator, i.e., a value with the
Iterator trait

CMSC 330 - Spring 2021

let a = vec![10, 20, 30, 40, 50];
for e in a.iter() {
 println!("the value is: {}", e);
}

trait Iterator {
 type Item; //this is an associated type
 fn next(&mut self) -> Option<Self::Item>;
 … //default method impls
}

Unpacking the for syntax

• Each call to next advances the iterator
– So it has to be mut

• calls to next produce immutable references to the values
in a
– else may call into_iter or iter_mut on a to get different

sorts of references

CMSC 330 - Spring 2021

let a = vec![10, 20];
let mut iter = a.iter();
assert_eq!(iter.next(), Some(&10));
assert_eq!(iter.next(), Some(&20));
assert_eq!(iter.next(), None);

Iterator Adaptors

• We can make one iterator from another
– An iterator is consumed as it used; it is lazy

• This is a pattern for higher order programming
– i.map(f) produces an iterator returning f(e) for each of i’s

elements e
– i.filter(f) produces iterator for i’s elements e such that
f(e) == true

– i.collect() converts an iterator into a vector
– i.fold(a,f) is like OCaml’s fold_right

• fold_right f a v where v is the list corresponding to i
– zip, sum, …

CMSC 330 - Spring 2021

Examples

let a = vec![10,20];
let i = a.iter();
let j = i.map(|x| x+1).collect(); //[11,21]
let k = a.iter().fold(0,|a,x| x-a); //10
for e in a.iter().filter(|&&x| x == 10) {
 println!("{}",e);
} //prints 10

CMSC 330 - Spring 2021

Quiz 1: Output of the following code
fn main(){
 let a = [0, 1, 2, 3, 4, 5];
 let mut iter2 = a.iter().map(|x| 2 * x);
 iter2.next();
 let t2 = iter2.next();
 println!("{:?}", t2)
}

A. Some(0)
B. Some(1)
C. Some(2)
D. Some(4)

CMSC 330 - Spring 2021

Quiz 1: Output of the following code
fn main(){
 let a = [0, 1, 2, 3, 4, 5];
 let mut iter2 = a.iter().map(|x| 2 * x);
 iter2.next();
 let t2 = iter2.next();
 println!("{:?}", t2)
}

A. Some(0)
B. Some(1)
C. Some(2)
D. Some(4)

CMSC 330 - Spring 2021

Iterator Notes

• You can make your own iterators too
– Implement the Iterator trait
– Several examples in the Rust Book

• Iterators perform extremely well
– Better that for loops with explicit indexes!
– This is because Rust aggressively optimizes the code it

generates, e.g., by unrolling the iteration loop
– So feel free to program using map, fold, zip, etc.

CMSC 330 - Spring 2021

Back to Closures: Passing as Arguments

• Each closure has a distinct type
– Even if two closures have the same signature, their types are

considered different
• Such types are called generative types

• To specify the type of a closure (for a function parameter,
say), use generics with trait bounds
– Fn t (will describe later)
– FnMut t
– FnOnce t

• Functions (defined with fn f…) implement the above trait
bounds too

CMSC 330 - Spring 2021

Using the Fn Trait

– But cannot write

• Can also use function trait bounds in struct,
enum, etc. definitions

fn app_int<T>(f:T,x:i32) -> i32
 where T:Fn(i32) -> i32
{
 f(x)
}
fn main() {
 println!(“{}”,app_int((|x| x-1),1));
}

Trait bound on T to
specify type of f

fn app_int(f:(i32) -> i32,x:i32) -> i32
{ f(x) }

CMSC 330 - Spring 2021

Using the Fn Trait Polymorphically
fn app<T,U,W>(f:T,x:U) -> W
 where T:Fn(U) -> W
{
 f(x)
}
fn main() {
 println!("{}",app((|x| x-1),1));//i32
 let s = String::from("hi ");
 println!("{}",app(|x| x+"there",s));//String
}

CMSC 330 - Spring 2021

Capturing Free Variables

– Note: fails if equal_to_x defined as a local function
• Local functions do not have an environment

• Complication: What if x is owned?
– Capturing it could move it or borrow (mut or immut)
– Use various FnX traits to specify what to do

fn main() {
 let x = 4;
 let equal_to_x = |z| z == x;
 let y = 4;
 assert!(equal_to_x(y))
} // true

Closure
env
captures x

CMSC 330 - Spring 2021

Distinguishing Fn Trait Bounds

• FnOnce t (where t is a func type)
– Consumes the variables it captures from its enclosing scope (i.e.,

moves or copies them)
– Thus can only be called once

• The call consumes ownership

• FnMut t
– Borrows captured variables mutably

• Fn t
– Borrows captured variables immutably, or copies

• equal_to_x copied x due to its Copy trait
– Try this bound first; follow the compiler’s advice if it doesn’t work

CMSC 330 - Spring 2021

Example use of FnOnce

let x = String::from("hi");
let add_x = |z| x+z; //captures x; is FnOnce
println!("x = {}",x); //fails
let s = add_x(" there");//consumes closure
let t = add_x(" joe");//fails, add_x consumed

CMSC 330 - Spring 2021

