
CMSC330 -Spring 2022

CMSC 330
 Organization of Programming Languages

OCaml
Higher Order Functions

1

CMSC330 Spring 2022

Anonymous Functions

• Recall code blocks in Ruby

• Here, we can think of { |x| print x } as a function

• We can do this (and more) in OCaml

2

(1..10).each { |x| print x }

CMSC330 Spring 2022 3

Anonymous Functions

• As with Ruby, passing around functions is common
• So often we don’t want to bother to give them names

• Use fun to make a function with no name

(fun x -> x + 3) 5

fun x -> x + 3

Parameter Body
(in which parameter x
 is bound)

= 8

CMSC330 Spring 2022

Anonymous Functions

• Syntax
• fun x1 … xn -> e

• Evaluation
• An anonymous function is an expression
• In fact, it is a value – no further evaluation is possible

� As such, it can be passed to other functions, returned from them, stored in
a variable, etc.

• Type checking
• (fun x1 … xn -> e) : (t1 -> … -> tn -> u)
 when e : u under assumptions x1 : t1, …, xn : tn.

� (Same rule as let f x1 … xn = e)

4

CMSC330 Spring 2022

A. Error
B. 2
C. 1
D. 0

6

Quiz 1: What does this evaluate to?

let y = (fun x -> x+1) 2 in
(fun z -> z-1) y

CMSC330 Spring 2022

A. Error
B. 2
C. 1
D. 0

7

Quiz 1: What does this evaluate to?

let y = (fun x -> x+1) 2 in
(fun z -> z-1) y

CMSC330 Spring 2022

A. Type error
B. int
C. int -> int -> int
D. 'a -> 'b -> 'a

9

(fun x y -> x) 2 3

Quiz 2: What is this expression’s type ?

CMSC330 Spring 2022

A. Type error
B. int
C. int -> int -> int
D. 'a -> 'b -> 'a

10

(fun x y -> x) 2 3

Quiz 2: What is this expression’s type ?

CMSC330 Spring 2022 11

Functions and Binding

• Functions are first-class, so you can bind them to other
names as you like
let f x = x + 3;;
let g = f;;
g 5

• In fact, let for functions is a syntactic shorthand
let f x = body

↓ is semantically equivalent to
let f = fun x -> body

= 8

CMSC330 Spring 2022 12

Example Shorthands

• let next x = x + 1
• Short for let next = fun x -> x + 1

• let plus x y = x + y
• Short for let plus = fun x y -> x + y

CMSC330 Spring 2022

A. 0
B. 1
C. 2
D. Error

13

Quiz 3: What does this evaluate to?

let f = fun x -> 0 in
let g = f in
let h = fun y -> g (y+1)
h 1

CMSC330 Spring 2022

A. 0
B. 1
C. 2
D. Error

14

Quiz 3: What does this evaluate to?

let f = fun x -> 0 in
let g = f in
let h = fun y -> g (y+1)
h 1

CMSC330 Spring 2022 15

Defining Functions Everywhere
let move l x =
 let left x = x – 1 in (* locally defined fun *)
 let right x = x + 1 in (* locally defined fun *)
 if l then left x
 else right x
;;

let move’ l x = (* equivalent to the above *)
 if l then (fun y -> y – 1) x
 else (fun y -> y + 1) x

CMSC330 Spring 2022 16

Pattern Matching With Fun

• match can be used within fun
(fun l -> match l with (h::_) -> h) [1; 2]

• But use named functions for complicated matches

• May use standard pattern matching abbreviations, too
(fun (x, y) -> x+y) (1,2)

= 1

= 3

CMSC330 Spring 2022 17

Passing Functions as Arguments
In OCaml you can pass functions as arguments

let plus_three x = x + 3 (* int -> int *)

let twice f z = f (f z) (* ('a->'a) -> 'a -> 'a *)

twice plus_three 5

twice‘s f parameter
is a function

Calls the parameter function f
(twice!)

= 11

f‘s type

CMSC330 -Spring 2022

map

18

CMSC330 Spring 2022

The Map Function

OCaml’s map is a higher order function; like Ruby’s collect
• map f l takes a function f and a list l, applies function f to each

element of l, and returns a list of the results (preserving order)

 let add_one x = x + 1
 let negate x = -x
 map add_one [1; 2; 3]
 map negate [9; -5; 0]

19

 map f [v1; v2; …; vn]
 = [f v1; f v2; …; f vn]

= [2; 3; 4]
= [-9; 5; 0]

CMSC330 Spring 2022

How can we implement Map?
let rec add1all l =
 match l with
 [] -> []
 | h::t ->
 (add_one h):: add1all t

let rec negall l =
 match l with
 [] -> []
 | h::t ->
 (neg h):: negall t

20

let rec map f l =
 match l with
 [] -> []
 | h::t -> (f h)::(map f t)

CMSC330 Spring 2022

Implementing map

• What is the type of map?

21

() -> ->

f l

let rec map f l =
 match l with
 [] -> []
 | h::t -> (f h)::(map f t)

CMSC330 Spring 2022

Implementing map

• What is the type of map?

22

('a -> 'b) -> 'a list -> 'b list

f l

let rec map f l =
 match l with
 [] -> []
 | h::t -> (f h)::(map f t)

CMSC330 Spring 2022

Another Example

map (fun f -> map f lst) fs

 Apply a list of functions to list of ints

let neg x = -x;;
let add_one x = x+1;;
let double x = x + x;;
let fs = [neg; add_one; double];;
let lst = [1;2;3];;

23

(neg 1) (neg 2) (neg 3) (add_one 1) … (double 1) …

[[-1; -2; -3]; [2; 3; 4]; [2; 4; 6]]

CMSC330 Spring 2022

map, as a cartoon

24

map cook =

map is included in the standard List module, i.e., as List.map

CMSC330 Spring 2022

A. [1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]
C. Error

D. [4; 8; 12]

25

Quiz 4: What does this evaluate to?

map (fun x -> x * 4) [1;2;3]

CMSC330 Spring 2022 26

map (fun x -> x * 4) [1;2;3]

Quiz 4: What does this evaluate to?

A. [1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]
C. Error

D. [4; 8; 12]

CMSC330 Spring 2022 27

map ??? [1; 0; 3] = [true; false; true]

Quiz 5: Which function to use?

A. fun x -> true
B. fun x -> x = 0
C. fun x -> x != 0
D. fun x -> x = (x != 0)

CMSC330 Spring 2022 28

map ??? [1; 0; 3] = [true; false; true]

Quiz 5: Which function to use?

A. fun x -> true
B. fun x -> x = 0
C. fun x -> x != 0
D. fun x -> x = (x != 0)

Note type error!
int bool

CMSC330 -Spring 2022 29

fold
(and foldr)

CMSC330 Spring 2022

Two Recursive Functions

let rec sum l =
 match l with
 [] -> 0
 | h::t -> h + (sum t)

let rec concat l =
 match l with
 [] -> ""
 | h::t -> h ^ (concat t)

Concatenate a list of stringsSum a list of ints

sum [1;2;3;4];;
- : int = 10

concat ["a";"b";"c"];;
- : string = "abc"

30

CMSC330 Spring 2022

let rec concat l =
 match l with
 [] -> ""
 | h::t -> h ^ (concat t)

let rec sum l =
 match l with
 [] -> 0
 | h::t -> h + (sum t)

Notice Anything Similar?

let rec sum l =
 match l with
 [] -> 0
 | h::t -> (+) h (sum t)

Concatenate a list of stringsSum a list of ints

31

• The structure of the two functions is the same!
• Only the parts in red differ

• What to return for an empty list (0 or ””)
• What function to apply to h and the result of the recursive call (+ or ^)

• foldr abstracts these similarities using higher order functions
Note: (+) treats + as a prefix function, so 1+2 = (+) 1 2

let rec concat l =
 match l with
 [] -> ""
 | h::t -> (^) h (concat t)

CMSC330 Spring 2022

The foldr Function

let rec sum l =
 match l with
 [] -> 0
 | h::t -> (+) h (sum t)

let rec concat l =
 match l with
 [] -> ""
 | h::t -> (^) h (concat t)

Concatenate a list of strings:Sum a list of ints

32

let rec foldr f a l =
 match l with
 [] -> a
 | h::t -> f h (foldr f a t)

let sum l = foldr (+) 0 l let concat l = foldr (^) "" l

CMSC330 Spring 2022

So, What is foldr?

• foldr is a function that
• takes a function of two arguments, a final value, and a list
• processes the list by applying the function to the head and the

recursive application of the function to the rest of the list,
returning the final value for the empty list

33

foldr f v [v1; v2; …; vn] =
 f v1 (f v2 (…(f vn v)…))

so foldr add 0 [1;2;3;4] =
 add 1 (add 2 (add 3 (add 4 0))) = 10

CMSC330 Spring 2022

Foldr and the Standard Library

• List.fold_right in the standard library is foldr, but
with the order of its last two parameters reversed, i.e.,

34

foldr f v [v1; v2; …; vn] =
 f v1 (f v2 (…(f vn v)…))

fold_right f [v1; v2; …; vn] v =
 f v1 (f v2 (…(f vn v)…))

so fold_right add [1;2;3;4] 0 =
 add 1 (add 2 (add 3 (add 4 0))) = 10

CMSC330 Spring 2022

Fold (aka fold_left)

• The List module also defines fold_left
• which we will just call fold

• Similar to foldr, but changes the order of operations

35

let rec fold f a l =
 match l with
 [] -> a
 | h::t -> fold f (f a h) t

let rec foldr f a l =
 match l with
 [] -> a
 | h::t -> f h (foldr f a t)

Computes f on the
accumulator a and
the head h, then
passes the result as
the accumulator to
the recursive call

CMSC330 Spring 2022 36

What does fold do?

let add a x = a + x
fold add 0 [1; 2; 3] →
fold add (add 0 1) [2; 3] →
fold add 1 [2; 3] →
fold add (add 1 2) [3] →
fold add 3 [3] →
fold add (add 3 3) [] →
fold add 6 [] →
6

let rec fold f a l =
 match l with
 [] -> a
 | h::t -> fold f (f a h) t

We just built the sum function!

CMSC330 Spring 2022

Fold (aka fold_left)

• What does fold do?

• fold f v [v1; v2; …; vn]
= fold f (f v v1) [v2; …; vn]
= fold f (f (f v v1) v2) […; vn]
= …

= f (f (f (f v v1) v2) …) vn
▪ e.g., fold add 0 [1;2;3;4] =
 add (add (add (add 0 1) 2) 3) 4 = 10

37

let rec fold f a l =
 match l with
 [] -> a
 | h::t -> fold f (f a h) t

CMSC330 Spring 2022 38

Another Example

let next a _ = a + 1
fold next 0 [2; 3; 4] →
fold next (next 0 2) [3; 4] →
fold next 1 [3; 4] →
fold next (next 1 3) [4] →
fold next 2 [4] →
fold next (next 2 4) [] →
fold next 3 [] →
3

let rec fold f a l =
 match l with
 [] -> a
 | h::t -> fold f (f a h) t

We just built the length function!

CMSC330 Spring 2022 39

Using Fold to Build Reverse

• Let’s build the reverse function with fold!
let prepend a x = x::a
fold prepend [] [1; 2; 3; 4] →
fold prepend [1] [2; 3; 4] →
fold prepend [2; 1] [3; 4] →
fold prepend [3; 2; 1] [4] →
fold prepend [4; 3; 2; 1] [] →
[4; 3; 2; 1]

let rec fold f a l =
 match l with
 [] -> a
 | h::t -> fold f (f a h) t

CMSC330 Spring 2022 40

let f x y = if x > y then x else y in
fold f 0 [3;4;2]

A. 0
B. true
C. 2
D. 4

Quiz 6: What does this evaluate to?

CMSC330 Spring 2022 41

let f x y = if x > y then x else y in
fold f 0 [3;4;2]

A. 0
B. true
C. 2
D. 4

Quiz 6: What does this evaluate to?

CMSC330 Spring 2022 42

fold (fun a y -> a-y) 0 [3;4;2]

A. -9
B. -1
C. [2;4;3]
D. 9

Quiz 7: What does this evaluate to?

CMSC330 Spring 2022 43

fold (fun a y -> a-y) 0 [3;4;2]

A. -9
B. -1
C. [2;4;3]
D. 9

Quiz 7: What does this evaluate to?

CMSC330 Spring 2022

Type of fold_left, fold_right

44

let rec fold_left f a l =
 match l with
 [] -> a
 | h::t -> fold_left f (f a h) t

let rec fold_right f l a =
 match l with
 [] -> a
 | h::t -> f h (fold_right f t a)

('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

f la

('b -> 'a -> 'a) -> 'b list -> 'a -> 'a

f l a

CMSC330 Spring 2022

Summary: Left-to-right vs. right-to-left

 fold_left f v [v1; v2; …; vn] =
 f (f (f (f v v1) v2) …) vn

 fold_right f [v1; v2; …; vn] v =
 f v1 (f v2(… (f vn v) …))

fold_left (fun x y -> x – y) 0 [1;2;3] = -6

 since ((0-1)-2)-3) = -6

fold_right [1;2;3] (fun x y -> x – y) 0 = 2

 since 1-(2-(3-0)) = 2

45

CMSC330 Spring 2022

When to use one or the other?

• Many problems lend themselves to fold_right
• But it does present a performance disadvantage

• The recursion builds of a deep stack: One stack frame for each
recursive call of fold_right

• An optimization called tail recursion permits optimizing
fold_left so that it uses no stack at all
• We will see how this works in a later lecture!

46

CMSC330 Spring 2022

Combining map and fold

• Idea: map a list to another list, and then fold
over it to compute the final result
• Basis of the famous “map/reduce” framework from

Google, since these operations can be parallelized

47

let countone l =
 fold (fun a h -> if h=1 then a+1 else a) 0 l

let countones ss =
 let counts = map countone ss in
 fold (fun a c -> a+c) 0 counts

countones [[1;0;1]; [0;0]; [1;1]] = 4
countones [[1;0]; []; [0;0]; [1]] = 2

CMSC330 -Spring 2022 48

fold & map
More examples, practice

CMSC330 Spring 2022

Map Example 1: Permute a list
let permute lst =
 let rec rm x l = List.filter ((<>) x) l
 and insertToPermute lst x =
 let t = rm x lst in
 List.map ((fun a b->a::b) x)(permuteall t)
 and permuteall lst =
 match lst with
 |[]->[]
 |[x]->[[x]]
 |_->List.flatten(List.map (insertToPermute lst) lst)
 in permuteall lst
;;

permute [1;2;3];;
- : int list list =
[[1; 2; 3]; [1; 3; 2]; [2; 1; 3]; [2; 3; 1]; [3; 1; 2]; [3; 2; 1]]

49

CMSC330 Spring 2022

Map Example 2: Power Set

let populate a b =
 if b=[] then [[a]]
 else let t = List.map (fun x->a::x) b in
 [a]::t@b
;;

let powerset lst = List.fold_right populate lst []
;;

powerset [1;2;3];;
- : int list list = [[1]; [1; 2]; [1; 2; 3]; [1; 3]; [2]; [2; 3]; [3]]

populate 1 [[2];[3]];;
- : int list list =
- [[1]; [1; 2]; [1; 3]; [2]; [3]]

50

CMSC330 Spring 2022

Fold Example 1: Product of an int list

let mul x y = x * y;;

let lst = [1; 2; 3; 4; 5];;

fold mul 1 lst
- : int = 120 fold mul 0 lst;;

- : int = 0

Wrong accumulator

51

CMSC330 Spring 2022

Fold Example 2: Count elements of a list satisfying a
condition

let countif p l =
fold (fun counter element -> if p element then counter+1
 else counter) 0 l ;;

countif (fun x -> x > 0) [30;-1;45;100;0];;

- : int = 3

52

CMSC330 Spring 2022

Fold Example 3: Collect even numbers in the list
let f acc y = if (y mod 2) = 0 then y::acc

 else acc;;

fold f [] [1;2;3;4;5;6];;

- : int list = [6; 4; 2] Reversed

53

CMSC330 Spring 2022

Fold Example 4: Inner Product
first compute list of pair-wise products, then sum up

 [x1;x2;x3]∗[y1;y2;y3] = x1∗y1 + x2∗y2 + x3∗y3

let rec map2 f a b =
match (a,b) with
|([],[])->([])
|(h1::t1,h2::t2)->(f h1 h2):: (map2 f t1 t2)
|_->invalid_arg "map2";;

let product v1 v2 =
 fold (+) 0 (map2 (*) v1 v2);;
val product : int list -> int list -> int = <fun>
product [2;4;6] [1;3;5];;
#- : int = 44

54

CMSC330 Spring 2022

Fold Example 5: Find the maximum from a list

let maxList lst =
match lst with
 []->failwith "empty list"
|h::t-> fold max h t ;;

maxList [3;10;5];;
- : int = 10

(*
maxList [3;10;5]
fold max 3 [10:5]
fold max (max 3 10) [5]
fold max (max 10 5) []
fold max 10 []
10 *)

55

CMSC330 Spring 2022

Quiz: Sum of sublists
Given a list of int lists, compute the sum of each int list, and return
them as list.

For example:
 sumList [[1;2;3];[4];[5;6;7]]

 - : int list = [6; 4; 18]

56

CMSC330 Spring 2022

Solution: Sum of sublists

let sumList = map (fold (+) 0);;

sumList [[1;2;3];[4;5;6];[10]];;

- : int list = [6; 15; 10]

57

CMSC330 Spring 2022

Quiz: Maximum contiguous sublist
Given an int list, find the contiguous sublist, which has the largest sum
and return its sum.

Example:
Input: [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6

58

CMSC330 Spring 2022

Quiz: Maximum contiguous sublist
let f (m, acc) h =

 let m = max m (acc + h) in

 let x = if acc < 0 then 0 else acc in

 (m, x+h)

;;

let submax lst = let (max_so_far, max_current) =

fold f (0,0) lst in

max_so_far

;;

 submax [-2; 1; -3; 4; -1; 2; 1; -5; 4];;
- : int = 6

59

