
CMSC330 Spring 2022

CMSC 330: Organization of Programming 
Languages

Tail Recursion



CMSC330 Spring 2022

Factorial

fact n = n * fact (n-1)    n>0          
1                 n=0

let rec fact n = 
    if n = 0 then 1
    else n * fact (n-1)



CMSC330 Spring 2022

Factorial

fact 3 =
       = 3 * 2 * fact 1
       = 3 * 2 * 1 * fact 0 
       = 3 * 2 * 1 * 1
   = 3 * 2 * 1
       = 3 * 2
       = 6  

Stack

fact 0 1

fact 1 1 1 * fact 0

fact 2 2 2 * fact 1

fact 3 3 3 * fact 2 

fact n = n * fact (n-1)    n>0          
1                 n=0

3 * fact 2



CMSC330 Spring 2022

Stack Overflow

fact 1000000



CMSC330 Spring 2022

Yet Another Factorial

let fact n =
  let rec aux x a =
    if x = 0 then a
    else aux (x-1) x*a in 
  aux n 1

aux x a = 

fact n  = aux n 1

aux (x-1) x*a     x>0          
a                 x=0



CMSC330 Spring 2022

Yet Another Factorial

fact 3 =
       = aux (3-1) 3*1 = aux 2 3

    = aux (2-1) 2*3 = aux 1 6
       = aux (1-1) 1*6 = aux 0 6
       = 6

aux x a = 

fact n  = aux n 1

aux (x-1) x*a     x>0          
a                 x=0 Look, Ma! No Stack!

No need to push a new 
frame on each call 
• The result of the 

evaluation is exactly the 
result of the recursive 
call – nothing to 
remember

• So: Reuse the current 
frame

aux 3 1



CMSC330 Spring 2022

Tail Recursion

• Whenever a function’s result is completely computed by its 
recursive call, it is called tail recursive
– Its “tail” – the last thing it does – is recursive

• Tail recursive functions can be implemented without 
requiring a stack frame for each call
– No intermediate variables need to be saved, so the compiler 

overwrites them

• Typical pattern is to use an accumulator to build up the 
result, and return it in the base case



CMSC330 Spring 2022

Compare fact and aux

Final result is the result of the recursive call

Waits for recursive call’s result to compute final result

let rec fact n = 
  if n = 0 then 1
  else n * fact (n-1)

let fact n =
  let rec aux x acc =
    if x = 1 then acc
    else aux (x-1) (acc*x) in 
  aux n 1

1. Compute fact (n-1)
2. Multiply it by n
3. Return result

1. Compute aux (x-1) …
2. Return it



CMSC330 Spring 2022

Quiz #1

True/false: map is tail-recursive.

let rec map f = function
| [] -> []
| (h::t) -> (f h)::(map f t)

A. True
B. False



CMSC330 Spring 2022

Quiz #1

True/false: map is tail-recursive.

A. True
B. False

let rec map f = function
| [] -> []
| (h::t) -> (f h)::(map f t)



CMSC330 Spring 2022

Quiz #2

True/false: fold is tail-recursive

A. True
B. False

let rec fold f a = function
| [] -> a
| (h::t) -> fold f (f a h) t



CMSC330 Spring 2022

Quiz #2

True/false: fold is tail-recursive

A. True
B. False

let rec fold f a = function
| [] -> a
| (h::t) -> fold f (f a h) t



CMSC330 Spring 2022

Quiz #3

True/false: fold_right is tail-recursive

A. True
B. False

let rec fold_right f l a = 
  match l with
  | [] -> a
  | (h::t) -> f h (fold_right f t a)



CMSC330 Spring 2022

Quiz #3

True/false: fold_right is tail-recursive

A. True
B. False

let rec fold_right f l a = 
  match l with
  | [] -> a
  | (h::t) -> f h (fold_right f t a)



CMSC330 Spring 2022

let sumlist l = 
  let rec helper l a = 
    match l with
    | [] -> _____
    | (x::xs) -> _________ in
  helper l 0

Exercise: Finish Tail-recursive Version

Tail-recursive version:

let rec sumlist l = 
  match l with
  | [] -> 0
  | (x::xs) -> (sumlist xs) + x



CMSC330 Spring 2022

let sumlist l = 
  let rec helper l a = 
    match l with
      [] -> a
    | (x::xs) -> helper xs (x+a) in
  helper l 0

Exercise: Finish Tail-recursive Version

let rec sumlist l = 
  match l with
    [] -> 0
  | (x::xs) -> (sumlist xs) + x

Tail-recursive version:



CMSC330 Spring 2022

Tail Recursion Pattern (1 argument)

let func x =
  let rec helper arg acc =
    if (base case) then acc
    else
      let arg’ = (argument to recursive call)
      let acc’ = (updated accumulator)
      helper arg’ acc’ in (* end of helper fun *)
  helper x (initial val of accumulator -- used for base case)
;;



CMSC330 Spring 2022

Tail Recursion Pattern with fact

let fact x =
  let rec helper arg acc =
    if arg = 0 then acc
    else
      let arg’ = arg – 1 in
      let acc’ = acc * arg in
      helper arg’ acc’ in (* end of helper fun *)
  helper x 1
;;



CMSC330 Spring 2022

Tail Recursion Pattern with rev

let rev x =
  let rec rev_helper arg acc =
    match arg with [] -> acc
    | h::t -> 
      let arg’ = t in
      let acc’ = h::acc in
      rev_helper arg’ acc’ in (* end of helper fun *)
  rev_helper x []
;;

Can generalize to 
more than one 
argument, and 
multiple cases for 
each recursive call



CMSC330 Spring 2022

Quiz #4

True/false: this is a tail-recursive map

A. True
B. False

let map f l =
  let rec helper l a =
    match l with
    | [] -> a
    | h::t -> helper t ((f h)::a)
  in helper l []



CMSC330 Spring 2022

Quiz #4

True/false: this is a tail-recursive map

A. True
B. False (elements are reversed)

let map f l =
  let rec helper l a =
    match l with
    | [] -> a
    | h::t -> helper t ((f h)::a)
  in helper l []



CMSC330 Spring 2022

A Tail Recursive map

let map f l =
  let rec helper l a =
    match l with
      [] -> a
    | h::t -> helper t ((f h)::a)
  in rev (helper l [])

Could instead change (f h)::a to be a@[f h]
Q: Why is the above implementation a better choice? 
A: O(n) running time, not O(n2) (where n is length of list) 



CMSC330 Spring 2022

https://xkcd.com/1270/



CMSC330 Spring 2022

Tail Recursion is Important

• Pushing a call frame for each recursive call when 
operating on a list is dangerous
– One stack frame for each list element
– Big list = stack overflow!

• So: favor tail recursion when inputs could be large (i.e., 
recursion could be deep). E.g., 
– Prefer List.fold_left to List.fold_right

• Library documentation should indicate tail recursion, or not
– Convert recursive functions to be tail recursive



CMSC330 Spring 2022

Outlook: Tail Recursion is General, too

• A function that is tail-recursive returns at most once 
(to its caller) when completely finished
– The final result is exactly the result of a recursive call; no 

stack frame needed to remember the current call

• Is it possible to convert an arbitrary program into an 
equivalent one, except where no call ever returns?
– Yes. This is called continuation-passing style
– More later!


