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CMSC 330: Organization of Programming 
Languages

Tail Recursion
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Factorial

fact n = n * fact (n-1)    n>0          
1                 n=0

let rec fact n = 
    if n = 0 then 1
    else n * fact (n-1)
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Factorial

fact 3 =
       = 3 * 2 * fact 1
       = 3 * 2 * 1 * fact 0 
       = 3 * 2 * 1 * 1
   = 3 * 2 * 1
       = 3 * 2
       = 6  

Stack

fact 0 1

fact 1 1 1 * fact 0

fact 2 2 2 * fact 1

fact 3 3 3 * fact 2 

fact n = n * fact (n-1)    n>0          
1                 n=0

3 * fact 2
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Stack Overflow

fact 1000000
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Yet Another Factorial

let fact n =
  let rec aux x a =
    if x = 0 then a
    else aux (x-1) x*a in 
  aux n 1

aux x a = 

fact n  = aux n 1

aux (x-1) x*a     x>0          
a                 x=0
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Yet Another Factorial

fact 3 =
       = aux (3-1) 3*1 = aux 2 3

    = aux (2-1) 2*3 = aux 1 6
       = aux (1-1) 1*6 = aux 0 6
       = 6

aux x a = 

fact n  = aux n 1

aux (x-1) x*a     x>0          
a                 x=0 Look, Ma! No Stack!

No need to push a new 
frame on each call 
• The result of the 

evaluation is exactly the 
result of the recursive 
call – nothing to 
remember

• So: Reuse the current 
frame

aux 3 1
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Tail Recursion

• Whenever a function’s result is completely computed by its 
recursive call, it is called tail recursive
– Its “tail” – the last thing it does – is recursive

• Tail recursive functions can be implemented without 
requiring a stack frame for each call
– No intermediate variables need to be saved, so the compiler 

overwrites them

• Typical pattern is to use an accumulator to build up the 
result, and return it in the base case
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Compare fact and aux

Final result is the result of the recursive call

Waits for recursive call’s result to compute final result

let rec fact n = 
  if n = 0 then 1
  else n * fact (n-1)

let fact n =
  let rec aux x acc =
    if x = 1 then acc
    else aux (x-1) (acc*x) in 
  aux n 1

1. Compute fact (n-1)
2. Multiply it by n
3. Return result

1. Compute aux (x-1) …
2. Return it
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Quiz #1

True/false: map is tail-recursive.

let rec map f = function
| [] -> []
| (h::t) -> (f h)::(map f t)

A. True
B. False
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Quiz #1

True/false: map is tail-recursive.

A. True
B. False

let rec map f = function
| [] -> []
| (h::t) -> (f h)::(map f t)
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Quiz #2

True/false: fold is tail-recursive

A. True
B. False

let rec fold f a = function
| [] -> a
| (h::t) -> fold f (f a h) t
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Quiz #2

True/false: fold is tail-recursive

A. True
B. False

let rec fold f a = function
| [] -> a
| (h::t) -> fold f (f a h) t
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Quiz #3

True/false: fold_right is tail-recursive

A. True
B. False

let rec fold_right f l a = 
  match l with
  | [] -> a
  | (h::t) -> f h (fold_right f t a)
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Quiz #3

True/false: fold_right is tail-recursive

A. True
B. False

let rec fold_right f l a = 
  match l with
  | [] -> a
  | (h::t) -> f h (fold_right f t a)
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let sumlist l = 
  let rec helper l a = 
    match l with
    | [] -> _____
    | (x::xs) -> _________ in
  helper l 0

Exercise: Finish Tail-recursive Version

Tail-recursive version:

let rec sumlist l = 
  match l with
  | [] -> 0
  | (x::xs) -> (sumlist xs) + x
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let sumlist l = 
  let rec helper l a = 
    match l with
      [] -> a
    | (x::xs) -> helper xs (x+a) in
  helper l 0

Exercise: Finish Tail-recursive Version

let rec sumlist l = 
  match l with
    [] -> 0
  | (x::xs) -> (sumlist xs) + x

Tail-recursive version:
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Tail Recursion Pattern (1 argument)

let func x =
  let rec helper arg acc =
    if (base case) then acc
    else
      let arg’ = (argument to recursive call)
      let acc’ = (updated accumulator)
      helper arg’ acc’ in (* end of helper fun *)
  helper x (initial val of accumulator -- used for base case)
;;
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Tail Recursion Pattern with fact

let fact x =
  let rec helper arg acc =
    if arg = 0 then acc
    else
      let arg’ = arg – 1 in
      let acc’ = acc * arg in
      helper arg’ acc’ in (* end of helper fun *)
  helper x 1
;;



CMSC330 Spring 2022

Tail Recursion Pattern with rev

let rev x =
  let rec rev_helper arg acc =
    match arg with [] -> acc
    | h::t -> 
      let arg’ = t in
      let acc’ = h::acc in
      rev_helper arg’ acc’ in (* end of helper fun *)
  rev_helper x []
;;

Can generalize to 
more than one 
argument, and 
multiple cases for 
each recursive call
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Quiz #4

True/false: this is a tail-recursive map

A. True
B. False

let map f l =
  let rec helper l a =
    match l with
    | [] -> a
    | h::t -> helper t ((f h)::a)
  in helper l []
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Quiz #4

True/false: this is a tail-recursive map

A. True
B. False (elements are reversed)

let map f l =
  let rec helper l a =
    match l with
    | [] -> a
    | h::t -> helper t ((f h)::a)
  in helper l []
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A Tail Recursive map

let map f l =
  let rec helper l a =
    match l with
      [] -> a
    | h::t -> helper t ((f h)::a)
  in rev (helper l [])

Could instead change (f h)::a to be a@[f h]
Q: Why is the above implementation a better choice? 
A: O(n) running time, not O(n2) (where n is length of list) 
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https://xkcd.com/1270/
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Tail Recursion is Important

• Pushing a call frame for each recursive call when 
operating on a list is dangerous
– One stack frame for each list element
– Big list = stack overflow!

• So: favor tail recursion when inputs could be large (i.e., 
recursion could be deep). E.g., 
– Prefer List.fold_left to List.fold_right

• Library documentation should indicate tail recursion, or not
– Convert recursive functions to be tail recursive
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Outlook: Tail Recursion is General, too

• A function that is tail-recursive returns at most once 
(to its caller) when completely finished
– The final result is exactly the result of a recursive call; no 

stack frame needed to remember the current call

• Is it possible to convert an arbitrary program into an 
equivalent one, except where no call ever returns?
– Yes. This is called continuation-passing style
– More later!


