
CMSC330 Spring 2022

CMSC 330: Organization of Programming 
Languages

Closures
(Implementing Higher Order Functions)

1



CMSC330 Spring 2022 2

Returning Functions as Results
• In OCaml you can pass functions as arguments

• to map, fold, etc.
• and you can return functions as results

# let pick_fn n =
    let plus_three x = x + 3 in
    let plus_four x = x + 4 in
    if n > 0 then plus_three else plus_four
val pick_fn : int -> (int->int) = <fun>

• Here, pick_fn takes an int argument, and returns a 
function # let g = pick_fn 2;;

val g : int -> int = <fun>
# g 4;;   (* evaluates to 7 *)



CMSC330 Spring 2022 3

• Consider a rewriting of the prior code (above)
let pick_fn n =
  if n > 0 then (fun x -> x+3) else (fun x -> x+4)

• Here’s another version

let pick_fn n = 
  (fun x -> if n > 0 then x+3 else x+4)

• … the shorthand for which is just
let pick_fn n x = 
  if n > 0 then x+3 else x+4 I.e., a multi-argument

function!

Multi-argument Functions



CMSC330 Spring 2022 4

Currying

• Multi-argument functions not a separate concept
• Can encode one as a function that takes a single argument and 

returns a function that takes the rest

• This encoding is called currying the function
• Named after the logician Haskell B. Curry
• But Schönfinkel and Frege discovered it

� So maybe it should be called Schönfinkelizing or Fregging



CMSC330 Spring 2022 5

Curried Functions In OCaml

• OCaml syntax defaults to currying. E.g., 

• is identical to all of the following:

• Thus:
• add has type int -> (int -> int)
• add 3 has type int -> int

� add 3 is a function that adds 3 to its argument
• (add 3) 4 = 7

let add x y = x + y

let add = (fun x -> (fun y -> x + y))
let add = (fun x y -> x + y)
let add x = (fun y -> x+y)



CMSC330 Spring 2022 7

Syntax Conventions for Currying

• Because currying is so common, OCaml uses the 
following conventions:
• -> associates from the right

� Thus int -> int -> int is the same as
� int -> (int -> int)

• function application associates from the left
� Thus add 3 4 is the same as
� (add 3) 4



CMSC330 Spring 2022

A. let f b = fun a -> a / b;;
B. let f = fun a -> (fun b -> a / b);;
C. let f = fun a | b -> a / b;;
D. let f (a, b) = a / b;;

8

 let f a b = a / b;;

Quiz 1: Which f definition is equivalent?



CMSC330 Spring 2022

A. let f b = fun a -> a / b;;
B. let f = fun a -> (fun b -> a / b);;
C. let f = fun a | b -> a / b;;
D. let f (a, b) = a / b;;

9

 let f a b = a / b;;

Quiz 1: Which f definition is equivalent?



CMSC330 Spring 2022

Multiple Arguments, Partial Application

• Another way you could encode support for multiple 
arguments is using tuples
• let f (a,b) = a / b (* int*int -> int *)

• let f a b = a / b (* int -> int-> int *)

• Is there a benefit to using currying instead?
• Supports partial application – useful when you want to 

provide some arguments now, the rest later
• let add a b = a + b;;

• let addthree = add 3;;

• addthree 4;; (* evaluates to 7 *)

13



CMSC330 Spring 2022

A. 8
B. 6
C. 2
D. 3

14

 let f a b = a * b in
 let g = f 2 in
 let a = 3 in
 g 4

Quiz 2: What does this evaluate to?



CMSC330 Spring 2022

A. 8
B. 6
C. 2
D. 3

15

 let f a b = a * b in
 let g = f 2 in
 let a = 3 in
 g 4   (* f 2 4 = 8 *)

Quiz 2: What does this evaluate to?



CMSC330 Spring 2022 16

Currying is Standard In OCaml

• Pretty much all functions are curried
• Like the standard library map, fold, etc.
• See /usr/local/ocaml/lib/ocaml on Grace

� In particular, look at the file list.ml for standard list functions
� Access these functions using List.<fn name>
� E.g., List.hd, List.length, List.map

• OCaml works hard to make currying efficient
• Because otherwise it would do a lot of useless allocation and 

destruction of closures
• What are those, you ask? Let’s see …



CMSC330 Spring 2022

Closures

18



CMSC330 Spring 2022

Remember our partial application example

• Let’s evaluate it the expression (using substitution)
let addthree = add 3 in addthree 4
🡪 let addthree = (fun a -> fun b -> a+b) 3 in …
🡪 let addthree = (fun b -> 3+b) in addthree 4
🡪 (fun b -> 3+b) 4
🡪 3+4 🡪 7

25

let addthree = add 3 in 
addthree 4

let add a b = a + b;;let add = fun a -> fun b -> a + b;;



CMSC330 Spring 2022

Using Substitution “Remembered” the a is 3

• Let’s evaluate it the expression (using substitution)
let addthree = add 3 in addthree 4
🡪 let addthree = (fun a -> fun b -> a+b) 3 in …
🡪 let addthree = (fun b -> 3+b) in addthree 4
🡪 (fun b -> 3+b) 4
🡪 3+4 🡪 7

26

let addthree = add 3 in 
addthree 4

let add = fun a -> fun b -> a + b;;



CMSC330 Spring 2022

How to use a stack, not substitution?

• Substitution replaces the occurrence of the variable with 
the value it is bound to (e.g., at a call)
• Like changing the code in place!

• In reality, we use a stack to remember variable-to-value 
mappings

• But: If calling add 3 pushes 3 on the stack, what happens when 
the call returns? How does addthree remember that it was 
constructed by a call with 3?

27

let addthree = add 3 in 
addthree 4



CMSC330 Spring 2022 28

Closures “Remember”

• An environment is a mapping from variables to values
• Like a stack frame

• A closure is a pair (f, e) consisting of function code f and 
an environment e
• Environment “captures” active bindings, when closure is made
• These include “free variables” – these are mentioned in f’s body 

but are not its formal parameters

• When you invoke a closure, f is evaluated using e



CMSC330 Spring 2022 30

Example 1

let add x = (fun y -> x + y)

(add 3) 4 → <cl> 4 → 3 + 4 → 7

Function Environment

Closure



CMSC330 Spring 2022 31

Example 2

let mult_sum (x, y) =
  let z = x + y in
  fun w -> w * z

(mult_sum (3, 4)) 5 → <cl> 5 → 5 * 7 → 35



CMSC330 Spring 2022

A. 10
B. 1
C. 15
D. Error - variable name conflicts

32

let a = 1;;
let a = 0;;
let b = 10;;
let f () = a + b;;
let b = 5;;
let x = f ();;

Quiz 3: What is x?



CMSC330 Spring 2022

A. 10
B. 1
C. 15
D. Error - variable name conflicts

33

let a = 1;;
let a = 0;;
let b = 10;;
let f = fun () -> a + b;;
let b = 5;;
let x = f ();;

Quiz 3: What is x?



CMSC330 Spring 2022

A. 7
B. -2
C. -1
D. Type Error – insufficient arguments

34

let f x = fun y -> x – y in
let g = f 2 in
let x = 3 in
let z = g 4 in
z;;

Quiz 4: What is z?



CMSC330 Spring 2022

A. 7
B. -2
C. -1
D. Type Error – insufficient arguments

35

Quiz 4: What is z?

let f x = fun y -> x – y in
let g = f 2 in
let x = 3 in
let z = g 4 in
z;;



CMSC330 Spring 2022 36

let f x = x+1 in
let g = f in
g (fun i -> i+1) 1

Quiz 5: What does this evaluate to?

A. Type Error
B. 1
C. 2
D. 3



CMSC330 Spring 2022

A. Type Error – Too many arguments passed 
to g (application is left associative)

B. 1
C. 2
D. 3

37

let f x = x+1 in
let g = f in
(g (fun i -> i+1)) 1

Quiz 5: What does this evaluate to?



CMSC330 Spring 2022

Scope

• Dynamic scope
• The body of a function is evaluated in the current dynamic 

environment at the time the function is called, not the 
environment that existed at the time the function was defined
� Now basically considered a mistake

• Lexical scope (aka Static scope)
• The body of a function is evaluated in the old dynamic 

environment that existed at the time the function was defined, 
not the current environment when the function is called.

• This is implemented by closures 

38



CMSC330 Spring 2022

Dynamic vs. Static Scope

39

A. 8
B. 12
C. 2
D. 3

 let f a b = a * b in
 let g = f 2 in
 let a = 3 in
 g 4

Answer, if dynamic scope
Answer, if lexical/static scope



CMSC330 Spring 2022 40

Higher-Order Functions in C

• C supports function pointers 

typedef int (*int_func)(int);
void app(int_func f, int *a, int n) {
  for (int i = 0; i < n; i++)
    a[i] = f(a[i]);
}
int add_one(int x) { return x + 1; }
int main() {
  int a[] = {5, 6, 7};
  app(add_one, a, 3);
}



CMSC330 Spring 2022 41

Higher-Order Functions in C (cont.)

• C does not support closures
• Since no nested functions allowed
• Unbound symbols always in global scope

int y = 1;
void app(int(*f)(int), n) {
  return f(n);
}
int add_y(int x) { 
  return x + y; 
}
int main() {
  app(add_y, 2);
}



CMSC330 Spring 2022 42

Higher-Order Functions in C (cont.)

• Cannot access non-local variables in C
• OCaml code

• Equivalent code in C is illegal
let add x y = x + y

int (* add(int x))(int) {
  return add_y;
}
int add_y(int y) { 
  return x + y; /* error: x undefined */
}



CMSC330 Spring 2022 43

Higher-Order Functions in C (cont.)

• OCaml code

• Works if C supports nested functions
• Not in ISO C, but in gcc; but not allowed to return them

• Does not allocate closure, so x popped from stack and 
add_y will get garbage (potentially) when called

int (* add(int x))(int) {
  int add_y(int y) { 
    return x + y; 
  }
  return add_y; }

let add x y = x + y



CMSC330 Spring 2022

Java 8 Supports Lambda Expressions

• Ocaml’s 

• Is like the following in Java 8

• Java 8 supports closures, and variations on this syntax

44

(a, b) -> a + b

fun (a, b) -> a + b



CMSC330 Spring 2022

Java 8 Example
public class Calculator {
    interface IntegerMath { int operation(int a, int b);  }
    public int operateBinary(int a, int b, IntegerMath op) {
        return op.operation(a, b);
    }
    public static void main(String... args) {
        Calculator myApp = new Calculator();
        IntegerMath addition = (a, b) -> a + b;
        IntegerMath subtraction = (a, b) -> a - b;
        System.out.println("40 + 2 = " +
            myApp.operateBinary(40, 2, addition));
        System.out.println("20 - 10 = " +
            myApp.operateBinary(20, 10, subtraction));    
    }
}

45

Lambda
expressions


