
CMSC330 Spring 2022

CMSC 330: Organization of Programming
Languages

OCaml Imperative Programming

1

CMSC330 Spring 2022

So Far, Only Functional Programming

• We haven’t given you any way so far to change something
in memory
• All you can do is create new values from old

• This makes programming easier since it supports
mathematical (i.e., functional) reasoning
• Don’t care whether data is shared in memory

� Aliasing is irrelevant

• Calling a function f with the same argument always produces the
same result
� For all x and y, we have f x = f y when x = y

2

CMSC330 Spring 2022

Imperative OCaml

• Nevertheless, sometimes it is useful for values to change
• Call a function that returns an incremented counter
• Store aggregations in efficient hash tables

• OCaml variables are immutable, as we know, but

• OCaml references, fields, and arrays are mutable
• I.e., they can change

3

CMSC330 Spring 2022

References

• 'a ref: Pointer to a mutable value of type 'a
• int ref in OCaml is like type int * in C

• There are three basic operations on references:
 ref : 'a -> 'a ref

� Allocate a reference
 ! : 'a ref -> 'a

� Read the value stored in reference
 := : 'a ref -> 'a -> unit

� Change the value stored in reference
• Binding variable x to a reference is immutable

• The contents of the reference x points to may change
4

CMSC330 Spring 2022 5

References Usage
Example:

let z = 3;;
val z : int = 3

let x = ref z;;
val x : int ref = {contents = 3}

let y = x;;
val y : int ref = {contents = 3}

z 3

y

x

contents =

3

CMSC330 Spring 2022 6

References Usage
Example:

let z = 3;;
val z : int = 3

let x = ref z;;
val x : int ref = {contents = 3}

let y = x;;
val y : int ref = {contents = 3}

x := 4;;
- : unit = ()

z 3

y

x

contents =

3

contents =

4

CMSC330 Spring 2022 7

References Usage
Example:

let z = 3;;
val z : int = 3

let x = ref z;;
val x : int ref = {contents = 3}

let y = x;;
val y : int ref = {contents = 3}

x := 4;;
- : unit = ()

!y;;
- : int = 4

z 3

y

x

contents =

3

contents =

4

CMSC330 Spring 2022

Aliasing
• Reconsider our example

let z = 3;;
let x = ref z;;
let y = x;;
x := 4;;
!y;;

• Here, variables y and x are aliases:
• In let y = x, variable x evaluates to a location, and y is bound

to the same location
• So, changing the contents of that location will cause both !x and
!y to change

8

CMSC330 Spring 2022

Quiz 1: What is the value w?

let x = ref 12 in
let y = ref 13 in
let z = y in
let _ = y := 4 in
let w = !y + !z in
w

9

A. 25
B. 8
C. 17
D. 16

CMSC330 Spring 2022

Quiz 1: What is the value w?

let x = ref 12 in
let y = ref 13 in
let z = y in
let _ = y := 4 in
let w = !y + !z in
w

10

A. 25
B. 8
C. 17
D. 16

CMSC330 Spring 2022

Quiz 1a: What is the value w?

let x = ref 12 in
let y = ref 13 in
let z = !y in
let _ = y := 4 in
let w = !y + z in
w

11

A. 25
B. 8
C. 17
D. 16

CMSC330 Spring 2022

Quiz 1a: What is the value w?

let x = ref 12 in
let y = ref 13 in
let z = !y in
let _ = y := 4 in
let w = !y + z in
w

12

A. 25
B. 8
C. 17
D. 16

CMSC330 Spring 2022

References: Syntax and Semantics

• Syntax: ref e

• Evaluation
• Evaluate e to a value v
• Allocate a new location loc in memory to hold v
• Store v in contents of memory at loc
• Return loc (which is itself a value)

• Type checking
• (ref e) : t ref

• if e : t
13

CMSC330 Spring 2022

References: Syntax and Semantics

• Syntax: e1 := e2

• Evaluation
• Evaluate e2 to a value v2
• Evaluate e1 to a location loc
• Store v2 in contents of memory at loc
• Return ()

• Type checking
• (e1 := e2) : unit

• if e1 : t ref and e2 : t
14

CMSC330 Spring 2022

References: Syntax and Semantics

• Syntax: !e
• This is not negation. Operator ! is like operator * in C

• Evaluation
• Evaluate e to a location loc
• Return contents v of memory at loc

• Type checking
• !e : t

• if e : t ref

15

CMSC330 Spring 2022

Sequences: Syntax and Semantics

• Syntax: e1; e2
• e1; e2 is the same as let _ = e1 in e2

• Evaluation
• Evaluate e1 to a value v1
• Evaluate e2 to a value v2
• Return v2

•Throws away v1 – so e1 is useful only if it has side effects, e.g., if it modifies a reference’s
contents or accesses a file

• Type checking
• e1;e2 : t

• if e1 : unit and e2 : t

16

OCaml warns if e1’s type is not unit

CMSC330 Spring 2022

;; versus ;
• ;; ends an expression in the top-level of OCaml

• Use it to say: “Give me the value of this expression”
• Not used in the body of a function
• Not always needed after each definition (but won’t hurt if used)

• e1; e2 evaluates e1 and then e2, and returns e2
let print_both (s, t) = print_string s; print_string t;

 "Printed s and t"

• notice no ; at end − it’s a separator, not a terminator
print_both ("Colorless green ", "ideas sleep")

Prints ”Colorless green ideas sleep", and returns
"Printed s and t"

17

CMSC330 Spring 2022 18

Grouping Sequences

• If you’re not sure about the scoping rules, use begin...end,
or parentheses, to group together statements with
semicolons

let x = ref 0
let f () =
 begin
 print_string "hello";
 x := !x + 1
 end

let x = ref 0
let f () =
 (
 print_string "hello";
 x := !x + 1
)

CMSC330 Spring 2022

Implement a Counter

20

let counter = ref 0 ;;
val counter : int ref = { contents=0 }

let next =
 fun () ->
 counter := !counter + 1; !counter ;;
val next : unit -> int = <fun>

next ();;
- : int = 1

next ();;
- : int = 2

CMSC330 Spring 2022 21

Hide the Reference

let counter = ref 0 ;;
val counter : int ref = { contents=0 }

let next =
 fun () ->
 counter := !counter + 1; !counter ;;

let counter = ref 0 ;;
val counter : int ref = { contents=0 }

let next =
 let counter = ref 0 in
 fun () ->
 counter := !counter + 1; !counter ;;
val next : unit -> int = <fun>

next ();;
- : int = 1

next ();;
- : int = 2

CMSC330 Spring 2022 22

Hide the Reference, Visualized
let next =
 let counter = ref 0 in
 fun () ->
 counter := !counter + 1; !counter
🡪
let next =
 let counter = loc in
 fun () ->
 counter := !counter + 1; !counter
🡪
let next =

contents =

0

fun () ->
 counter := !counter + 1; !counter counter = loc

a closure

CMSC330 Spring 2022

Quiz 2: What is wrong with the counter?

23

let next =
fun () ->

 let counter = ref 0 in
 counter := !counter + 1;
 !counter

A. It returns a boolean, not an integer
B. It returns the same integer every time
C. It returns a reference to an integer instead of an integer
D. Nothing is wrong

CMSC330 Spring 2022

Quiz 2: What is wrong with the counter?

24

let next =
fun () ->

 let counter = ref 0 in
 counter := !counter + 1;
 !counter

A. It returns a boolean, not an integer
B. It returns the same integer every time
C. It returns a reference to an integer instead of an integer
D. Nothing is wrong

CMSC330 Spring 2022 25

The Trade-Off Of Side Effects

• Side effects are absolutely necessary
• That’s usually why we run software! We want something to

happen that we can observe

• They also make reasoning harder
• Order of evaluation now matters
• No referential transparency

� Calling the same function with the same arguments may produce different
results

• Aliasing may result in hard-to-understand bugs
� If we call a function with refs r1 and r2, it might do strange things if r1 and

r2 are aliases

CMSC330 Spring 2022

Order of Evaluation
• Consider this example

let y = ref 1;;
let f _ z = z+2;; (* ignores first arg *)
let w = f (y:=2) !y;;
w;;
• The first argument to the call to f is the result of evaluating the assignment

expression y:=2, which is unit ()
• The second argument is the current contents of reference y

• What is w if f’s arguments are evaluated left to right?
• 4

• What if they are evaluated right to left?
• 3

26

CMSC330 Spring 2022 27

OCaml Order of Evaluation

• In OCaml, the order of evaluation is unspecified
• This means that the language doesn’t take a stand, and different

implementations may do different things

• On my Mac, OCaml evaluates right to left
• True for the bytecode interpreter and x86 native code
• Run the previous example and see for yourself!

Strive to make your programs produce the same answer
regardless of evaluation order

CMSC330 Spring 2022

Quiz 3: Will w’s value differ

let y = ref 1 in
let f z = z := !z+1; !z in
let w = (f y) + (f y) in
w

28

A. True
B. False

If evaluation order is left to right, rather than right to left?

CMSC330 Spring 2022

Quiz 3: Will w’s value differ

let y = ref 1 in
let f z = z := !z+1; !z in
let w = (f y) + (f y) in
w

29

A. True
B. False

If evaluation order is left to right, rather than right to left?

CMSC330 Spring 2022

Quiz 4: Will w’s value differ

let y = ref 1 in
let f z = z := !z+1; !z in
let w = (f y) + !y in
w

30

A. True
B. False

If evaluation order is left to right, rather than right to left?

CMSC330 Spring 2022

Quiz 4: Will w’s value differ

let y = ref 1 in
let f z = z := !z+1; !z in
let w = (f y) + !y in
w

31

A. True
B. False

If evaluation order is left to right, rather than right to left?

CMSC330 Spring 2022

Quiz 5: Which f is not referentially transparent?

32

I.e., not the case that f x = f y for all x = y

A. let f z =
 let y = ref z in
 y := !y + z;
 !y

B. let f =
 let y = ref 0 in
 fun z ->
 y := !y + z; !y

C. let f z =
 let y = z in
 y+z

D. let f z = z+1

CMSC330 Spring 2022

Quiz 5: Which f is not referentially transparent?

33

B. let f =
 let y = ref 0 in
 fun z ->
 y := !y + z; !y

This is basically the counter function

I.e., not the case that f x = f y for all x = y

A. let f z =
 let y = ref z in
 y := !y + z;
 !y

C. let f z =
 let y = z in
 y+z

D. let f z = z+1

CMSC330 Spring 2022

Structural vs. Physical Equality

• The = operator compares objects structurally
• The <> operator is the negation of structural equality

• The == operator compares objects physically
• The != operator is the negation of physical equality

• Examples
• ([1;2;3] = [1;2;3]) = true ([1;2;3] <> [1;2;3]) = false
• ([1;2;3] == [1;2;3]) = false ([1;2;3] != [1;2;3]) = true

• Mostly you want to use = and <>
• E.g., the = operator is used for pattern matching

• But = is a problem with cyclic data structures
34

CMSC330 Spring 2022

Cyclic Data Structures Possible With Ref

35

let x = newcell 1 Nil;;
val x : int reflist = Cons (1, {contents = Nil})

type 'a rlist =
 Nil | Cons of 'a * ('a rlist ref);;

let newcell x y = Cons(x,ref y);;

let updnext (Cons (_,r)) y = r := y;;

x Cons (1,)

contents =

Nil

CMSC330 Spring 2022

contents =

Nil

let x = newcell 1 Nil;;
val x : int reflist = Cons (1, {contents = Nil})

updnext x x;;
- : unit = ()

x == x;;
- : bool = true

x = x;; (* hangs *)

36

type 'a rlist =
 Nil | Cons of 'a * ('a rlist ref);;

let newcell x y = Cons(x,ref y);;

let updnext (Cons (_,r)) y = r := y;;

x Cons (1,)

contents =

Cyclic Data Structures Possible With Ref

CMSC330 Spring 2022

Equality of refs themselves

• Refs are compared structurally by their contents,
physically by their locations’ values (addresses)
• ref 1 = ref 1 (* true *)
• ref 1 <> ref 2 (* true *)
• ref 1 != ref 1 (* true *)
• let x = ref 1 in x == x (* true *)

37

CMSC330 Spring 2022

Comparison To L- and R-values

• Recall that in C/C++/Java, there’s a strong distinction
between l- and r-values
• An r-value refers to just a value, like an integer
• An l-value refers to a location that can be written

• A variable's meaning depends on where it appears
• On the right-hand side, it’s an r-value, and it refers to the

contents of the variable
• On the left-hand side of an assignment, it’s an l-value, and it

refers to the location the variable is stored in

38

y = x;

l-value

r-value

CMSC330 Spring 2022 39

L-Values and R-Values In C

• Notice that x, y, and 3 all have type int

int x, y;

x = 3;

y = x;

3 = x;

Store 3 in
location x

Read
contents of x
and store in
location y

Makes no
sense

CMSC330 Spring 2022 40

Comparison To OCaml

• In OCaml, an updatable location and the
contents of the location have different types
• The location has a ref type

int x;
int y;

x = 3;

y = x;

3 = x;

let x = ref 0;;
let y = ref 0;;

x := 3;; (* x : int ref *)

y := (!x);;

3 := x;; (* 3 : int; error *)

C OCaml

CMSC330 Spring 2022

Mutable fields
• Fields of a record type can be declared as mutable:

41

type point = {x:int; y:int; mutable c:string};;
type point = { x : int; y : int; mutable c : string; }

let p = {x=0; y=0; c="red"};;
val p : point = {x = 0; y = 0; c = "red"}

p.c <- “white”;;
- : unit = ()

p;;
val p : point = {x = 0; y = 0; c = ”white"}

p.x <- 3;;
Error: The record field x is not mutable

CMSC330 Spring 2022

Implementing Refs
• Ref cells are essentially syntactic sugar:

 type 'a ref = { mutable contents: 'a }
 let ref x = { contents = x }
 let (!) r = r.contents
 let (:=) r newval = r.contents <- newval

• ref type is declared in Pervasives
• ref functions are compiled to equivalents of the above

42

CMSC330 Spring 2022

Arrays
• Arrays generalize reference cells from a single mutable value to a

sequence of mutable values

let v = [|0.; 1.|];;
val v : float array = [|0.; 1.|]

v.(0) <- 5.;;
 - : unit = ()

v;;
- : float array = [|5.; 1.|]

43

CMSC330 Spring 2022

Arrays

• Syntax: [|e1; ...; en|]

• Evaluation
• Evaluates to an n-element array, whose elements are initialized

to v1 … vn, where e1 evaluates to v1, ..., en evaluates to vn
� Evaluates them right to left

• Type checking
• [|e1; …; en|] : t array

� If for all i, each ei : t

44

CMSC330 Spring 2022

Arrays

• Syntax: e1.(e2)
• Evaluation

• Evaluate e2 to integer value v2
• Evaluate e1 to array value v1
• If 0 ≤ v2 < n, where n is the length of array v1, then return

element at offset v2 of v1
• Else raise Invalid_argument exception

• Type checking: e1.(e2) : t
• if e1 : t array and e2 : int

45

CMSC330 Spring 2022

Arrays

• Syntax: e1.(e2) <- e3
• Evaluation

• Evaluate e3 to v3
• Evaluate e2 to integer value v2
• Evaluate e1 to array value v1
• If 0 ≤ v2 < n, where n is the length of array v1, then update

element at offset v2 of v1 to v3
� Else raise Invalid_argument exception

• Return ()
• Type checking: e1.(e2) <- e3 : unit

• if e1 : t array and e2 : int and e3 : t
46

CMSC330 Spring 2022

Quiz 6: What does this evaluate to?

let x = [| 0; 1 |] in
let w = x in
x.(0) <- 1;
x == w

47

A. ()
B. true
C. false
D. Type error

CMSC330 Spring 2022

Quiz 6: What does this evaluate to?

let x = [| 0; 1 |] in
let w = x in
x.(0) <- 1;
x == w

48

A. ()
B. true – they point to the same array
C. false
D. Type error

CMSC330 Spring 2022

Control structures

• Traditional loop structures are useful with imperative
features:

while e1 do e2 done
for x=e1 to e2 do e3 done
for x=e1 downto e2 do e3 done

49

CMSC330 Spring 2022

Summary

• Immutability is preferred
• Immutability makes aliasing and order of evaluation irrelevant
• Ensures referential transparency
• All of these make programs easier to reason about, locally

• But sometimes mutability is useful, or necessary
• Implementing more efficient data structures
• Interacting with the outside world

• OCaml references, fields, and arrays are mutable
• I.e., they can change

50

