
CMSC330 Spring 2022

CMSC 330: Organization of Programming
Languages

Parsing

1

CMSC330 Spring 2022 2

Recall: Front End Scanner and Parser

Front End

Source Scanner ParserToken
Stream

• Scanner / lexer / tokenizer converts program source into
tokens (keywords, variable names, operators, numbers, etc.)
with regular expressions

• Parser converts tokens into an AST (abstract syntax tree)
based on a context free grammar

CMSC330 Spring 2022

• Converts textual input into a stream of tokens
• These are the terminals in the parser’s CFG
• Example tokens are keywords, identifiers, numbers, punctuation,

etc.

• Scanner typically ignores/eliminates whitespace

3

Scanning (“tokenizing”)

CMSC330 Spring 2022 4

Scanning (“tokenizing”)
type token =
 Tok_Num of char
 | Tok_Sum

tokenize "1+2" =
 [Tok_Num '1'; Tok_Sum; Tok_Num '2']

CMSC330 Spring 2022 5

A Scanner in OCaml
type token =
 Tok_Num of char
 | Tok_Sum

let tokenize (s:string) = (* returns token list *)

let re_num = Str.regexp "[0-9]" (* single digit *)
let re_add = Str.regexp "+"
let tokenize str =
 let rec tok pos s =
 if pos >= String.length s then
 []
 else
 if (Str.string_match re_num s pos) then
 let token = Str.matched_string s in
 (Tok_Num token.[0])::(tok (pos+1) s)
 else if (Str.string_match re_add s pos) then
 Tok_Sum::(tok (pos+1) s)
 else
 raise (IllegalExpression "tokenize")
 in
 tok 0 str

Uses Str
library module
for regexps

CMSC330 Spring 2022 6

Parsing (to an AST)
type token =
 Tok_Num of char
 | Tok_Sum

let tokens = tokenize "1+2" in
(* tokens = [Tok_Num '1'; Tok_Sum; Tok_Num '2'] *)

parse tokens
 = Sum (Num 1, Num 2)

type expr =
 Num of int
| Sum of expr * expr

+

1 2

CMSC330 Spring 2022

• Many efficient techniques for parsing
• LL(k), SLR(k), LR(k), LALR(k)…
• Take CMSC 430 for more details

• One simple technique: recursive descent parsing
• This is a top-down parsing algorithm

• Other algorithms are bottom-up

7

Implementing Parsers

CMSC330 Spring 2022

E → id = n | { L }
L → E ; L | ε

(Assume: id is variable name, n is integer)

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }

8

Top-Down Parsing (Intuition)

{ x = 3 ; { y = 4 ; } ; }

E

L

E L

E L

ε
L

E L
ε

CMSC330 Spring 2022

• Goal
• Can we “parse” a string – does it match our grammar?

� We will talk about constructing an AST later

• Approach: Try to produce leftmost derivation
Begin with start symbol S, and input tokens t
Repeat:
 Rewrite S and consume tokens in t via a production in the grammar
Until all tokens matched, or failure

9

Recursive Descent Parsing

CMSC330 Spring 2022

• At each step, we keep track of two facts
• What grammar element are we trying to match/expand?
• What is the lookahead (next token of the input string)?

• At each step, apply one of three possible cases
• If we’re trying to match a terminal

� If the lookahead is that token, then succeed, advance the lookahead, and
continue

• If we’re trying to match a nonterminal
� Pick which production to apply based on the lookahead

• Otherwise fail with a parsing error

10

Recursive Descent Parsing

CMSC330 Spring 2022

E → id = n | { L }
L → E ; L | ε

• Here n is an integer and id is an identifier

• One input might be
• { x = 3; { y = 4; }; }
• This would get turned into a list of tokens

{ x = 3 ; { y = 4 ; } ; }

• And we want to parse it
� i.e., just determine if it’s in the grammar’s language; no AST for now

11

Example

CMSC330 Spring 2022 12

Parsing Example Input
E → id = n | { L }
L → E ; L | ε

{ x = 3 ; { y = 4 ; } ; }

E

{ L }

E ; L

id
(x)

= n
(3)

E ; L

{ L }

E ; L

id
(y)

= n
(4)

ε

εlookahead

CMSC330 Spring 2022 14

Parsing Example: Previewing the Code

let rec parse_E () =

 match lookahead () with
 | Some Tok_Id ->
 (* E → id = n *)
 (match_tok Tok_Id;
 match_tok Tok_Eq;
 match_tok Tok_Num)

 | Some Tok_Lbrace ->
 (* E → { L } *)
 (match_tok Tok_Lbrace;
 parse_L ();
 match_tok Tok_Rbrace)

 | _ -> raise (ParseError "parse_A")

and parse_L () =

 match lookahead () with
 | Some Tok_Id | Some Tok_Lbrace ->
 (* L → E ; L *)
 (parse_E ();
 match_tok Tok_Semi;
 parse_L ())

 | _ ->
 (* L → ε *)
 ()

E → id = n | { L }
L → E ; L | ε

type token = Tok_Num (* of int *)
 | Tok_Id (* of string *)
 | Tok_Eq | Tok_Semi
 | Tok_Lbrace
 | Tok_Rbrace

CMSC330 Spring 2022 15

Parsing Example: Previewing the Code

let rec parse_E () = …
and parse_L () = …

E → id = n | { L }
L → E ; L | ε

type token = Tok_Num (* of int *)
 | Tok_Id (* of string *)
 | Tok_Eq | Tok_Semi
 | Tok_Lbrace
 | Tok_Rbrace

tok_list := tokenize "{ x = 3 ; { y = 4 ; } ; }";;
 (* tok_list := [Tok_Lbrace; Tok_Id; Tok_Eq; Tok_Num; Tok_Semi; …] *)
parse_E ();;
 (* returns () -- successfully parses input *)

tok_list := tokenize "{ x = ; }";;
 (* tok_list := [Tok_Lbrace; Tok_Id; Tok_Eq; Tok_Semi; Tok_Rbrace] *)
parse_E ();;
 (* raises exception ParseError "bad match" *)

CMSC330 Spring 2022

• Key step: Choosing the right production
• Two approaches

• Backtracking
� Choose some production
� If fails, try different production
� Parse fails if all choices fail

• Predictive parsing (what we will do)
� Analyze grammar to find FIRST sets for productions
� Compare with lookahead to decide which production to select
� Parse fails if lookahead does not match FIRST

16

Recursive Descent Parsing: Key Step

CMSC330 Spring 2022

• Motivating example
• If grammar S → xyz | abc and lookahead is x

� Select S → xyz since 1st terminal in RHS matches x

• If grammar S → A | B A → x | y B → z
� If lookahead is x, select S → A, since A can derive string beginning with x

• In general
• Choose a production that can derive a sentential form beginning

with the lookahead
• Need to know what terminal may be first in any sentential form

derived from a nonterminal / production

17

Selecting a Production

CMSC330 Spring 2022

• Definition
• First(γ), for any terminal or nonterminal γ, is the set of initial

terminals of all strings that γ may expand to
• We’ll use this to decide which production to apply

• Example: Given grammar
S → A | B
A → x | y
B → z
• First(A) = { x, y } since First(x) = { x }, First(y) = { y }
• First(B) = { z } since First(z) = { z }

• So: If we are parsing S and see x or y, we choose S → A;
if we see z we choose S → B

18

First Sets

CMSC330 Spring 2022

• For a terminal a
• First(a) = { a }

• For a nonterminal N
• If N → ε, then add ε to First(N)
• If N → α1 α2 ... αn, then (note the αi are all the symbols on the

right side of one single production):
� Add First(α1α2 ... αn) to First(N), where First(α1 α2 ... αn) is defined as

• First(α1) if ε ∉ First(α1)
• Otherwise (First(α1) – ε) ∪ First(α2 ... αn)

� If ε ∈ First(αi) for all i, 1 ≤ i ≤ k, then add ε to First(N)

19

Calculating First(γ)

CMSC330 Spring 2022 20

First() Examples
E → id = n | { L }
L → E ; L | ε

First(id) = { id }
First("=") = { "=" }
First(n) = { n }
First("{")= { "{" }
First("}")= { "}" }
First(";")= { ";" }
First(E) = { id, "{" }
First(L) = { id, "{", ε }

E → id = n | { L } | ε
L → E ; L

First(id) = { id }
First("=") = { "=" }
First(n) = { n }
First("{")= { "{" }
First("}")= { "}" }
First(";")= { ";" }
First(E) = { id, "{", ε }
First(L) = { id, "{", ";" }

CMSC330 Spring 2022

Given the following grammar:

21

Quiz #1

What is First(S)?
A. {b,c}
B. {b}
C. {a,b}
D. {c}

S -> aAB |B
A -> CBC
B -> b
C -> cC | ε

CMSC330 Spring 2022

Given the following grammar:

22

Quiz #1

What is First(S)?
A. {b,c}
B. {b}
C. {a,b}
D. {c}

S -> aAB |B
A -> CBC
B -> b
C -> cC | ε

CMSC330 Spring 2022 23

Quiz #2

What is First(B)?
A. {a}
B. {b,c}
C. {b}
D. {c}

S -> aAB
A -> CBC
B -> b
C -> cC | ε

Given the following grammar:

CMSC330 Spring 2022

Given the following grammar:

24

Quiz #2

What is First(B)?
A. {a}
B. {b,c}
C. {b}
D. {c}

S -> aAB
A -> CBC
B -> b
C -> cC | ε

CMSC330 Spring 2022

Given the following grammar:

25

Quiz #3

What is First(A)?
A. {a}
B. {b,c}
C. {b}
D. {c}

S -> aAB
A -> CBC
B -> b
C -> cC | ε

CMSC330 Spring 2022

Given the following grammar:

26

Quiz #3

S -> aAB
A -> CBC
B -> b
C -> cC | εWhat is First(A)?

A. {a}
B. {b,c}
C. {b}
D. {c}

Note:
First(B) = {b}
First(C) = {c,ε}

CMSC330 Spring 2022

• For all terminals, use function match_tok a
• If lookahead is a it consumes the lookahead by advancing the

lookahead to the next token, and returns
• Fails with a parse error if lookahead is not a

• For each nonterminal N, create a function parse_N
• Called when we’re trying to parse a part of the input which

corresponds to (or can be derived from) N
• parse_S for the start symbol S begins the parse

27

Recursive Descent Parser Implementation

CMSC330 Spring 2022 28

match_tok, lookahead in OCaml
let tok_list = ref [] (* list of parsed tokens *)

exception ParseError of string

let match_tok a =
 match !tok_list with
 (* checks current token; advances on match *)
 | (h::t) when a = h -> tok_list := t
 | _ -> raise (ParseError "bad match")

(* used by parse_X *)
let lookahead () =
 match !tok_list with
 | [] -> None
 | (h::t) -> Some h

CMSC330 Spring 2022

• The body of parse_N for a nonterminal N does the
following
• Let N → β1 | ... | βk be the productions of N

� Here βi is the entire right side of a production- a sequence of terminals and
nonterminals

• Pick the production N → βi such that the lookahead is in First(βi)
� It must be that First(βi) ∩ First(βj) = ∅ for i ≠ j
� If there is no such production, but N → ε then return
� Otherwise fail with a parse error

• Suppose βi = α1 α2 ... αn. Then call parse_α1(); ... ; parse_αn() to
match the expected right-hand side, and return

29

Parsing Nonterminals

CMSC330 Spring 2022

• Given grammar S → xyz | abc
• First(xyz) = { x }, First(abc) = { a }

• Parser
let parse_S () =
 if lookahead () = Some "x" then (* S → xyz *)
 (match_tok "x";
 match_tok "y";
 match_tok "z")

else if lookahead () = Some "a" then (* S → abc *)
(match_tok "a";

 match_tok "b";
 match_tok "c")
else raise (ParseError "parse_S")

30

Example Parser
Note: We are
not producing
an AST here; we
are only
determining if
the string is in
the language.
We’ll produce an
AST later.

CMSC330 Spring 2022

• Given grammar S → A | B A → x | y B → z
• First(A) = { x, y }, First(B) = { z }

• Parser:

31

Another Example Parser

let rec parse_S () =
 if lookahead () = Some "x" ||
 lookahead () = Some "y" then
 parse_A () (* S → A *)
 else if lookahead () = Some "z" then
 parse_B () (* S → B *)
 else raise (ParseError "parse_S")

and parse_A () =
 if lookahead () = Some "x" then
 match_tok "x" (* A → x *)
 else if lookahead () = Some "y" then
 match_tok "y" (* A → y *)
 else raise (ParseError "parse_A")

and parse_B () = …

Syntax for
mutually
recursive
functions in
OCaml –
parse_S and
parse_A and
parse_B can
each call the
other

CMSC330 Spring 2022

• If you draw the execution trace of the parser
• You get the parse tree

• Examples
• Grammar

S → xyz
S → abc

• String “xyz”
parse_S ()

match_tok “x”
match_tok “y”
match_tok “z”

32

Execution Trace = Parse Tree

 S
 /|\
x y z

S
|
A
|
x

• Grammar
S → A | B
A → x | y
B → z

• String “x”
parse_S ()

parse_A ()
 match_tok “x”

CMSC330 Spring 2022

• This is a predictive parser
• Because the lookahead determines exactly which production to use

• This parsing strategy may fail on some grammars
• Production First sets overlap
• Production First sets contain ε
• Possible infinite recursion

• Does not mean grammar is not usable
• Just means this parsing method not powerful enough
• May be able to change grammar

33

Predictive Parsing

CMSC330 Spring 2022

• Consider parsing the grammar E → ab | ac
• First(ab) = a
• First(ac) = a

• Parser fails whenever A → α1 | α2 and
• First(α1) ∩ First(α2) != ε or ∅

• Solution
• Rewrite grammar using left factoring

34

Conflicting First Sets

Parser cannot choose between
RHS based on lookahead!

CMSC330 Spring 2022

• Given grammar
• A → xα1 | xα2 | … | xαn | β

• Rewrite grammar as
• A → xL | β
• L → α1 | α2 | … | αn

• Repeat as necessary

35

Left Factoring Algorithm

A

xa1

xa2

xan

β

A

a1

a2

anβ

xL

CMSC330 Spring 2022

• Given grammar
• A → xα1 | xα2 | … | xαn | β

• Rewrite grammar as
• A → xL | β
• L → α1 | α2 | … | αn

• Examples
• S → ab | ac ⇨ S → aL L → b | c
• S → abcA | abB | a ⇨ S → aL L → bcA | bB | ε
• L → bcA | bB | ε ⇨ L → bL’ | εL’ → cA | B

36

Left Factoring Algorithm

CMSC330 Spring 2022

• Change structure of parser
• First match common prefix of productions
• Then use lookahead to chose between productions

• Example
• Consider parsing the grammar E → a+b | a*b | a

37

Alternative Approach

let parse_E () =
 match_tok "a"; (* common prefix *)

 if lookahead () = Some "+" then (* E → a+b *)
 (match_tok "+";
 match_tok "b")

 else if lookahead () = Some "*" then (* E → a*b *)
 (match_tok "*";
 match_tok "b")

 else () (* E → a *)

CMSC330 Spring 2022

• Consider grammar S → Sa | ε
• Try writing parser

• Body of parse_S () has an infinite loop!
� Infinite loop occurs in grammar with left recursion

38

Left Recursion

let rec parse_S () =
if lookahead () = Some “a” then
(parse_S ();
match_tok “a”) (* S → Sa *)

else ()

CMSC330 Spring 2022

• Consider grammar S → aS | ε Again, First(aS) = a

• Try writing parser

• Will parse_S() infinite loop?
� Invoking match_tok will advance lookahead, eventually stop

• Top-down parsers handles grammar w/ right recursion

39

Right Recursion

let rec parse_S () =
if lookahead () = Some “a” then
(match_tok “a”;
parse_S ()) (* S → aS *)

else ()

CMSC330 Spring 2022

• Given grammar
• A → Aα1 | Aα2 | … | Aαn | β

� β must exist or no derivation will yield a string

• Rewrite grammar as (repeat as needed)
• A → βL
• L → α1L | α2 L | … | αn L | ε

• Replaces left recursion with right recursion
• Examples

• S → Sa | ε ⇨ S → LL → aL | ε
• S → Sa | Sb | c ⇨ S → cL L → aL | bL | ε

40

Algorithm To Eliminate Left Recursion

CMSC330 Spring 2022

Quiz #4

• What does the following code parse?

41

let parse_S () =
 if lookahead () = Some “a” then
 (match_tok "a";
 match_tok "x";
 match_tok "y”;
 match_tok "q”)
 else
 raise (ParseError "parse_S")

A. S → axyq
B. S → a | q
C. S → aaxy | qq
D. S → axy | q

CMSC330 Spring 2022

Quiz #4

• What does the following code parse?

42

A. S → axyq
B. S → a | q
C. S → aaxy | qq
D. S → axy | q

let parse_S () =
 if lookahead () = Some “a” then
 (match_tok "a";
 match_tok "x";
 match_tok "y”;
 match_tok "q”)
 else
 raise (ParseError "parse_S")

CMSC330 Spring 2022

• What does the following code parse?

43

A. S → aS | qp
B. S → a | S | qp
C. S → aqSp
D. S → a | q

let rec parse_S () =
 if lookahead () = Some “a” then
 (match_tok "a";
 parse_S ())
 else if lookahead () = Some “q” then
 (match_tok "q”;
 match_tok ”p”)
 else
 raise (ParseError "parse_S")

Quiz #5

CMSC330 Spring 2022

• What does the following code parse?

44

A. S → aS | qp
B. S → a | S | qp
C. S → aqSp
D. S → a | q

let rec parse_S () =
 if lookahead () = Some “a” then
 (match_tok "a";
 parse_S ())
 else if lookahead () = Some “q” then
 (match_tok "q”;
 match_tok ”p”)
 else
 raise (ParseError "parse_S")

Quiz #5

CMSC330 Spring 2022

Can recursive descent parse this grammar?

45

Quiz #6

A. Yes
B. No

S → aBa
B → bC
C → ε | Cc

CMSC330 Spring 2022

Can recursive descent parse this grammar?

46

Quiz #6

A. Yes
B. No

(due to left recursion)

S → aBa
B → bC
C → ε | Cc

CMSC330 Spring 2022 47

Recall: The Compilation Process

Where does this come from?

CMSC330 Spring 2022

• Parse trees are a representation of a parse, with all of the
syntactic elements present
• Parentheses
• Extra nonterminals for precedence

• This extra stuff is needed for parsing

• Lots of that stuff is not needed to actually implement a
compiler or interpreter
• So in the abstract syntax tree we get rid of it

48

Parse Trees to ASTs

CMSC330 Spring 2022

• An abstract syntax tree is a more compact, abstract
representation of a parse tree, with only the essential parts

49

Abstract Syntax Trees (ASTs)

parse
tree AST

CMSC330 Spring 2022

• Here, id stands for a general identifier (variable), like a,
bob, chandra, toy, etc.
• The scanner will match this via a regular expression, and can

track of what the actual string was; we’ll ignore here
• Similar situation for n, which represents an integer

50

Example: Simple Assignment
E → id = n | { L }
L → E ; L | ε

type token = Tok_Num (* of string *)
 | Tok_Id (* of string *)
 | Tok_Eq | Tok_Semi
 | Tok_Lbrace
 | Tok_Rbrace

CMSC330 Spring 2022 51

Matching Strings; no AST

let rec parse_E () =

 match lookahead () with
 | Some Tok_Id ->
 (* E → id = n *)
 (match_tok Tok_Id;
 match_tok Tok_Eq;
 match_tok Tok_Num)

 | Some Tok_Lbrace ->
 (* E → { L } *)
 (match_tok Tok_Lbrace;
 parse_L ();
 match_tok Tok_Rbrace)

 | _ -> raise (ParseError "parse_A")

and parse_L () =

 match lookahead () with
 | Some Tok_Id
 | Some Tok_Lbrace ->
 (* L → E ; L *)
 (parse_E ();
 match_tok Tok_Semi;
 parse_L ())

 | _ ->
 (* L → ε *)
 ()

E → id = n | { L }
L → E ; L | ε

type token = Tok_Num (* of string *)
 | Tok_Id (* of string *)
 | Tok_Eq | Tok_Semi
 | Tok_Lbrace
 | Tok_Rbrace

(* First(E) = { id, "{" } *)

CMSC330 Spring 2022

• The AST is just a sequence of
assignment statements

• Match_tok now returns the
string that was matched for
Tok_Num and Tok_Id

52

Defining the AST
E → id = n | { L }
L → E ; L | ε

type token = Tok_Num of string
 | Tok_Id of string
 | Tok_Eq | Tok_Semi
 | Tok_Lbrace
 | Tok_Rbrace

type stmt =
| Assign of string * int
| Block of stmt list

let match_tok a : string option =

 match !tok_list,a with
 | (Tok_Id s)::t,(Tok_Id _) ->
 tok_list := t; (Some s)

 | (Tok_Num s)::t,(Tok_Num _) ->
 tok_list := t; (Some s)

 | h::t, _ ->
 if h = a then
 (tok_list := t; None)
 else
 raise (ParseError "bad match")

 | _ -> raise (ParseError "no tokens")

CMSC330 Spring 2022 53

Parsing, producing AST

let rec parse_E () : stmt =

 match lookahead () with
 Some (Tok_Id _) ->
 (let Some v = match_tok (Tok_Id "") in
 match_tok Tok_Eq;
 let Some n = match_tok (Tok_Num "") in
 Assign (v, int_of_string n))

 | Some Tok_Lbrace ->
 (match_tok Tok_Lbrace;
 let stms = parse_L () in
 match_tok Tok_Rbrace;
 Block stms)

 | _ -> raise (ParseError "parse_A")

and parse_L () : stmt list =

 match lookahead () with
 | Some (Tok_Id _)
 | Some Tok_Lbrace ->
 (let stm = parse_E () in
 match_tok Tok_Semi;
 let stms = parse_L () in
 stm :: stms)

 | _ -> []

E → id = n | { L }
L → E ; L | ε

type token = Tok_Num of string
 | Tok_Id of string
 | Tok_Eq | Tok_Semi
 | Tok_Lbrace
 | Tok_Rbrace

type stmt =
 Assign of string * int
| Block of stmt list

