
CMSC 330 Exam 1 Fall 2021 Solutions

Q1. Introduction

…

Q2. PL Concepts

Q2.1. OCaml is statically typed while Ruby is dynamically typed. True/False

Q2.2. Fill in the blanks such that the below expression demonstrates shadowing and returns 6.

let x = 5 in
let x = x + 1 in
x

Q2.3. Tuples in OCaml are homogeneous (same type) while lists are heterogeneous (can be formed by
different types). True/False

Q2.4. What is wrong with the following code?

let f x y = if x + 1 = y then x +. y else x;;

• Syntax error
• Type error
• Both Syntax and Type error

Q2.5. Which of the following are objects in Ruby?

• {1 => 2}
• nil
• [1, 2, 3]
• { |x| x + 1}

Q2.6. What variables must be in the environment of the closure for function foo in the following code?

let foo =
 let c = ref 0 in
 let m = 2 in
 fun x -> c := !c + x * m; !c

• c, m, and x
• c and m
• x
• m and x
• c and x

Q2.7.

let next =
 let c = ref 0 in
 fun () -> c:=!c+1; !c

Select one of the following inputs so that the code below evaluates to [1; 2; 3; 4]

List.map next ________________

• [1; 1; 1; 1]
• [1; 2; 3; 4]
• [(); (); (); ()]
• [0; 0; 0; 0]

Q3. Regular Expressions

Q3.1. Write a regular expression to match on ISBN-13 numbers, ISBN-13 numbers have 13 digits and are of the
format: ISBN-13: <A>--<C>-<D>-<E>

A: Prefix

B: Group identifier

C: Publisher identifier

D: Title identifier

E: Check digit

ISBN prefixes are 3 digits long, group identifiers are 1 digit, publisher identifiers are 2 or 3 digits long, title
identifiers are 5 or 6 digits long, and check digits are a singular digit.

For example:

ISBN-13: 978-3-16-148410-0
ISBN-13: 978-1-876-86197-9

^ISBN-13: \d{3}-\d{1}-\d{2,3}-(\d{5,6})-\d{1}$

Q3.2. Make only one change to the following regular expression such that it exactly matches strings with the
format: MM/DD/YYYY

^\d{1,2}\/\d{1,2}\/\d+$

^\d{1,2}\/\d{1,2}\/\d{4}$

Note: "One change" means that you can change more than one character in the regex, but only one point of
functionality can change. Both of the following should be accepted: 5/2/1988 and 55/23/9999.

Q4. Ruby: Fill in the Blanks, Output, or Input

Q4.1.

h = {}
for i in 1..3 do
 if i % 2 == 0 then
 h[“even”] += 1
 else
 h[“odd”] += 1
 end
end
puts h[“even”]
puts h[“odd”]

What is the output of the above code? If it throws any error, type in "Error".

Error

Q4.2 Fill in the blanks so that the content of x is ["one", "two", "three"].

h = {1 => "one", 2 => "two", 3 => "three"}

x = h.keys.collect { |k| h[k] }

Q4.3. Fill in the blanks so that the following is printed:

class A method 1
module M method 1

class A
 def m1()
 puts "class A method 1"
 end
 def m2()
 puts "class A method 2"
 end
end

module M
 def m1()
 puts "module M method 1"
 end
end

class B < A
 include M
end

x = A.new
y = B.new

x.m1
y.m1

Q4.4. The function expand takes an array of two-element arrays where each tuple array contains a frequency f
and an element x and returns an array of arrays such that each inner array contains f copies of x.

For example:

expand [] ==> []
expand [[1, '2'], [3, '4']] ==> [['2'], ['4', '4', '4']]

Fill in the blanks to complete this implementation. (Hint: Array.new(4){1} ==> [1, 1, 1, 1])

def expand(l)
 l.map { |freq, elem| Array.new(freq) { elem } }
end

Q5. Ruby: Coding

As students come back to campus since the COVID-19 outbreak, QR codes have been placed all over several
buildings to enable contact tracing. You are given the task to write a program that reads contact tracing data
to find the students who may have come into close contact with other students who test positive for COVID19.

You will be given a file that will include the data for the QR code scans. Each line of the file corresponds to a
single scan that a student has made, and has the following format:

<firstname> <lastname>,<location>

You can assume that firstname and lastname will always be a student's first and last name, defined as a
single upper-case letter, followed by at least one lowercase letter, and that location will always be three
upper-case letters followed by 4 digits. You can also assume that there will be no duplicate lines, and that no
student's name will appear more than once.

A short example of one of these files may look like the following:

David Smith,IRB0324
Michael Yang,IRB0324
Roger Eastman,IRB0324
John Chadley,ESJ0224
Master Yoda,VMH0201
Little Timmy,TWS1212
Covid Man,IRB0324

Your task is to fill in the blanks to complete the following class:

class covid_detector
 def initialize
 # Q1 TODO: Set up any data structures you may need
 @locs_to_students = Hash.new(nil)
 @students_to_locs = Hash.new
 end

 def read_files(scans_file)
 File.readlines(scans_file).each do |line|
 # Q2 TODO: Implement the body of this loop
 if str =~ /^([a-zA-Z]+\s[a-zA-Z]+),([A-Z]{3}\d{4})$/
 if @locs_to_students[$2] == nil
 @locs_to_students[$2] = []
 end
 @locs_to_students[$2].push($1)
 @students_to_locs[($1)] $2
 end
 end
 end

 def close_contact(name)
 #Q3 TODO: Implement this function
 @locs_to_students[@students_to_locs[name]].select { |student| student != name }
 end
end

Q6. OCaml: Typing

Q6.1. Without using type annotations, write an OCaml expression that has type int * int -> bool

fun (x, y) -> x + y = 1

Q6.2. Without using type annotations, write an OCaml expression that has type int list -> int -> float
list

fun lst x -> match lst with [] -> [float_of_int x] | h::_ -> [float_of_int h]

Q6.3. Without using type annotations, write an OCaml expression to fill in the blank so that entire expression
has type int -> int list

(fun x -> (fun y -> [x; y])) 1

Q7. OCaml: Where’s the Bug?

Identify what specific portion of the below code is causing the type error and what you can change to have it
output the correct value.

let rec f a b = match a with
| [] -> []
| (x, _)::t -> (x, b) @ (f t b);;

For example:

f [(0, 0); (0, 0); (0, 0)] 1 = [(0, 1); (0, 1); (0, 1)]
f [(“h”, 3); (“I”, 15); (“j”, -3)] “d” = [(“h”, d); (“I”, d); (“j”, d)]
f [(1, “KIM”); (2, “AVW”)] “Iribe” = [(1, “Iribe”); (2, “Iribe”)]

The “@” operator above attempts to combine two lists, but the left part is a tuple, not a list. Fix this by
replacing “@” with a cons operator (::) so that it appends a value to an existing list.

Q8. OCaml: What’s the Input?

Q8.1.

let f a b c = a + b - c in
let g = f 12 in
let h = g 3 in
let a = 4 in
h x

What should x be for the expression to evaluate to 8? 7

Q8.2.

let op f = List.fold_left f 0 [1; 2; 3; 4; 5]

What should f be for op f to evaluate to 5?

(max) OR (fun x y -> (x + y + 1)/2) OR (fun x _ -> x + 1) OR (fun _ x -> x)

Q9. OCaml: Fill in the Blank

Q9.1. What should x be for f x "a" to evaluate to 3?

type 'a l =
| Pair of ('a * 'a l)
| Empty

let rec f x m =
 match x with
 | Empty -> 0
 | Pair(a, b) ->
 if a = m then
 1 + (f b m)
 else
 (f b m)

Pair("a", Pair("a", Pair("a", Empty)))

Q9.2. Complete the function areas that, when given a list of shapes, returns their areas as a list.

For example:

areas [Circle 3; Rect (3,4); Square(9)] = [27; 12; 81]
areas [] = []

Suppose shapes are defined as:

type shape =
| Circle of int
| Rect of int * int
| Square of int;;

Note: To keep things simple, use pi = 3

let areas lst =
 let areas_helper s =
 match s with
 | Circle r -> 3 * r * r
 | Rect (l, b) -> l * b
 | Square l -> l * l in
 fold (fun a x -> a @ [areas_helper x]) [] lst

Q10. OCaml: Coding

Q10.1. Given 2 lists of the same length, implement merge_lists, which merges them into one list that
alternates elements from the first and second lists.

merge_lists [1; 5; 2] [7; 4; 8] = [1; 7; 5; 4; 2; 8]
merge_lists [1; 0] [1; 5] = [1; 1; 0; 5]
merge_lists [] [] = []

let rec merge_lists lst1 lst2 =
 match lst1, lst2 with
 | [], [] -> []
 | h1::t1, h2::t2 -> h1::h2::(merge_lists t1 t2)

Q10.2. Write a method add_k_n_times that inserts into a list lst, an element k exactly n times at a given index
i. If i is greater than the length of the list insert at the end.

The arguments are (in order): list, element to add, number of times to add it, and index at which to add it.

add_k_n_times [2; 3] 4 2 0 = [4; 4; 2; 3] (* adds `4` two times at the index `0` *)
add_k_n_times [1; 5; 7] 3 1 1 = [1; 3; 5; 7]
add_k_n_times ["bad"; "good"; "meh"] "neat" 3 2 =
 ["bad"; "good"; "neat"; "neat"; "neat"; "meh"]

let rec add_k_n_times lst ele num i =
 let rec helper a n =
 match n with
 | 0 -> []
 | _ -> a::(helper a (n-1))
 in
 match lst with
 | [] -> helper ele num
 | _::_ as l when i = 0 -> (helper ele num) @ l
 | h::t -> h::(add_k_n_times t ele num (i-1))

