
CMSC 330 Exam 2 Fall 2021 Solutions

Q1. Introduction

…

Q2. NFA/DFA

Q2.1. Which strings will this NFA accept?

ab, ddddd

Q2.2. What regular expression does this NFA correspond to?

(a|bb)*m?

Q3. NFA to DFA

Consider the following NFA:

Using subset construction, the above NFA can be converted to the DFA.

Q3.1. In this DFA, which states from the original NFA make up the state X? 1, 2, 5

Q3.2. In this DFA, which states from the original NFA make up the state Y? 2

Q3.3. In this DFA, which states from the original NFA make up the state Z? 3, 4

Q3.4. In this DFA, which states are final? Z

Q4. Context-Free Grammars

Q4.1. Write a CFG over the alphabet Σ = {0, 1} that recognizes strings that start with a 1, end with a 0, and
have any number of 0s or 1s in between.

S -> 1T0
T -> 1T | 0T | ε

Q4.2. Consider the following CFG

S -> S + T | T
T -> P * T | P
P -> 1 | 2 | 3 | (S)

Notice that this grammar is left recursive, write down every rule (with or without any changes) so that it is right
recursive.

S -> T + S | T
T -> P * T | P
P -> 1 | 2 | 3 | (S)

Q4.3. Find the FIRST sets for each non-terminal in the following grammar:

S -> TU | Ua
T -> da | Ub
U -> g | ε

FIRST(S) = {d, g, a, b}

FIRST(T) = {d, g, b}

FIRST(U) = {g, ε}

Q5. Parsing

Q5.1.

Write an exp value to describe the corresponding AST of the above parse tree.

type exp =
 | Num of int
 | Plus of exp * exp
 | Mul of exp * exp

Mul (Num 3, Plus (Num 1, Num 7))

Q5.2. You will implement a recursive descent parser for the following CFG:

S -> TU | a
T -> da | Ub
U -> g

You should use these functions and definitions:

type token =
 | Tok_a
 | Tok_b
 | Tok_d
 | Tok_g

(* Note that these are imperative implementations.
 You may assume that `tok_list` has been filled by a lexer. *)

let tok_list = ref []

let match_tok x =
 match !tok_list with
 | h :: t when h = x -> tok_list := t
 | _ -> raise (ParseError "bad match")

let lookahead () =
 match !tok_list with
 | [] -> None
 | h :: t -> Some h

Your functions should return the unit value () if they successfully parse, otherwise they should raise
(ParseError "message"). The contents of the message string do not matter.

Enter your code for the functions below:

let rec parse_S () =
 match lookahead () with
 | Some Tok_a -> match_tok Tok_a
 | _ -> parse_T (); parse_U ()

and parse_T () =
 match lookahead () with
 | Some Tok_d -> match_tok Tok_d; match_tok Tok_a
 | _ -> parse_U (); match_tok Tok_b

and parse_U () =
 match lookahead () with
 | Some Tok_g -> match_tok Tok_g
 | _ -> raise (ParseError “bad input”)

Q6. Operational Semantics

Q6.1. Rules 1 and 2 (but none of the others) are examples of axioms.

Q6.2. The semantics given are big-step.

Q6.3. The “A” used in operational semantics is called an environment.

Q6.4.

(a) 6
(b) 2
(c) 5
(d) 1
(e) 4
(f) 3
(g) (Result) 0

Q7. Lambda Calculus

In your answers for this section, you may write the lambda symbol as λ, \, or L, but please be consistent!

Q7.1. Reduce the expression as far as possible (Show your work for partial credits):

(λx. λx. y x) (λx. y x) x
= (λx. y x) x
= y x

Q7.2. Perform an α-conversion to the following expression:

(λy. λz. y z) (λa. y) x
= (λw. λz. w z) (λa. y) x

Then, apply as many β-reductions as possible to it without performing any other α-conversions.

= (λz. (λa. y) z) x
= (λa. y) x
= y

Q7.3. Given the following definitions:

true = λx. λy. x
false = λx. λy. y
and = λx. λy. x y false

Prove that and true false is equivalent to false. (Show all steps involving β-reduction and
substitution/replacement for full credit.)

and true false
= (λx. λy. x y false) true false
= (λy. true y false) false
= true false false
= (λx. λy. x) false false
= (λy. false) false
= false

Q8. Rust

Q8.1.

let a = String::from("cmsc330");
let b = a;
let c = &b;
let d = c;

Which variable is the owner of the string “cmsc330”? b

Q8.2. Fill in the 3 blanks such that the program, when run, outputs:

0
30
330
C330
SC330
MSC330

Consider the following Rust code:

fn foo(s: String) { // #1
 let mut i = s.len();
 while i > 0 {
 println!("{}", &s[i...]); //#2
 i = i - 1;
 }
}
fn main() {
 let s = String::from("CMSC330");
 foo(s); //#3
}

OR any other equivalent solution!

